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ABSTRACT 
A binary de Bruijn sequence of order n is a cyclic sequence 
of period 2n, in which each n-bit pattern appears exactly 
once. These sequences are commonly used in applications 
such as stream cipher design, pseudo-random number gen­
eration, 3-D pattern recognition, network modeling, mainly 
due to their good statistical properties. Constructing de 
Bruijn sequences is of interest and well studied in the lit­
erature. In this study, we propose a new randomized con­
struction method based on genetic algorithms. The method 
models de Bruijn sequences as special type of traveling sales­
man tours and tries to find optimal solutions to this special 
type of the traveling salesman problem (TSP). We present 
some experimental results for n < 14. 

Categories and Subject Descriptors 
I.2.8 [Artificial Intelligence]: Problem Solving, Control 
Methods, and Search 

Keywords 
De Bruijn sequences, Genetic algorithms, Traveling sales­
man problem 

1. INTRODUCTION 
A binary de Bruijn sequence of order n is a cyclic sequence 
of period 2n, in which each n-bit pattern appears exactly 
once. De Bruijn sequences are balanced, i.e., have same 
number of 1’s and 0’s, and have good randomness properties. 
These sequences are commonly used in applications such as 
stream cipher design, pseudo-random number generation, 3­
D pattern recognition, network modeling etc. 

De Bruijn sequences of order n exist for n ≥ 2 and for 
a given n, the number of de Bruijn sequences is 22

n−1−n 

[8]. There are various methods to construct de Bruijn se­
quences [4, 15]. Some of these methods start with an n-bit 
pattern and append a new bit to the sequence based on 

a pre-determined criteria, whereas some methods are recur­
sive and use lower-order de Bruijn sequences as input. These 
construction methods are capable of generating a subset or 
all of the possible sequences for a given order n, with vary­
ing time and memory complexity. It is of interest to find an 
efficient construction method that is not limited to a subset 
of all sequences. 

Genetic Algorithms (GAs), developed by Holland [10], are a 
part of evolutionary computation which is a subfield of artifi­
cial intelligence. These heuristic search algorithms are based 
on the survival of the fittest and natural selection concept of 
natural genetics. They simulate the natural evolution with 
the goal of finding the best solution to problems having a 
large and non-linear search space. 

In this study, we propose a new method to construct de 
Bruijn sequences using genetic algorithms. First, we de­
fine a special type of the traveling salesman problem (TSP), 
denoted as TSP ∗ 

n with 2n nodes and a predefined distance 
matrix. Then, we use our genetic algorithm to find an op­
timal tour for TSP ∗ and convert the output tour to a de n 

Bruijn sequence. 

The outline of the paper is as follows. In Sect. 2, liter­
ature surveys on de Bruijn sequence construction methods 
and genetic algorithms are provided. In Sect. 3, the defini­
tion and some basic properties of TSP ∗ are given. In Sect. n 

4, the details of the genetic algorithm are explained. The 
experimental results are summarized in Sect. 5. Finally, the 
results are discussed in the final section. 

2. PRELIMINARIES 
The preliminaries part of this study consists of two main 
parts; constructions of de Bruijn sequences, and genetic al­
gorithms especially focusing on their application to TSP. 

2.1 Constructions of de Bruijn Sequences 
Simplest construction method is the Prefer-one method which 
starts with n zeros and adds the bit 1 to the sequence when­
ever possible. For n = 4, the prefer-one method generates 
the following sequence; 

0000111101100101. 

Prefer-same [4] and prefer-opposite [1] methods are similar 
to prefer-one method using different bit insertion criteria. 
Given the same initial state, these methods generate only 
one de Bruijn sequence. 
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De Bruijn sequences can also be generated using feedback 
shift registers (FSRs). A FSR is a device that shifts its 
contents into adjacent positions within the register and fills 
the position on the other end with a new value generated 
by the feedback function. A FSR is uniquely determined by 
its length n and feedback function f . The output sequence 
S= {s0, s1, s2, . . .} of a FSR satisfy the following recursion 

sn+i = f(si, . . . , sn−1+i), i ≥ 0 (1) 

given the initial state (s0, s1, . . . , sn−1). To guarantee that 
every state has a unique predecessor and successor, f should 
be written in the form f(x1, . . . , xn) = x1 + g(x2, . . . , xn) 
[8]. Some necessary conditions on f and g to generate a de 
Bruijn sequence are given as follows; 

