
Draft: Metamodels towards Improved Domain Modeling for Semantic
Inferencing

Paul Witherell, Anantha Narayan, JaeHyun Lee, Sudarsan Rachuri
National Institute of Standards and Technology

Gaithersburg, MD 20899

Abstract- As information requirements have increased,
domain models have become increasing complex and
difficult to manage. Though domain-specific languages
have been developed for domain experts, increasing
their expressivity and decreasing their complexity, their
effectiveness is often limited by their implementation.
This paper will discuss current domain modeling
practices, specifically in the form of OWL and SWRL
within the context of product development. We then
recommend a set of best practices to account for
domain context while promoting application-specific
domain modeling. We then propose that a metamodel
can be used to incorporate these practices in early
domain modeling. We discuss what factors should l be
considered in such a metamodel, and finally outline
further development in future work.

I. INTRODUCTION
Many knowledge management systems have been

built on the premise that adding explicit structure to
domain context creates environments that are not only
human-readable, but also computable. These systems
often provide computability through rules and
grammar, or schema and syntax, and significant
research has been done in this area in the form of
language development. This research is often tailored
to meeting the language expressivity requirements of
a specific domain. In practice, the effectiveness of
knowledge management systems often comes down to
not only the expressivity of the modeling language,
but also how the domain is modeled. This paper will
explore an approach to improving this effectiveness
by utilizing domain-specific metamodels to account
for language capabilities and application requirements
during domain modeling stages.

This paper will focus on the knowledge
management in the product development domain. In
particular, this paper will discuss the use of domain-
specific metamodels to support inferencing in product
development knowledge management systems
developed with the Semantic Web’s OWL (Web
Ontology Language) and SWRL (Semantic Web Rule
Language).

This paper will begin by discussing the evolution
and use of knowledge management systems in
product development. Next, the advantages and
disadvantages of adding structure to domain-specific
context will be discussed, specifically structure
through ontologies and the Semantic Web. Several
possible inferencing capabilities in product
development are presented to highlight the potential
of a well-structured knowledge base. Finally, this
paper will propose a set of best practices to develop
domain models most suitable for inferencing and
propose a metamodel approach to as a means to
support these recommendations.

II. KNOWLEDGE MANAGEMENT IN PRODUCT
DEVELOPMENT

Knowledge management (KM) needs have
become industry mainstays as industry has become
progressively more reliant on distributed processes
and projects have become larger and more detailed.
Continued increases in information requirements (1)
have led to the continued need for new and advanced
methods to capture and share this information. These
advancements are necessitated by the importance of
proper knowledge management to successful product
development. One could argue that the integrity of the
product development process as a whole depends on
sound knowledge management, as errors accrued
throughout these processes can be very costly. It has
also been shown that the cost of errors is drastically
reduced the earlier the error is detected (2). Facts
such as these stress the need for dependable
knowledge management in both early and later
product development phases.

The advantages offered by many of the advanced
knowledge management systems used in product
development are highly dependent on the methods
used to capture and represent information. The more
capable knowledge management systems will often
manage not only necessary information, but also
instructions on how to use it. As researchers at NIST
note, “In order to support reuse of engineering
knowledge, a representation must convey additional
information that answers not only ‘what’ questions
about a design, but also ‘how’ and ‘why’ questions
(1).” This additional comprehensiveness can be

addressed by capturing higher-level, or meta,
knowledge from engineers, such as the rationale
behind an engineer’s decisions during the design
process. To capture and manage such information,
research has sought to develop more structured
knowledge management systems, beginning by
adding further structure to knowledge bases.

Early works with the development of knowledge
bases in engineering focused on product knowledge
representation, including work by deKleer and Brown
(3), Iwasaki and Chandrasekaran (Iwasaki &
Chandrasekaran, 1992), Alberts and Dikker (4),
Henson et al. (5), Goel et al. (6)(7), Qian and Gero
(8), Ranta et al. (9), and Umeda et al (10). These
works laid the groundwork for formally defining and
representing product information, such as the
categorization of product information into form,
function, and behavior in the NIST Design Repository
Project (1).

