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Reliable experimental demonstrations of violations of local realism are highly desirable for fundamental tests
of quantum mechanics. One can quantify the violation witnessed by an experiment in terms of a statistical p

value, which can be defined as the maximum probability according to local realism of a violation at least as high
as that witnessed. Thus, high violation corresponds to small p value. We propose a prediction-based-ratio (PBR)
analysis protocol whose p values are valid even if the prepared quantum state varies arbitrarily and local realistic
models can depend on previous measurement settings and outcomes. It is therefore not subject to the memory
loophole [J. Barrett et al., Phys. Rev. A 66, 042111 (2002)]. If the prepared state does not vary in time, the p

values are asymptotically optimal. For comparison, we consider protocols derived from the number of standard
deviations of violation of a Bell inequality and from martingale theory [R. Gill, e-print arXiv:quant-ph/0110137].
We find that the p values of the former can be too small and are therefore not statistically valid, while those
derived from the latter are suboptimal. PBR p values do not require a predetermined Bell inequality and can be
used to compare results from different tests of local realism independent of experimental details.
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I. INTRODUCTION

Quantum mechanics violates local realism (LR) [1]. To
show such violation, experimenters usually test a Bell in-
equality that is satisfied by all local realistic models (LR
models) such as the Clauser-Horne-Shimony-Holt (CHSH)
inequality [2]

ĪCHSH ≡ E(A1B1) + E(A1B2) + E(A2B1) − E(A2B2) � 2,

(1)

where E(AiBj ) with i,j ∈ {1,2} is the correlation between
measurements Ai and Bj with outcomes ±1. To test this
inequality, each of two parties—Alice and Bob—receives one
particle from a common source. Each performs one of two
possible measurements chosen randomly and independently
on their own particle and records the outcome. We call this
procedure a trial. After a large number of trials, Alice and Bob
estimate the CHSH expression ĪCHSH, which is the left-hand
side of the CHSH inequality, from their joint measurement
outcomes. Following this approach, the departure from LR is
typically given in terms of the number of experimental standard
deviations (SDs) separating the estimate of ĪCHSH from its
LR upper bound of 2. For example, Weihs et al. [3] report
an experimental estimate ĨCHSH = 2.73 ± 0.02 and claim a
violation of the CHSH inequality by 30 SDs.

There are several problems with this analysis protocol.
First, although the SD partially characterizes the measurement
uncertainty due to a finite number of trials, it does not
consider the probability that a local realistic system could
also violate the inequality after a finite number of trials.
Because such a system’s (non)violation can have a larger
SD, the experimental SD may suggest a stronger violation
of LR than justified. Second, one would expect that the
probability distribution of the estimate of ĪCHSH under LR
is Gaussian, since this appears to be justified by the central
limit theorem [4] as the number of trials approaches infinity.
It therefore seems reasonable to statistically quantify the

violation by the probability that a Gaussian random variable
can exceed the mean by the number of SDs of violation
experimentally observed. However, for a finite number of trials
and high violation, the Gaussianity assumption fails. Third, it is
desirable to compare experimental results from different tests
of LR, but the effects of the problem with experimental SDs
and of the failure of Gaussianity depend on the Bell inequality,
the quantum state, measurement settings, detection efficiency,
and other experimental parameters. Consequently, the number
of SDs of violation cannot be used to directly compare the
amount of evidence for rejecting local realism obtained from
different experimental tests.

In this paper, we show how to analyze data from exper-
imental tests of LR to compute a measure of the strength
of the evidence against LR. By computing this measure, LR
violation by different experiments can be rigorously assessed
and compared. Specifically, the proposed analysis protocol
quantifies LR violation in terms of p values, where small
p values imply strong violation. We call this the prediction-
based-ratio (PBR) protocol. Protocols such as this compute a
p value from a “test statistic,” that is, a value T (x) computed
from the data x. There are many such statistics to choose
from; an example is the average Bell-inequality violation and
is used by the SD-based protocol. The p value returned by the
protocol is computed from a putative upper bound b(t) on the
tail probabilities Prob[T (x) � t] for x distributed according to
LR models. The p value of the protocol given the observed
data x is defined by p(prot) = b(T (x)). In order to be able to
interpret the protocol’s p value as a measure of LR violation,
it must satisfy statistical validity: The protocol and its p values
are valid if the bound b(t) � Prob[T (x) � t] is true whenever
x is distributed according to an LR model. See Appendix 1 for
a discussion of the relevant statistical concepts and justification
for the use of p values.