1. To avoid all zero cycle, f(0, . . . , 0) = 1. 

2. To avoid all one cycle, f(1, . . . , 1) = 0. 

3.	 To avoid the cycle (00 . . . 01), not all of the linear terms 
exists in f [9]. 

4. The parity of the truth table of g is 1 [8]. 

5. The function g is non-symmetric [2], i.e. 

g(x2, . . . , xn)  = g(xn, . . . , x2). (2) 

As n gets larger, finding an FSR with maximum length be­
comes very inefficient. One way to construct de Bruijn se­
quences using FSRs is to use linear feedback shift registers 
(LFSRs) with period 2n − 1. De Bruijn sequences are con­
structed by simply appending 0 to the (n − 1)-bit (00 . . . 0) 
pattern in LFSR output. The number of distinct de Bruijn 
sequences generated by this method is bounded by the num­
ber of degree n primitive polynomials over GF (2) which is 
equal to φ(2n − 1)/n, where φ is the Euler-phi function. 

Fredricksen and Maiorana [5] proposed an efficient method 
to generated the lexicographically minimal de Bruijn se­
quence. Etzion and Lempel [3] provided construction meth­
ods that can generate de Bruijn sequences with minimal lin­
ear complexity. Games [6] provided a recursive construction 
that inputs two de Bruijn sequence of order n to produce 
a de Bruijn sequence of order n + 1. Fredricksen [4] and 
Ralston[15] give a survey of these construction methods. 

2.2 Genetic Algorithms 
GAs operate on a population of chromosomes by an itera­
tive procedure. A chromosome represents a candidate so­
lution for the problem of interest, its genes corresponding 
to solution elements. As given in Figure 1, a GA starts by 
generating an initial population. A fitness function is used 
to evaluate the ability of each chromosome to survive over 
the generations. In each generation, population members 
undergo selection, crossover, and mutation to generate new 
offspring, according to predetermined crossover and muta­
tion probabilities. Some of the chromosomes are removed 
from the population in order to reduce the population size 
back to its initial size. This is repeated until given stopping 
conditions are satisfied. When GA stops, the best solution 
found so far is given as the output.

 
Generate initial population; 

 
Until stopping condition is satisfied 

Select parents from the population; 
Apply crossover operator to produce children; 
Apply mutation operator to the children; 
Extend the population by adding the children to it; 
Reduce the extended population back to its original size; 

Output the best chromosome; O	  
Figure 1: The pseudocode of a generic GA 

2.2.1 Genetic Algorithms for TSP 
GAs can be used to solve the TSP which is an NP-hard 
sequence-based combinatorial optimization problem. Given 
n nodes and their pairwise distances, TSP aims to find a 
shortest closed tour visiting each node exactly once. Al­
though the exact methods (such as evaluating all possible 
tours) fall short when the problem size gets large (n > 30), 
heuristic methods obtain near-optimal solutions for real-
world applications in a reasonable computation time. 

There are various successful implementations of GAs to TSP 
and their performance highly depends on the selection of the 
crossover operator. Some crossovers examples can be given 
as; PMX [7], CX [14], EAX [13], NX [11], NEX [12], NNX 
[16]. It seems that the crossover operators that make use of 
problem specific information perform better. 

3. A SPECIAL TYPE OF TSP: TSP∗ 
N 

Let (a1, . . . , an) be the binary representation of integer A 
(< 2n) . We define msbs(A) and lsbs(A) to be the first and 
last s (s ≤ n) bits of (a1, . . . , an), respectively , i.e., 

msbs(A) = (a1, a2, . . . , as), 

lsbs(A) = (an−s+1, an−s+2, . . . , an). 

Definition 1. TSP ∗ is a special type of TSP with 2n 
n 

nodes where the distance between two distinct nodes A = 
(a1, . . . , an) and B = (b1, . . . , bn) is defined to be 

dA,B = n − maxs{s|msbs(A) = lsbs(B)}, s ≥ 0. 

The distance between A and B corresponds to the number 
of edges in the shortest path from A to B in the Good’s 
diagram and can take values between 1 and n. Since the 
diagram is directed, the distances are asymmetric. As an 
example, the distance between node 2 with binary represen­
tation (0,1,0) and node 7 with binary representation (1,1,1) 
for TSP ∗ 

3 is 3, as illustrated in Figure 2. 

The tour lengths for TSP ∗ vary between 2n and n2n . Each 
cyclically-distinct optimal solution (i.e., the tours with length 
2n 

n 

) corresponds to a de Bruijn sequence. Given an optimal 
tour (A(1), A(2), . . . , A(2n)), de Bruijn sequence is generated 
as 

(1) (2) (2n)
(a , a , . . . , a )1 1 1 

where a1 
(i) 

corresponds to the first bit in the binary repre­
sentation of the node A(i). Selecting different bit positions 
only results in the rotation of the same de Bruijn sequence. 