Many researchers began to adopt the form of
objects and relationships for formalized product
representation, such as that seen NIST Design
Repository, (11), and this became a focus of research
in advanced knowledge management systems. The
inclination towards this approach can be attributed to
the formal information structure offered that, when
instantiated, represents knowledge that can then be
operated upon by computers and humans alike (12).
The potential applications of knowledge management
systems based on computable representations have
driven research in languages and expressivity for
representing product development knowledge.

A significant amount of research in knowledge
management techniques has focused on meeting the
KM needs of a domain and representing information
in such a way that is practical for the end user. The
next session will discuss research in the area of
domain specific languages.

Take Away: KM in Product Development is
important; There has been significant research in the
area, much of it focusing on KR and Languages.

III. MODELING LANGUAGES
This section will discuss the motivation for and

use of Domain-specific modeling languages
(DSMLs). It will also discuss their capabilities, and
how many of their capabilities are derived from their
respective General-purpose modeling languages
(GPMLs). It will then discuss the use of ontologies as
a compromise between DSMLs and GPMLs, followed
by an introduction to the Semantic Web.

A. Domain-Specific Languages
 Model driven engineering is the discipline of

designing and using domain specific modeling
languages to simplify and automate engineering
design and analysis. Creating information models of
domains requires both domain experts and
information modeling experts. Domain experts
provide requirements of the information model based
on their domain experience, while information
modeling experts can construct the information model
in a proper way by considering the syntax and
semantics of modeling languages, limitations of
modeling language expressivity, as well as efficient
information structure. Domain-specific modeling
languages (DSML) are developed to bring the
abstraction level of modeling languages down to the
domain level, tailoring the language to reduce
language complexities that may be encountered by
domain experts. DSMLs consist of domain-specific
concepts and relationships so that domain experts can
also understand and develop domain information
models. DSMLs intentionally hide many
complexities of information representation in general-
purpose modeling languages (GPML) and essentially
become metamodels of a GPML for a specific
domain. Figure 1 categorizes several GPMLs and
DSMLs based on their knowledge representation
abilities.

Fig. 1 Modeling languages

GPMLs have their abstract syntax, concrete
syntax, and semantics. The abstract syntax explains
significant elements of the language, while the
concrete syntax describes how the language
expression looks. Light-weight GPMLs define the
semantics of domain concepts informally, whereas
heavy-weight GPML can define them explicitly and
formally. DSMLs also have abstract syntax, concrete
syntax, and semantics. The abstract syntax of DSMLs
defines domain-specific concepts and relationships.
DSMLs sometimes create a new concrete syntax, or
they inherit the concrete syntax of a GPML.
Semantics of domain concepts and relationships are
also a part of a DSML, and they can be axioms or
definitions of domain-specific concepts and
relationships. In short, though DSMLs are tailored for
a specific domain they often take advantage of a
GPML used in development.

Significant advancements have been made in
DSML’s in attempt to accurately represent and model
domain-specific information. Once a DSML is well
designed and implemented for a domain, domain
experts can get the following advantages by using it.

• Domain experts can build their
information models by themselves
without the burden of learning generic-
purpose modeling languages.

• Domain experts can understand
information models so that
communication between domain experts
and knowledge modeling experts
becomes easy.

• DSMLs allow validation of information
consistency at the domain level.

These efforts focus on simplifying the job of the
domain expert by reducing levels of abstraction by
increasing the expressivity of the modeling language.
While this creates a more powerful language, it also
reduces its flexibility. Product development is rarely
regulated to a single domain, and often has to cross
domain boundaries. Therefore, any DSML adopted
for product development needs to be modified or
extended efficiently, or should be able to support
multiple domains. In (13), desired product modeling
capabilities were categorized into four categories.
These capabilities enable designers to express
portions of a product model, and combine them with
contributions of other designers. The capabilities fall
into:

• Generalization (taxonomies, refinement).
• Interconnections as components (reuse,

inheritance, decomposition,
interconnections between
interconnections).

• Behavior as relations and
interconnections.

• Models of device and environment
(designs and requirements, total
systems).

Ontologies are able to satisfy each of these
language requirements, while at the same time
offering the flexibility to be tailored to multiple
domains. To this end, many researchers have turned
to Semantic Web for developing knowledge
management systems for product development.