We prove that the PBR protocol is valid and compare it to
SD- and martingale-based [5,6] protocols. For n independent
and identically distributed trials, these protocols have the
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FIG. 1. Confidence-gain rates G for the SD-based protocol. G

is shown for a CHSH test of LR with an unbalanced Bell state
with no loss and perfect detectors. It depends on the parameter θ in
the unbalanced Bell state cos(θ )|00〉 + sin(θ )|11〉. The measurement
settings are chosen to maximize the violation of the CHSH inequality
(1). G is compared with the optimal gain rate given by the statistical
strength (Sec. III C) for this test. The crossover occurs at θ = 33.41◦.
SD-based confidence-gain rates were computed with respect to the
conventional method for estimating violation, see Sec. III A.

property that the p value p is exponentially close to 0. That is,
p � 2−Gn for large n. We call G the asymptotic confidence-
gain rate. It is desirable to have a high confidence-gain rate as
this implies that fewer trials are needed to achieve the same
strength of violation of LR. The optimal confidence-gain rate
that can be achieved by any protocol is given by the statistical
strength S in units of bits per trial as defined in Ref. [7].
We prove that the PBR protocol is asymptotically optimal.
That is, its p values achieve the optimal confidence-gain rate.
The confidence-gain rates for different protocols are shown
in Figs. 1 and 2 for a number of experimental configurations
that are explained in the next section. The figures show that
SD-based p values are not valid in some regions. Because the
relationship of the SD-based confidence-gain rates compared
to the asymptotically optimal ones varies substantially, results
of experiments with different configurations cannot be directly
compared by the common “number of SDs of violation”
measure. The martingale-based protocol is valid and compu-
tationally simple but has suboptimal confidence-gain rates.

The PBR protocol remains valid if the prepared quantum
state varies arbitrarily and the LR models to be rejected depend
on previous measurement settings and outcomes, that is, in
the presence of the memory effect [8]. This is desirable not
only for tests of LR but also for practical applications of
quantum information, such as device-independent quantum
key distribution [9,10], randomness expansion [11], state esti-
mation [12], and certification of entangled measurements [13].

Compared with the other two protocols, an advantage
of the PBR protocol is that it can be applied to a wide
variety of configurations (the combinations of quantum state,
measurement settings and other relevant parameters) with-
out having to specify a Bell inequality. Since such Bell
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FIG. 2. Confidence gain rates G of CHSH tests of LR with
Bell states and varying detection efficiency η and visibility V. The
measurement settings are chosen to maximize the violation of the
CHSH inequality (1). Measurement outcomes where no photon is
detected are assigned the value −1.

inequalities characterize the family of setting and outcome
distributions achievable by LR models, they provide a useful
guide to designing an experiment and determining good
goal configurations to be achieved. But since Bell-inequality
violation is not directly related to statistical strength, it
is not obvious how to choose the best inequality before
the experiment. Moreover, the predetermined Bell inequality
restricts a successful experiment to configurations close to the
goal, closer than may be achievable in a given experiment.
The PBR protocol automatically adapts to deviations from the
goal, achieving optimal confidence-gain rates for the actual
configuration. One can exploit this adaptability by applying
the PBR protocol to experiments in progress. This makes it
possible to monitor the current (non)violation of LR for the
purpose of optimizing experimental parameters and settings.
The online supplemental material [14] contains code and
documentation for an implementation of the PBR protocol (the
local realism analysis engine) that can be used for monitoring
experiments in progress and for analyzing existing data sets.
Our results show that the PBR protocol is sufficiently efficient
for practical use with typical experimental configurations.

The paper is structured as follows: In Sec. II, we summarize
the mentioned methods for calculating p values and show how
their confidence-gain rates compare for tests of LR based on
Bell inequalities. The methods are applied to and compared on
simulated and actual experiments. The theory for the methods
is in Sec. III. We assume that the readers are familiar with the
basics of LR and tests of LR based on Bell inequalities. For
reviews of the field, see Refs. [15–18].

II. COMPARISON OF PROTOCOLS

We consider three protocols that determine p values for
LR rejection from experimental data: SD-based, martingale-
based, and PBR protocols. The first two depend on a Bell
inequality, whereas the PBR protocol requires only the
sequence of measurement settings and outcomes.
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FIG. 3. Running log(p) value(s) as a function of number of trials n in CHSH test of LR with Bell state without noise or inefficiency. The
log(p) value(s) are computed according to the three protocols discussed. The slopes of the straight lines are the asymptotic confidence-gain
rate for each protocol. Panel (a) is for one simulation of 5000 successive trials. Panel (b) is an average of 30 simulations. The square roots of
the unbiased estimates of the one-run variances are shown as gray regions around the averages and indicate the expected fluctuation for one
sequence of n trials for each n plotted. Note that for one sequence, the fluctuations are not independent as the sequence progresses.

For the purposes of discussion, we fix a Bell inequality

〈I (x)〉 � B, (2)

where I (x) is a real-valued function of the measurement setting
and outcome combination x of a single trial, and Ī = 〈I (x)〉 is
its expectation. Here, the measurement setting distribution is
built into the inequality. An example is the CHSH inequality in
Eq. (1). In this case, if the settings of x are i,j and its outcomes
are a,b, then

I (x) = (1 − 2δi,2δj,2)ab/pi,j and B = 2, (3)

where pi,j is the probability of choosing the setting combi-
nation i,j in each trial. The functional form I (x) in Eq. (3)
ensures that its expectation is equal to the left-hand side of
the CHSH inequality (1). In particular, this requires dividing
by the known probabilities of the measurement settings. There
is no loss of generality by fixing the setting probabilities in
advance. Violation of LR requires that measurement settings
be chosen independently of any hidden variables. In particular,
the locality and memory loopholes cannot be closed unless,
in each trial, measurement settings are chosen randomly and
independently by each party with no possibility of a causal
connection and according to a known probability distribution.
We allow for arbitrary setting distributions in Eq. (3). For the
results in Figs. 1, 2, 3, and 4, pi,j = 1/4.