Figure 2: Good’s graph for n=3, showing the short­
est path from (0,1,0) to (1,1,1) 

Example 1. TSP ∗ 
3 has 8 nodes {0, 1, . . . , 7}, with the dis­

tance matrix given in Figure 3. The length of the tour (0 1 
2 5 3 7 6 4) = (000, 001, 010, 101, 011, 111, 110, 100) 
is 8 and corresponds to the following de Bruijn sequence 
(00010111). 

From \ To 0 1 2 3 4 5 6 7 
0 - 1 2 2 3 3 3 3 
1 3 - 1 1 2 2 2 2 
2 2 2 - 2 1 1 3 3 
3 3 3 3 - 2 2 1 1 
4 1 1 2 2 - 3 3 3 
5 3 3 1 1 2 - 2 2 
6 2 2 2 2 1 1 - 3 
7 3 3 3 3 2 2 1 -

Figure 3: Distance matrix for the TSP ∗ 
3 problem. 

4. PROPOSED GENETIC ALGORITHM 
In this section, we describe the main components of the pro­
posed GA. 

Representation: The population members can be repre­
sented using either binary or path representation. The bi­
nary representation is more natural to generate de Bruijn 
sequences and requires less memory. However, since our 
underlying problem is the TSP, we used the path represen­
tation which is more suitable to solve TSPs. 

Initial Population: The GA starts by generating the ini­
tial population that contains Np members. To generate the 
initial population, we used two different methods; 

•	 Method I simply generates random tours, therefore the 
quality of the initial population is low in terms of the 
tour lengths. 

•	 Method II uses an heuristic approach which results in 
higher quality members. This method first starts with 
a random node and selects the next node randomly 
from the nodes whose distance is 1 to the current node, 
if possible, otherwise, an unused node is selected ran­
domly. 

Crossover: We use the nearest neighbor crossover (NNX), 
defined in [16], as our crossover operator. NNX is origi­
nally proposed for symmetric TSP, in which the distances 
are undirected, however with slight modification, it can also 
be used for asymmetric TSPs. NNX randomly selects the 
starting node and finds the successors of this node in each 
parent. The closest unused successor is used as the next 
node, if possible. If both successors are used before, NNX 
randomly selects an unused node. 

Example 2. Let Parent I = (1 2 4 7 6 3 0 5 ) and Par­
ent II = (5 2 6 7 0 3 4 1) with tour lengths 17 and 19, 
respectively. The initial node is randomly chosen to be 3, 

(3 * * * * * * *). 

The successors of 3 are 0 and 4 from Parent I and Parent 
II, respectively. Since d3,4 < d3,0, the next node is selected 
as 4, 

(3 4 * * * * * *). 

Continuing this way, the offspring is obtained as 

(3 4 1 2 6 7 0 5) 

with tour length 16, with better fitness value compared to its 
parents. 

Mutation: Two different mutation operators are used. 

•	 Mutation I simply randomly selects two nodes and 
swaps their positions. 

•	 Mutation II is an improvement of Mutation I, in which 
one of the nodes to be swapped (let’s say A(i)), is se­
lected when dA(i−1),A(i) +dA(i),A(i+1) > 2, which means 
that 

A(i) A(i+1)( . . . A(i−1) . . . ) 

part of the member should be updated in order the 
member to be optimal. Second node to be swapped 
is selected randomly. The swap operation is applied 
to the member, if it results in an improvement int the 
fitness value. 

Selection and Replacement: At each iteration, Np cou­
ples are selected randomly, and from each couple, one off­
spring is produced. The new offsprings are added to the 
population and the population size doubles. Then, popula­
tion members are sorted based on the fitness values. The 
best Np members are moved to the next generation. 

Fitness function and Stopping Condition: The fitness 
value for the problem is the tour length, for which the op­
timal value is 2n . Since the optimal solution for T SP n 

∗ is 



known unlike other random TSP instances, the GA stops 
whenever the optimal solution is found. Limiting the itera­
tion number to 500 is used as an alternative stopping condi­
tion, to stop the GA whenever the population converges to 
a non-optimal solution. 

5. EXPERIMENTAL RESULTS 
In this section, we provide the details of our experimental 
results. For n = 3, . . . , 10, we repeat our experiments 100 
times for each choice of population size, initial population 
type and mutation operator. The parameters of our experi­
ments are summarized in Table 1. 