B. Ontologies and Semantic Web
Ontologies have the ability to mimic many of the

advantages offered by domain specific languages by
providing a formalized means to add new context to
existing structure, in other words they can easily be
made DSMLs from GPMLs. Ontologies first were
made popular as a knowledge modeling technique
used in AI (14), and their ability to create and operate
on domain specific vocabulary and knowledge has
long been of interest to the scientific community(15).

Ontologies may vary in many different respects,
such as domain, language, comprehensiveness, and
expressiveness. The expressiveness, determined by
the logic used in their development language, plays a
major role in determining its capabilities. One of the
most common languages used in ontology
development is OWL (Web Ontology Language),
which is based on Description Logic (DL).

A cornerstone of the Semantic Web, OWL
provides a computable, explicit domain information
structure, subsequently catering to both computational
management systems and distributed knowledge
bases. Driven by DL, OWL allows for relationships
such a holynmic (subsumption) and meronomic (part-
of) to be formed within a knowledge base. OWL
axioms define a class by assigning necessary and/or
sufficient characteristics to a class. Axioms also
allow for restrictions to be placed on classes, such as a
cardinality restriction. Such axioms open the door for
DL reasoning mechanisms (e.g. consistency checking,
subsumption, equivalence, etc.) to act on concepts and
relationships between concepts and explicitly
represent otherwise implicit knowledge.

The expressivity of OWL can be extended through
SWRL, or the Semantic Web Rule Language. SWRL
extends OWL both syntactically and semantically.
Developed from Rule ML (16), the SWRL extension
of OWL creates a much more expressive language
than either OWL or Horn clauses individually
Beyond the abilities of Horn clauses, the expressive
power of SWRL also allows “existentials” to be
expressed in the head of a rule, (17). SWRL’s Horn
clause(18)“if-then” capabilities allow inferences to be
drawn on the assertion component, or ABox, of a
knowledge base, based on relationships defined in the
TBox, or terminological component. Such inferences
are essential in providing additional functionalities to

an OWL knowledge base, as SWRL allows
conclusions to be drawn based on existing knowledge.

Take Away: There has been a longstanding effort to
meet the needs of knowledge representation in
product development. These DSML can be
considered metamodels of the domain, and their
efforts often focus on simplifying the job of the
domain expert by adding domain-specific context.
Ontologies are able to meet the language
requirements of Product Development DSMLs.

IV. KNOWLEDGE MANAGEMENT WITH
ONTOLOGIES

The previous section highlighted the fact that
significant research has been done on meeting domain
needs for knowledge management through tailored
language and ontologies. This section will discuss the
motivation for this research, namely the applications
and advantages offered by ontologies as foundations
for knowledge management tools.

A. Ontologies and Knowledge Managment
When knowledge management systems are built

using logical languages, the end result is often a tool
with reasoning capabilities. Reasoning can lead to
inferences that can reduce redundancy, check for
consistency, and classify instances in a knowledge
base.

The success of domain modeling and reasoning
with ontologies is influenced by the application
domain and the intentions of the ontology. Notable
successes include the Human Genome ontologies
(MeSH, SNOMED-CT, and ICD9-CM 1

B. Ontologies in Product Development

) and GIS
(Geographical Information Systems). In product
development, ontologies have emerged as building
blocks for many knowledge management techniques
and DSMLs. Notable applications include product
knowledge interoperability and life-cycle
management. The following subsection will discuss
some specific capabilities that can be realized through
the use of ontologies for KM in product development.

Different types of logical inferencing can be
performed on an ontology depending on the language
used to develop it. By complimenting the expressivity
of Description Logic with Horn clauses, a broader
spectrum of the more expressive first-order logic can
be replicated with an OWL and SWRL knowledge
base. When modeling in an ontology, DL

1 International Classification of Diseases, 9th revision,
Clinical Modification

relationships inherently become part of the knowledge
associated with an artifact as well, for instance if the
concept of “car” is subsumed by the concept
“vehicle”, than without explicitly stating it, it can be
inferred that “car” is a type of “vehicle,” or make the
statement a “car” has four wheels. Xenia et al (An
Analysis of Description Logic Augmented with
Domain Rules for the Development of Product
Models) evaluated the expressivity of DL based on
the general information modeling requirements for
product development. While the DL axioms provide a
mechanism for capturing traditional product and
process knowledge, the Horn clauses provide a
mechanism for capturing and expressing less
traditional information in the form of “if-then”
statements.