Given an experimentally obtained sequence of settings and
outcomes x1, . . . ,xn from n trials, we get an estimate Î =
1
n

∑n
k=1 I (xk) of Ī . Note that this approach differs from the

one where each expectation in Eq. (1) is separately estimated
by conditioning on the respective measurement settings, as
is commonly done in experiments to produce an estimate Ĩ

of Ī . The difference is discussed in Sec. III A and does not
significantly affect the comparisons made here. In this section

we outline and compare the protocols. Technical details are in
Sec. III.

A. SD-based protocol

The results from the trials are used to obtain Ĩ and estimate
the SD σ of Ĩ . Given that Ĩ > B, it is conventional to give
(Ĩ − B)/σ , the number of SDs of violation, as a measure of
the amount of violation. If we pretend that the probability
distribution of the estimate of Ī given LR is Gaussian with
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FIG. 4. Running log(p) values as a function of number of trials
n in experiment of Ref. [11]. The dotted lines are provided only to
guide the eye.
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mean bounded by B and variance σ 2, we can compute a p

value

p(SD) = Q

(
Ĩ − B

σ

)
, (4)

where Q(z) is the Q-function, which is the probability that
a standard normal random variable N satisfies N � z. As
a function of the number of trials n, σ

√
n approaches σ1,

where σ1 is an effective one-trial SD. For large n, the quantity
Q((Ĩ − B)/σ ) approaches e−n(Ī−B)2/(2σ 2

1 ). Thus the asymptotic
confidence-gain rate for the SD-based protocol is

GSD = log2(e)
(Ī − B)2

2σ 2
1

. (5)

SD-based p values are not valid because the experimental
SD is different from the worst-case SD assuming LR, and
because deviations from Gaussianity in the extreme tail of
the distribution for Ĩ cannot be asymptotically neglected. To
explain this issue, define the random variable F = √

n(Ĩ −
B)/σ1. For any LR model, 〈F 〉 � 0. We expect that, according
to the central limit theorem, F − 〈F 〉 converges in distribution
to a standard normal distribution. Assuming LR models have
the same or a smaller SD, we are interested in the probability
of the event that F � √

nVn/σ1, where Vn is the violation of
the Bell inequality found after n trials. But convergence in
distribution cannot be used to compute probabilities of events
that depend on n.

A comparison of the confidence-gain rate for the SD-based
protocol to the asymptotically optimal one is shown in Fig. 1. It
implies that SD-based p values can be lower than justified and
are therefore not valid. The worst case is when the state used
is a Bell state (i.e., a maximally entangled state of two qubits),
which is an aim of most experiments to date. The family
of unbalanced Bell states considered in Fig. 1 is of interest
because they are more tolerant of low detection efficiency
[19]. Experimental techniques to prepare arbitrary unbalanced
Bell states without postselection have been demonstrated and
applied to tests of LR [20,21].

The number of SDs of violation is not normally explicitly
converted to a p value as done here. Instead, it is primarily
intended as a way of claiming successful violation with a
good signal-to-noise ratio. Naturally, one would like to use the
measure to compare the strength of the violation for different
experiments. Such a relative comparison works only if the
experiments use the same test of LR with the same state,
experimental settings, losses, visibilities, and other relevant
parameters. From Fig. 1, we can infer that, if we use the number
of SDs to compare the violation of the CHSH inequality in
experiments involving different unbalanced Bell states, we
tend to unfairly favor the experiment with the more balanced
state.

B. Martingale-based protocol

Another problem with the SD-based protocol is that
it assumes that the trials are independent and identically
distributed; that is, it does not consider the memory effect [8].
We cannot expect the prepared states and experimental settings
to be stable over the course of a long sequence of trials. In
addition, it is desirable to take into account the possibility that

the experimental system is subject to a model of LR where
the entire history of the experiment can affect the events to
come, except that the measurement-setting choices are still
under independent experimental control. To account for these
effects, R. Gill suggested a method for calculating p values
based on the martingale structure of the time sequence of
observations in a test of LR [5,6].

The martingale-based p value is computed according to

p(mart) = exp

(
− n(Î − B)2

32

)
. (6)

Here, we assume without loss of generality that I (x) and B

have been shifted and normalized so that, for every argument
x, the value I (x) is bounded between −4 and 4. If the
function I (x) in a Bell inequality 〈I (x)〉 � B does not satisfy
this condition, then determine bl = minx I (x), bu = maxx I (x)
and replace I (x) and B by I ′(x) = 8[I (x) − bl]/(bu − bl) −
4 and B ′ = 8(B − bl)/(bu − bl) − 4. The martingale-based
protocol is valid, but is based on conservative tail estimates
and therefore is not asymptotically optimal. For large n, Î

approaches Ī , thus the asymptotic confidence-gain rate is

Gmart = log2(e)
(Ī − B)2

32
. (7)

A comparison of SD-based, martingale-based, and asymp-
totically optimal confidence-gain rates is shown in Fig. 2 for a
CHSH test with noisy and lossy Bell states.