Population size, Np 25 

28 

Initial Population Method I - Random 
Method II - Heuristic 

Crossover NNX 
Mutation No Mutation 

Mutation I 
Mutation II 

Mutation rate Fixed to 0.05 

Table 1: Parameter selection of the experiments for 
n = 3, . . . , 10 

Table 2 and 3 summarizes the results of our experiments for 
n = 3, . . . , 10 using the success rate (out of 100 trials), aver­
age number of iterations for successful trials and the number 
of distinct de Bruijn sequences in all trials. As shown in Ta­
ble 2, whenever the initial population is generated randomly, 
the algorithm can be considered to be successful for n ≤ 5 
and n ≤ 8 for population size 25 and 28, respectively. Using 
the second method, the success rate of the genetic algorithm 
is greater than 90 percent for all n ≤ 10. For small n val­
ues, even the initial population generation method managed 
to generate optimal solution, however as n gets larger, the 
heuristic method seems to fall short. The GA manages to 
generate optimal solutions after small number of iterations, 
usually less than 10 iterations on the average. 

For larger n values, we repeat our experiments with Np = 25 

and 10 trials. Since the mutation operators do not have a 
significant effect on the results, mutation operator is not 
used for larger problems. The results are summarized in 
Table 4. 

6. DISCUSSION AND CONCLUSION 
In this study, we propose a new evolutionary construction 
method for de Bruijn sequences that is not limited to a 
subset of sequences. The method models the de Bruijn se­
quences as traveling salesman tours, which corresponds to 
Hamiltonian tours in Good’s graph. 

After some experiments, the algorithm managed to generate 
many different sequences for small values of n. For n > 14, 
the algorithm becomes inefficient mainly due to the memory 
requirement. The proposed GA requires n, n2n and n2nNp 

bits to represent each node, member and the population, 
respectively. More efficient representations will be studied 
as future work. 
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No Mutation Mutation I Mutation II 
n Np Success Rate Avr. Iter. Distinct Success Rate Avr. Iter. Distinct Success Avr. Iter. Distinct 

3 25 91 2.16 2 100 3.28 2 100 1.17 2 
4 25 77 16.35 16 88 22.46 16 98 22.52 16 
5 25 51 36.64 51 58 59.08 59 64 43.98 68 
6 25 0 - 0 0 - 0 0 - 0 

3 28 100 0.02 2 100 0.47 2 100 0 2 
4 28 97 6.46 16 97 3.23 16 99 5.16 16 
5 28 96 8.56 143 99 9.64 132 97 11.07 137 
6 28 88 22.92 119 88 22.82 111 89 27.46 130 
7 28 79 39.82 92 73 41.15 87 77 51.23 91 
8 28 45 116 49 31 95.46 35 33 99.63 36 
9 28 0 - 0 0 - 0 0 - 0 

Table 2: The summary of results obtained using a random initial population 

No Mutation Mutation I Mutation II 
n Np Success Rate Avr. Iter. Distinct Success Rate Avr. Iter. Distinct Success Avr. Iter. Distinct 

3 25 100 0 2 100 0 2 100 0 2 
4 25 100 0 16 100 0.06 16 100 0.02 16 
5 25 100 0.54 199 100 0.61 194 100 0.42 219 
6 25 100 2.81 155 100 2.69 128 100 2.9 131 
7 25 100 6.8 113 100 7.74 117 100 6.96 111 
8 25 100 14.39 103 100 16.83 107 99 16.67 105 
9 25 100 32.4 100 96 34.19 98 99 27.32 99 
10 25 97 59.27 97 95 63.84 95 90 60.26 90 

3 28 100 0 2 100 0 2 100 0 2 
4 28 100 0 16 100 0 16 100 0 16 
5 28 100 0 1190 100 0 1191 100 0 1163 
6 28 100 0 881 100 0 867 100 0 901 
7 28 100 0.07 208 100 0.04 428 100 0.05 420 
8 28 100 0.85 205 100 1.19 222 100 1.06 203 
9 28 100 4.32 129 100 4.21 144 100 3.37 142 
10 28 100 7.98 110 100 8.49 117 100 9.63 110 

Table 3: The summary of results obtained using a non-random initial population 

n Success rate Avr. Iter. Distinct 

11 8 /10 136.00 8 
12 5 /10 118.40 5 
13 2 /10 152.00 2 
14 3 /10 262.33 3 

Table 4: The summary of results obtained for larger n values 
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