 In today’s product development processes
domains often develop independently, especially with
the utilization of distributed and concurrent design
approaches. Many approaches to support these
approaches involve the creation of workflow
environments or central repositories where
information is stored and shared. In industry,
companies have begun to employ systems engineers
as a means for harmonizing the development of a
product, both sequentially and concurrently. The
increasing demand for this position highlights the
desire and need for improved and streamlined
communication between domains within product
development. Inferencing on a structured knowledge
base is another way of replicating much of this work
by 1) reducing redundancy and 2) facilitating
consisting across independently developed domains.

Additionally, relationships between each stage of
product development can be fully exposed and made
computable so software tools can help engineers
understand interactions between knowledge and
anticipate the impact of changes to a product. The
ability to have a real time awareness of the
progression of designs of individual components
during the design process can greatly simplify the
process and reduce margins of error. As Boston et al
note, readily accessible knowledge during these
(early) critical phases of the product development
process can drastically reduce costly errors and
ultimately lead to a more efficiently developed
product (19). The introduction of logical inferenceing
to a structured knowledge base can support important
facets associated with product knowledge
management, such as:

• Minimization of redundancy in the
knowledge instantiation process

• Maintaining of consistency during the
knowledge instantiation process

• Corroboration of knowledge instantiations

Logic can be used to assist the engineer in his or

her decision making, eliminating infeasible decision
alternatives and assisting in the knowledge capturing

process. Ultimately, however, the inferencing
capabilities of a domain model depend on the
expressivity of the language used to model it and the
structure of the modeled domain. The realization of
many of these capabilities depends not only on the
language used, but also how the domain model is
developed.

Take away: Ontologies and the Semantic web can be
very powerful tools when applied correctly.

V. DEVELOPING A DOMAIN MODEL
Languages such as OWL provide significant

flexibility and allow information to be represented in
many ways, such as objects or as data. The
effectiveness of a tool can be greatly influenced by the
domain model on which the information is stored. A
domain model should be tailored to take properly take
advantage of the inferencing capabilities offered by
many of modeling languages. Factors that should be
accounted for include not only the domain in question,
but also to the use-intention of the model. This
section will first discuss current domain modeling
practices and then propose a set of recommended
practices that will consider not only domain
requirements, but also application requirements when
modeling a domain.

A. Common Modeling Practices
Common domain modeling practices usually

follow the lead of the development of domain specific
languages, developing models to suit the needs of the
domain. When modeling a domain, the objective is to
satisfy the needs of the domain as best possible,
including modeling domain concepts and
relationships. What is often not considered during
development, however, is how the domain model is
going to be used. As discussed earlier, the reason for
the adaptation of knowledge management systems
with formal, explicit structure to context is often to
utilize the reasoning capabilities that are offered. The
result is often a domain model with considerable
redundancy and unnecessary complexity. These
complex models then must be carefully studied and
analyzed to understand their capabilities.

The inferencing capabilities of a knowledge base
are determined by the structure of the knowledge base
and the language used in its development. For
instance, consider again the statement “A car has four
wheels.” If this sentence where of an ontology of
English grammar, each work would have the same
importance. However, if this sentence is meant to
describe a type of vehicle, the words “car,” “four,”
and “wheel” become important concepts that may be
used to distinguish a car from perhaps a boat, or a
plane. If this sentence where meant to describe types
of “wheeled vehicles,” the concept of wheel may no

longer be as important, and instead the concepts of
“car” and “four” become the mechanisms for
reasoning. It is important to remember as new
concepts are added to act as reasoning mechanisms
the complexity of the domain also increases. By
understanding the reasoning capabilities and
identifying necessary reasoning mechanisms during
the early development of a domain model, less
complex and more effect domain models can be
developed.