C. PBR protocol

In contrast to a fixed Bell inequality used in the SD-based or
martingale-based protocol, after k trials but before the (k + 1)st
trial the PBR protocol returns a special Bell inequality of the
form

〈Rk(x)〉 � 1 (8)

with Rk(x) nonnegative. The PBR p values are determined by
the values of Rk at the setting and outcome combination xk+1

of the (k + 1)st trial. In particular, as shown in Sec. III C, any
such sequence of inequalities yields a valid p value computed
according to

p(PBR) = min

{[
n∏

k=1

Rk−1(xk)

]−1

,1

}
. (9)

The PBR protocol aims to optimize the expected p value
by computing the PBRs Rk(x) = q(k)

x /p
(k)
LR,x , where q(k)

x is
an estimate of the distribution of future setting and outcome
combinations x, which can be based on x1, . . . ,xk and can take
into account other experimental information obtained before
starting the (k + 1)st trial. The quantity in the denominator,
p

(k)
LR,x , is the probability of x given by an optimal LR model

with respect to the estimates q(k)
x . The notion of optimality

is defined in Sec. III C and guarantees the desired inequality
(8). We define the (negative) log(p) value increment for the
kth trial as log2(Rk−1(xk)). For independent and identically
distributed trials, q(k)

x converges to the true probabilities qx ,
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and the asymptotic confidence-gain rate is

GPBR = Sq, (10)

where Sq is the statistical strength defined in Sec. III C. This
is the optimal valid confidence-gain rate for a given test
configuration and is plotted in Figs. 1 and 2.

D. Application to experiments

The above protocols can compute p values for recorded
trials as an experiment progresses, and such “running” p values
may be used to optimize experimental settings. Because we
are interested in extremely small p values with exponential
asymptotic behavior, we generally consider and display the
(negative) log(p) value.

SD-based and martingale-based protocols are restricted
to a fixed Bell inequality. The PBR protocol does not have
this restriction, which enables wider searches for strong LR
violation. Running log(p) values are shown for a simulation
in Fig. 3 and for data from Ref. [11] in Fig. 4. The PBR p

values were computed with our implementation of the local
realism analysis engine (see documentation and code [14]).
Relevant aspects of the implementation such as data blocking
and learning transients are discussed in Appendix 2. Note that,
whereas running log(p) values can be useful for monitoring
and tweaking an experiment, they must not be used as a
stopping criterion once an experiment has been configured.

For Fig. 3 we simulated a CHSH test of LR with a Bell
state and measurement settings maximizing violation of the
CHSH inequality (1). We assumed an ideal experiment (no
loss of photons or visibility) and simulated 5000 successive
trials. The log(p) values were updated for successive blocks
of 56 trials (see Appendix 2). In particular, the function
Rk(x) used by the PBR protocol was recomputed based
on the trials seen so far every 56 trials. The figure shows
typical and average runs and compares the running log(p)
values to the asymptotic lines with slopes given by the
respective gain rates. The slopes of the running log(p) values
approach the gain rates, but PBR log(p) values have a
systematic offset that can be attributed to an initial transient
where the setting and outcome distribution is being learned.
The transient can be removed if, before the experiment is
started, we have a good estimate of the distribution. Such an
estimate could be based on theory (quantum or otherwise)
or previous measurements, and can be used to “prime” the
ratios Rk(x).

For Fig. 4, we compute log(p) values for the data from
the experiment described in Ref. [11]. In this experiment, two
171Yb+ ions separated by about one meter were entangled
through a probabilistic process. In this process, each ion is
entangled with one emitted photon. By projecting the two
emitted photons into a Bell state the two remote ions are
entangled with each other. On the entangled two-ion system, a
CHSH test of LR was performed. The results from 3016 trials
were recorded. The resulting estimate of the CHSH expression
is ĨCHSH = 2.414 ± 0.058. For the figure, we processed the
data in blocks of 56 trials as before. We did not prime the ratios
Rk(x) for computing PBR log(p) values. In this case, there
is insufficient data for PBR log(p) values to clearly exceed
martingale-based values.

III. THEORY

For SD-based and martingale-based protocols we fix a
Bell inequality Ī � B, as explained at the beginning of Sec.
II. While the theory applies to multipartite Bell inequalities,
we discuss it explicitly for the case of bipartite inequalities
to simplify the formulas. (Our implementation of the local
realism analysis engine is presently restricted to the bipartite
case.) The setting and outcome combination of the kth trial is
denoted by xk = (ik,jk,ak,bk), where ik , jk are the kth settings
and ak , bk are the kth outcomes of Alice and Bob, respectively.
Let i(x) and j (x) be Alice’s and Bob’s settings, respectively,
for the combination x. The distribution of measurement
settings is fixed. The probability of settings i,j is given by
pi,j .

A. SD-based protocol

The obvious method for estimating Ī is to compute the aver-
age of the sequential values I (xk) given by Î = 1

n

∑n
k=1 I (xk).