One of the main obstacles in deploying knowledge
management frameworks is understanding where
inferencing should be done to exploit the inherent
logic. One of the common criticisms of ontologies is
the size they can reach and the perception they can
become unmanageable to the point where the
advantages provided by the structure and explicitness
they offer are overshadowed by their complexities.
By accounting for the application of a domain model
in early modeling stages, the model can be simplified
and the language exploited to meet the application
needs. A metamodel to support domain-specific
inferencing would allow the domain experts to better
tailor the development of their knowledge base and
consider inferencing aspects early in the development
stage. Towards this, we will now present best-
practices that such a metamodel should facilitate.

B. Recommended Practices
To create a good, quality domain model, it is

important to identify which are the most significant
concepts in the domain, how they are related to each
other, and how the domain models will be used in
practice. It is important to identify what kind of
information we would like to be able to infer from
domain models, and capture the concepts and
relationships that will allow this kind of inferencing to
be performed. Here, we present a short list of
guidelines (based on ref: “Design Guidelines for
Domain Specific Languages”, Gabor Karsai et. al.)
that will allow us to design better models for
inferencing.

Identify language use early: We must be able to

foresee the scenarios in which the DSML may be
used. It may not always be possible to completely
identify all usage scenarios; however, sufficient
attention must be paid to the most commonly
expected ones. For instance, identify the kind of
information we would like to infer from the domain
models, and capture the concepts and relationships
necessary to make these inferences.

Ask questions: Once the usages have been

identified, ask a number of questions about each use
case. When is the inferencing performed? Who is
performing the inferencing? What other languages
and tools are involved in the inferencing?

Compose existing languages when possible: It
may often be the case that one or more existing
languages capture all the concepts and relations of
your domain. In these cases, it is beneficial to
compose these languages to create a new composite
language. The advantage of using OWL is that
composition is fairly easy and often automatable. The
composed language will have stronger inferencing
abilities than the individual languages it is composed
from.

Capture only the necessary domain concepts and

keep it simple: It is very easy to get into the trap of
identifying and listing every domain concept you can
think of. Capturing too many domain concepts could
make the language rigid and limited in its application.
The language must present concepts that are generic
enough to be flexible, while capturing the key ideas of
the domain. This reflects on the previous guideline
about identifying use cases early, and capture only
those concepts that contribute to these uses.

Be mindful of efficiency: To be practically useful,

it must be possible to perform automated inferencing
on large models in a reasonable amount of time. In
other words, the inferencing must be scalable.
Keeping the language simple is one requirement for
this. On the other hand, identifying the types of
inferencing early allows us to capture the concepts
and relationships tailored to addressing its complexity
and scalability.

In the next section we will discuss how
metamodels be used to assist in addressing each of
these points to create more usable, efficient domain
models.

Take away: When developing a domain model, we
should consider not only the needs of the domain, but
also the intended application. This is often not done
in current practices.

VI. METAMODELS TO SUPPORT MODELING FOR
APPLICATION AND DOMAIN-SPECIFIC

INFERENCING
Metamodels for domains are developed to

consider domain constructs through domain
requirements, concepts and attributes. When creating
a computationally-driven domain model, not only
should the domain and language constructs be
considered, but also the intended application. We
propose that a metamodel for domain-specific
inferencing can provide crucial guidance during the
development of a domain model to understand how
the domain can be reasoned on. By developing a
domain model with a clear purpose or application
intent, more effective, efficient models can be created.
The notion of a metamodel to support inferencing is

meant to increase the effectiveness of a knowledge
base while decreasing its complexity.

It has been shown that metamodels are an
effective way for communication. They are
especially useful for providing a visuzalztion
mechanism for text-based syntax, such as that seen by
OWL and SWRL modeling.Invalid source specified..
They can also be used to provide best-practices and
outlines. Figures 1-3 show metamodelsInvalid source
specified. of GPMLs (OWL and SWRL) and a
DSML (CPM). As discussed throughout the paper,
each of these comes with their own
advantages/disadvantages. When developing a
domain model, elements from each should be
carefully considered.

Figure 2. OWL Metamodel

Figure 3. SWRL Metamodel

Figure 4. CPM Metamodel

Many factors need to be considered during the
development of a domain model, and even more when
also considering how a domain model will be
reasoned upon. The reasoning mechanisms depend on
the domain being modeled and the objective of the
domain model. The metamodel should consider what
inferencing capabilities could be used in the domain
model, i.e. the DL axioms and Horn clauses offered
by OWL and SWRL. A metamodel should consider
the extensiveness that a domain needs to be modeled.
While there are many details that a domain modeler
may want to capture, in practice it is best to
understand which ones are necessary and productive.
A metamodel should consider which attributes should
be reasoning mechanisms, and which may have little
effect on the models inferencing capabilities knowing
the models intentions. These are a few issues that can
significantly influence the complexity and
effectiveness of a domain model used for inferencing.
Each will be discussed further in the following
paragraphs.

When discussing what an inferencing metamodel
might look like, it is important to understand the
variances that may exist in both the elements and
relationships used in the inference. One such
consideration involves the elements and relationships
offered by the logic employed. Metamodels built
specifically to the language must consider language
constructs, language representation, and language
expressiveness. Such a metamodel (See Figures 1
&2) offers no insight into how a domain should be
modeled in order to exploit inferencing functionality.
The metamodel will only mimic the constructs of the
syntax of the inferencing language used. While this is
useful to understand language expressivity, domain
considerations must also be made.

By having a better understanding of how the
structure of a domain can be exploited during the
development phase, models can become more
efficient and the knowledge that can be gained

through inferecing can be increased. For instance
when modeling with OWL, one should not only
consider the application context, but also the Horn
implications when modeling in DL. This can be done
by understanding the type of inferencing that you are
most likely to need based on domain context, and how
this inferencing is done. Domain context and
application needs are important considerations, but it
also important to consider them while also
considering available expressivity. These
considerations will influence the inherent structure of
the domain model.

 The complexity of the structure is significantly
influenced by not only understanding attributes of
significance, but also the extent of their significance.
For instance, the example was given on reasoning to
determine a vehicle was a car based on the concept of
having four wheels. However, what was not
discussed was to what extent the concept of wheel
should be expressed. For instance consider again the
“A car has four wheels” sentence. Many domain
modeling languages provide mechanisms for
distinguishing between object attributes and string
attributes. While both may allow an attribute to be
expressed explicitly, object attributes allow for further
detail. However, with this additional detail comes
additional complexity. Tradeoffs such as these are
issues that should be, yet not always are, considered
during the development of domain models.
Metamodels will help domain modelers better
understand how to address application needs and what
the tradeoffs are of the model.

Take away: Metamodels have been created for
domains and languages, we can create a metamodel
that can also take into consideration application
intentions. Such a metamodel could be used to create
more efficient km tools.

VII. DISCUSSION
This paper discussed improving domain modeling

practices for domain applications through improved
metamodels. While domain specific modeling
languages have become established practices, their
development is often catered to meet the needs of a
domain. As information complexities increase and
knowledge management application progress, further
emphasis needs to be placed on understanding the
context for which a domain is being modeled. To this
end, guidelines were proposed and a metamodel was
theorized that could be used to improve domain
modeling practices. While this paper presented the
idea, continued research is needed before a functional
metamodel can be proposed. In future research we
will begin the modeling phase of a metamodel for
domain specific inferencing using OWL and SWRL
within in the product development domain. From this

work we hope to abstract a template to develop further
metamodels for additional domains and languages.

REFERENCRES

1. The NIST Design Repository Project. Szykman, S., et al. s.l. :
Springer-Verlag, 1998, Advances in Soft Computer-Engineering
Design and Manufacturing.

2. Measuring and Managing Quality in the Engineering Design
Process. Finn, G.A. s.l. : High Mountain Press, April 1999,
CATIA Solutions Magazine.

3. Assumptions and ambiguities in mechanisticmental models. de
Kleer, J. and Brown, J.S. [ed.] D., & Stevens, E.L. Genter.
Hillsdale, NJ : Erlbaum, 1983, Mental models, pp. 155–190.