However, this is not the minimum-variance estimate of Ī ,
since the setting distribution is fixed and known. In fact, the
conventional way of writing a Bell inequality is as a sum of
expectations as in Eq. (1), which makes it independent of the
probability distribution of the settings. The correspondence
between the two ways of writing a Bell inequality is given by

〈I (x)〉 =
∑
i,j

pi,j 〈I (x)|i(x) = i,j (x) = j 〉, (11)

where the expectation in the sum is conditioned on the
settings of x, as indicated. If we assume that the state in
each trial is identical and do not worry about the memory
and locality loopholes, we can estimate each expectation
〈I (x)|i(x) = i,j (x) = j 〉 separately, experimentally fixing the
settings for each estimate, if desired. The right-hand side of
Eq. (11) can then be computed formally. If we define n(i,j,a,b)
to be the number of trials with settings i,j and outcomes a,b,
the estimate for Ī thus computed is

Ĩ =
∑
i,j

pi,j

∑
a,b n(i,j,a,b)I (i,j,a,b)∑

a,b n(i,j,a,b)
, (12)

which is a nonlinear function of n(i,j,a,b). Its SD can be
approximated by linear propagation of errors from SDs for
the counts n(i,j,a,b), assuming each of these counts follows a
Poisson distribution. The SD thus obtained is generally smaller
than that of Î . Hence, the conventional way of estimating
Ī and the experimental SD worsens the validity problem
for SD-based p values. However, using the estimate Î and
the associated larger SD in the figures of Sec. II does not
significantly alter the plots or their interpretation.

To convert the number of SDs to a p value, we make
the unwarranted assumption that, for any LR model, the
distribution of the estimate ĨLR of Ī is sufficiently close
to Gaussian with the SD σ calculated according to the
previous paragraph but with a mean bounded by B. With this
assumption, according to any LR model, the probability of
the event ĨLR � Ĩ is then bounded above by Q((Ĩ − B)/σ ),
which allows us to assign the p value given in Eq. (4), with the
caveat that our assumption is false. The comparisons between
SD-based and asymptotically optimal confidence-gain rates
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show that this strategy for obtaining p values is invalid. While
it may be possible to obtain a valid p value by checking
the relevant averages and variances for all LR models, this
is a challenging task, and one would still have to consider
deviations from Gaussianity in the extreme tails.

B. Martingale-based protocol

For fundamental tests of quantum mechanics, a serious
deficiency of SD-based assessments of experimental tests of
LR is that they do not account for memory effects [8], including
the possibility that the state and settings drift in the course of
the experiment. To take such effects into account, R. Gill [5,6]
considered the time-sequence Mk = ∑k

l=1[I (xl) − B] as a
super-martingale and applied large-deviation bounds. Here,
the measurement settings are assumed to be chosen randomly
and independently by Alice and Bob according to the fixed
probability distribution pi,j built into the inequality of Eq. (2).
Let Wk be all the information available before the kth trial.
According to any LR model, the conditional expectation of
Mk given Wk satisfies

〈Mk|Wk〉 = 〈I (xk) − B + Mk−1|Wk〉
= 〈I (xk)|Wk〉 − B + 〈Mk−1|Wk〉
= 〈I (xk)|Wk〉 − B + Mk−1 � Mk−1. (13)

The last inequality follows from the fact that the Bell
inequality (2) is satisfied for any LR model, regardless of prior
information. The inequality in Eq. (13) is the defining property
for a super-martingale {Mk : k = 1,2, . . .}. This inequality
is still satisfied if I (x) and B have been normalized and
shifted by some constants so that −4 � I (x) � 4. With this
normalization and shift, each “increment” Mk − Mk−1 of
the super-martingale is bounded between bl = −4 − B and
bu = 4 − B. By applying the Azuma-Hoeffding inequality
[22–24], we find that, after n trials, the probability that an
LR model yields an estimate ÎLR greater than or equal to the
observed Î is bounded above by

ProbLR[ÎLR � Î ] = ProbLR[Mn � n(Î − B)]

� exp

(
− 2n(Î − B)2

(bu − bl)2

)
. (14)

This implies a valid p value of

p(mart) = exp

(
− 2n(Î − B)2

(bu − bl)2

)
. (15)

Substituting bu − bl = 8 gives Eq. (6). Note that, for the
CHSH inequality, the expression for martingale-based p

values obtained above improve the expression in Ref. [6] and
the expression applied to experimental data in Ref. [11] by
taking advantage of the bounds on I (x) in the formulation of
the Azuma-Hoeffding inequality used here.

We cannot expect the bound on the tail probability in
Eq. (14) to be asymptotically optimal, since the only con-
straints considered are the bounds of I (x). The PBR protocol
takes advantage of all available constraints on the setting and
outcome distributions, implicitly including all relevant Bell
inequalities.

C. PBR protocol

Let Rk(x), k = 0,1, . . . be a sequence of PBRs as introduced
in Sec. II C. They are designed so that 0 � Rk(x) and
〈Rk(x)〉 � 1 for any LR model, provided that the setting
distribution is pi,j . Here, Rk may depend on x1, . . . ,xk and
other aspects of the experiment before starting the (k + 1)st
trial. We now show that any sequence of Rk with these
properties satisfies that the p value computed according to
Eq. (9) is valid.

As in the previous section, we let Wk denote all the infor-
mation available before the kth trial. Let Pk = ∏k

l=1 Rl−1(xl).
According to any LR model with arbitrary memory, the
expectation of Pk conditioned on Wk satisfies

〈Pk|Wk〉 =
〈

k∏
l=1

Rl−1(xl)|Wk

〉

=
〈

k−1∏
l=1

Rl−1(xl)Rk−1(xk)|Wk

〉

=
k−1∏
l=1

Rl−1(xl)〈Rk−1(xk)|Wk〉 � Pk−1, (16)

where we used the facts that Wk includes Rl−1 and xl−1 for
l � k, and that the LR bound on 〈Rk−1(x)〉 is 1 given Wk , as
the LR model in the bound is arbitrary. We can compute the
expectations of both sides of Eq. (16) to show that, according
to any LR model, 〈Pk〉 � 〈Pk−1〉, and therefore, by induction,
〈Pk〉 � 1.