4. Integrating standards and synthesis knowledge using the YMIR
ontology. Alberts, L.K. and Dikker, F. [ed.] J.S., Sudweeks, F.
Gero. Boston : Kluwer Academic, 1992, Artificial Intelligence in
Design, pp. 517–534.

5. Towards an integrated representation of function, behavior and
form, computer aided conceptual design. Henson, B., Juster, N.
and de Pennington, A. [ed.] J., Oh, V. Sharpe. Lancaster : s.n.,
1994. 1994 Lancaster Int.Workshop on Engineering Design. pp.
95–111.

6. Explanatory interface in interactive design environments. Goel,
A., et al. [ed.] J.S. Gero. Boston : Kluwer Academic, 1996,
Artificial Intelligence in Design.

7. KRITIK: an early case-based design system. Goel, A., Bhatta,
S. and Stroulia, E. [ed.] M., Pu, P. Maher. Mahwah, NJ :
Erlbaum, 1996, Issues and Applications of Case-Based Reasoning
to Design.

8. Function–behavior–structure paths and their role in analogy
based design. Qian, L. and Gero, J.S. 4, 1996, Artificial
Intelligence for Engineering Design, Analysis and Manufacturing,
Vol. 10, pp. 289–312.

9. Integration of functional and feature based product modeling—
the IMS0GNOSIS Experience. Ranta, M., et al. 5, 1996,
Computer-Aided Design, Vol. 28, pp. 371–381.

10. Supporting conceptual design based on the function–behavior–
state modeler. Umeda, Y., et al. 1996, Artificial Intelligence for
Engineering Design, Analysis and Manufacturing, Vol. 10, pp.
275–288.

11. Design repositories: engineering design's new knowledge base.
Szykman, S., et al. s.l. : IEEE, 2000, Intelligent Systems and Their
Applications, Vol. 15, pp. 48-55.

12. Ontologies for supporting engineering analysis models.
Grosse, I., Milton-Benoit, J. and Wileden, J. 1, 2005, Artificial

Intelligence for Engineering Deisign, Analysis, and
Manufacturing, Vol. 19, pp. 1-18.

13. Ontological Product Modeling for Collaborative Design.
Bock, C. E., et al. 4, 2010, Advanced Engineering Informatics,
Vol. 24, pp. 510-524.

14. An Ontology for Engineering Mathematics. Gruber, T. and
Olsen, G. [ed.] J., Torasso, and Sandewall, E Doyle. San Mateo,
CA : Morgan Kaufman. Proc. Fourth International Conference on
Principles of Knowledge Representation and Reasoning. pp. 258-
269.

15. Component-Based Support for Building Knowledge-
Acquisition Systems. Musen, M. A., et al. Beijing : s.n., 2000.
Conference on Intelligent Information Processing (IIP 2000) of the
International Federation for Information Processing World
Computer Congress.

16. MOF-RuleML: The Integrate. Wagner, G., Tabet, S. and
Boley, H. Boston : s.n., October 2003. 2003 OMG Meting.

17. Using Vampire to Reason with OWL. Tsarkov, D., et al. 2004.
3rd International Semantic Web Conference.

18. On sentences which are true of direct unions of algebras.
Horn, A. 1956, Journal of Symbolic Logic, Vol. 16, pp. 14-21.

19. Life-cycle management of supplier literature: the pertinent
issues. Boston, O. P., Culley, S. J. and McMahon, C. A. 3, 1999,
The Journal of Product Innovation Management, Vol. 16, pp. 268-
281.

20. Towards a Standardized Engineering Framework for
Distributed, Collaborative Product Realization. Choi, H., et al.
Chicago, IL : s.n., September 2. 2003 ASME Computers and
Information in Engineering Conference.

	I. Introduction
	II. Knowledge Management in Product Development
	III. Modeling Languages
	A. Domain-Specific Languages
	B. Ontologies and Semantic Web

	IV. Knowledge Management with Ontologies
	A. Ontologies and Knowledge Managment
	B. Ontologies in Product Development

	V. Developing a Domain Model
	A. Common Modeling Practices
	B. Recommended Practices

	VI. Metamodels to Support Modeling for Application and Domain-Specific Inferencing
	VII. Discussion
	Referencres