Given a sequence of experimental results x1, . . . ,xn from
n trials, the random variable Pn takes a specific value P̂ .
Suppose that Pn is constrained by LR, possibly with memory.
By construction, Pn � 0 and the expectation of Pn according
to this model is bounded above by 1. According to Markov’s
inequality, we conclude that

ProbLR[Pn � P̂ ] � min(1/P̂ ,1), (17)

which shows that we can assign a valid p value for rejecting
LR by setting p(PBR) = min(1/P̂ ,1) as in Eq. (9). Note
that Eq. (16) shows that the sequence Pk , k = 1,2, . . . is a
super-martingale under any LR model. However, this super-
martingale’s “increment” is not bounded, so we cannot directly
apply the method of Sec. III B to bound the tail probability.

For the extremely low p values of interest in tests of LR, we
are looking for large log(p) value increments log2(Rn(xn+1))
at the (n + 1)st trial. Therefore, before the (n + 1)st trial, our
goal is to choose Rn(x) so as to maximize the experimentally
expected increment 〈log2(Rn(xn+1))〉. For this purpose, we can
take advantage of anything we know about the probability
distribution of the result xn+1 to be obtained at the next
trial. Consider a probability distribution q for xn+1, which
may be either the true distribution or an estimate thereof.
Let p be the distribution according to an LR model. Note
that, because the setting distribution is under experimental
control, the probability distributions q and p must be consistent
with the chosen setting distribution. Our ability to distinguish
the probability distributions q and p given a collection of
independent samples from q can be characterized by the
asymptotically optimal confidence-gain rate for rejecting p
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in favor of q. As shown in Ref. [25], this optimal rate is given
by the Kullback-Leibler (KL) divergence from q to p,

DKL(q|p) =
∑

x

qx log2(qx/px). (18)

The KL divergence is nonnegative, and it is zero iff p =
q. This motivates seeking an LR model whose probability
distribution pLR minimizes the KL divergence from q [7].
This is the optimal LR model mentioned in Sec. II C. We define
Sq = DKL(q|pLR) and refer to Sq as the statistical strength for
rejecting LR by means of a test with the distribution q.

We claim that if we define Rn(x) = qx/pLR,x, then 0 �
Rn(x), and for any LR model, the expectation satisfies
〈Rn(x)〉 � 1. Consequently, the p value computed according
to Eq. (9) is valid. To prove the claim, consider φ(β) =
DKL(q|pLR + β(p − pLR)), where 0 � β � 1. For any p in
the convex set of LR distributions, by optimality of pLR,
φ(β) � φ(0). It follows that ∂φ

∂β
|β=0+ � 0. Consequently,

∑
x

(pLR,x − px)
qx

pLR,x

� 0, (19)

which can be rearranged to show that

〈Rn(x)〉p =
∑

x

px

qx

pLR,x
� 1. (20)

The above claim follows. Bell inequalities of the form shown in
Eq. (20), which are based on minimizing the KL divergence,
were introduced in Ref. [26].

Consider the choice Rn(x) = qx/pLR,x made before the
(n + 1)st trial. If q is the true distribution of xn+1, then the
experimental expectation l̄ = 〈log2(Rn(xn+1))〉 is the statistical
strength Sq . Since l̄ is the expected log(p) value increment,
which cannot exceed Sq [25], this choice of Rn maximizes
the confidence-gain rate. However, we do not know the true
distribution q. Instead, we obtain good estimates q ′ of q

before the (n + 1)st trial, and determine the corresponding
optimal LR model’s probability distribution p′

LR. We then set
Rn(x) = q ′

x/p
′
LR,x to compute and update the PBR p value.

If the experiment is sufficiently stable, good estimates can be
obtained from the frequencies of events observed in trials so
far. The estimates can be improved by taking into account
that the setting distribution is known and the distributions of
marginal outcomes for given settings of Alice or Bob must
agree due to the no-signaling constraints. We discuss how to
do this in Appendix 2. In Appendix 3, we show that if the
trials are independent and identically distributed, then PBR p

values computed with any converging method for estimating
the true setting and outcome distribution q have the property
that the confidence-gain rate approaches the statistical strength
Sq , thus proving asymptotic optimality of PBR p values.

To determine the optimal LR model one can use numerical
algorithms for optimizing convex functions on a convex
domain. In this case one can use the expectation-maximization
(EM) algorithm [27] as discussed in Ref. [28]. A problem
is that, due to stopping criteria and numerical precision,
one cannot expect to find the exact optimum. We show in
Appendix 3 that one can compensate for this problem to
maintain validity of the computed p value.

IV. CONCLUSION

The degree of violation of LR in a Bell-type test is usually
expressed in terms of the number of SDs of violation. This
quantity cannot, however, be used to obtain valid p values
for rejecting LR by conventional means. It also fails to
quantitatively compare the success of different experimental
tests of LR and does not account for stability issues or memory
effects in experiments. We solve these problems by providing
a method—the PBR protocol—for determining valid p values
directly from the settings and outcomes in a sequence of trials.
The PBR protocol does not rely on a predetermined Bell
inequality, adapts to the actual experimental configuration,
and is asymptotically optimal for independent and identically
distributed trials. It therefore provides a standardized measure
of success for experimental tests of LR. While the protocol
remains valid if the experiment drifts over the sequence of
trials, how well it performs depends on the nature of the
drifts and how the protocol takes them into account. Another
valid protocol that accounts for memory effects can be based
on martingale bounds [5,6]. This protocol requires a Bell
inequality that is fixed for the experiment. Given the Bell
inequality, the martingale-based protocol has the advantage
that it is computationally efficient with respect to number
of settings, outcomes, and parties. The disadvantage is that
it is suboptimal and does not provide a clear quantitative
comparison of different experimental tests. Our simulations
show that it is practical to apply the PBR protocol to data from
typical experimental configurations, and that the running p

values can be used for tweaking an experiment in progress to
find the experimentally accessible configuration that provides
the highest violation of LR.
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APPENDIX

1. Statistical concepts

A main purpose of the PBR and related protocols is to
evaluate the strength of the evidence against LR by computing
valid p values given the data. Some care must be taken
in interpreting such p values in terms of probabilities. For
example, the p value cannot be interpreted as a probability
that LR is true. Although they are computed for the data,
their validity is defined in terms of what is known before the
experiment, not after. Strictly speaking, we can only state for
sure that before performing the trials, the following holds: For
any fixed 0 � α � 1, if LR holds, then the probability that the
returned p value satisfies p � α is at most α. Although we
have no intention of making an actual decision on the failure
of LR, this statement can be viewed in terms of traditional
hypothesis testing: The protocol tests LR simultaneously at all
significance levels α, and “rejects” LR at a given α if p � α.
The validity property is equivalent to the statement that, if LR
holds, the maximum probability of (falsely) rejecting at level
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α is bounded above by α. This justifies the use of p values
to quantify LR violation. The definitions of significance levels
and p values are based on Ref. [4], 2nd edition, pages 126 and
127.

The p values returned by the protocols considered here are
defined in terms of bounds on the one-sided tail probabilities
of a test statistic T . For given T , it is conventional to define
the p value of T given data x as the supremum of the
tail-probabilities Prob[T � T (x)] over all hypotheses to be
rejected (the null hypotheses). While such tight p values
are desirable, they are impractical to compute in general.
Hence our definition of valid p values requires only an upper
bound. Note that, for our situation, the computation of tight
p values is further complicated by the fact that the set of
null hypotheses includes all possible sequences of LR models
depending on previous trials. Furthermore, while the statistic
is well-defined for any realization of the PBR protocol, it is
not unique.

We use the the term “protocol” rather than “test” for two
reasons. The first is that the term “test” in “test of LR” typically
refers to the experimental setup and subsequent analysis—not
a conventional hypothesis test. The second is that hypothesis
tests, as the term is used in mathematical statistics, are valid
by definition. Thus, although we do not encourage it, one can
think of a valid analysis protocol as a family of hypothesis
tests. For such a family to be useful, the tests should also have
high power. For our situation, one can express the power in
terms of the probabilities of rejection at given significance
levels and non-LR models. Alternatively, one can consider the
expected p values, and look for tests for which they are as
small as possible. We do not expect that the PBR protocol
has particularly low p values for a given finite number of
trials. In fact, because of the conservative nature of the Markov
bounds, better tests exist. However, asymptotic optimality of
the PBR protocol assures us that it performs well when the
evidence for rejection is very strong. It is also worth noting
that many issues that arise in applications of hypothesis testing,
such as selection biases, are less of a concern when one is
considering the extremely low p values that are desirable
when falsifying a physical theory. Corrections for such effects
reduce log(p) values by relatively small terms in our setting.
Also, one application of the PBR protocol is to quantify the
success of an experiment independent of the details of the
configuration, so that different experiments can be compared.
For this application, the statistical interpretation of the p value
serves only as motivation.

Probability ratios such as the ones we use to compute the
values of Rk(x) in Eq. (8) are often referred to as likelihood
ratios. Likelihood ratios play an important role in many
statistical tests as explained in statistics textbooks such as
Ref. [4]. In the PBR protocol, the statistic can be computed
from any sequence of nonnegative functions Rk(x) satisfying
the inequality in Eq. (8). Thus, the probability ratios are simply
an intermediate step to obtaining such functions. We do not
ascribe any other meaning to the ratios.

2. Estimating setting and outcome distribution

Consider n trials with settings and outcomes given by
x1, . . . xn. Our goal is to obtain an estimate q ′ of the true

probability distribution q of the (n + 1)st trial’s settings and
outcomes. Assuming no other knowledge, the estimate can be
based on the empirical frequencies fx = 1

n

∑n
k=1 δxk,x . Due to

statistical fluctuations, the empirical frequencies are not likely
to satisfy the following known constraints satisfied by q:

(i) Setting distribution: The setting distribution pi,j is
fixed, and q satisfies

∑
a,b q(i,j,a,b) = pi,j .

(ii) No-signaling: Given that Alice uses setting i, the
distribution of Alice’s measurement outcomes does not depend
on Bob’s settings, and vice versa.

There are two other issues for calculating PBR p values.
The first is that some empirical frequencies fx may be zero.
If our estimate is q ′ = f , zero frequencies can be disastrous.
In the case where the corresponding settings and outcomes
occur in the next trial, the ratio contributing to the PBR p

value in Eq. (9) can be zero, and then the p value goes
to 1 with no possibility of later recovery. The second and
related issue is that in the absence of prior knowledge, initially
we have insufficient information to make useful estimates of
probability distributions of future settings and outcomes. Even
if the problem of zero frequencies has been taken care of, this
can still result in initial “learning” transients that result in a
negative offset in the accumulated log(p) values.

Our approach for estimating the next trial’s setting and
outcome distribution uses maximum likelihood to obtain an
estimate that respects the above constraints and then adjusts the
estimate by mixing in a distribution that is uniform conditional
on the settings. To reduce the impact of learning transients, we
process the trials in blocks.

To apply maximum likelihood for computing a first estimate
q0 of q, we assume independent and identically distributed
trials. The probability of observing empirical frequencies f

after n trials given that the true distribution is q is proportional
to

L(f |q) =
∏
x

qnfx

x . (A1)

We therefore set q0 according to

q0 = argmaxq ′∈V L(f |q ′), (A2)

where V is the set of probability distributions satisfying
the setting distribution and no-signaling constraints. These
constraints are linear and log(L(f |q)) is concave, so there is no
difficulty in applying available nonlinear optimization tools.
Note that, for the purpose of calculating PBR p values, it is not
critical that Eq. (A2) is exactly satisfied, so it is not necessary
to use extremely tight stopping criteria to ensure identity
with the best numerical precision possible. Also, whereas
the assumptions underlying Eq. (20) require that the setting
distribution constraint is satisfied, the no-signaling constraint
is not critical. Applying it helps improve our estimates, but the
effect on the log(p) value increments becomes negligible for
large n.

There are different ways to solve the problem with empirical
frequencies that are zero; some are explained in Refs. [29,30].
They generally involve mixing in a distribution that has no
zero probabilities with a weight that decreases to zero as n

grows. For the plots in Figs. 3 and 4, we modified q0 by setting
q1 = n

n+1q0 + 1
n+1u, where conditionally on the settings, u is

uniform, and the setting distribution of u is pi,j .
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There are different approaches to mitigating the effect of the
initial learning transient. The first is to “prime” the estimates
with knowledge about the experiment available before the
trials are started. Such knowledge could be based on theory or
on experiments designed to characterize the quantum state and
measurement setup. The prior information must be assigned
a weight. In our implementation of the local realism analysis
engine, the weight is determined by the number of trials that
would have been required to obtain an equally good estimate
directly from the frequencies. Proper use of priming requires
that the initial estimates and parameters such as the weight are
determined “blindly” before any knowledge of the actual data
to be analyzed is available.

A second approach is to set Rn(x) = 1 unless the statistical
strength S for q1’s violation of LR seems sufficiently signif-
icant given that the estimated distribution q1 is based on n

trials. While one might expect that the violation is sufficiently
significant if nS � c for some constant c, simulations show
that the best choice of c depends on the distribution of settings
and outcomes in the experiment.

The third and simplest approach is to block the data from
the trials. Instead of updating the log(p) value after every trial,
we process data h trials at a time. The first block is used
only for estimating the setting and outcome distribution of
future trials. That is, we set Rk(x) = 1 for k = 0, . . . ,(h − 1).
Subsequently, we have Rmh+k = Rmh for k = 1, . . . ,(h − 1)
and all m. Note that neither the validity nor the asymptotic
optimality of the calculated p values requires updating the
PBRs after each trial. Choosing h large enough ensures that the
first block’s trials have sufficient information for obtaining rea-
sonable estimates of the distribution. An additional advantage
of blocking the trials is that we avoid unnecessarily invoking
the computationally costly optimizations required for updating
the PBRs. We standardized the choice of block size so that
if the total number of trials to be analyzed is N , h is the
maximum of 
N/1000� and 
ln(2d)d�, where d is the number
of possible setting and outcome combinations in a trial. The
first expression ensures that we do not lose too much log(p)
value by using the first block only for learning the setting
and outcome distribution. The second one is chosen so that if
q is uniform, the probability that every setting and outcome
combination occurs is at least 1/2.

We conclude this section with a note on implementing the
PBR protocol. For monitoring an experiment and to adapt to
changes in experimental configuration, the estimated setting
and outcome distributions used in the PBRs should be based
on recent trials only. This can be accomplished by windowing
the trials with a window large enough to have statistically
significant violation of LR (if there is violation), but small
enough to avoid seeing significant changes in configuration.
Our implementation of the local realism analysis engine
uses a computationally simpler approach based on weighting
the trials with exponentially decreasing weights in time
determined by a configurable half-life. This feature was not
used in the comparisons in Sec. II.

3. Effects of suboptimal estimates and LR models

Ideally the estimated distribution q ′ used in the numerator of
Rn matches the true distribution q, and the LR distribution p′

LR

in the denominator of Rn exactly minimizes the KL divergence
from q ′. As shown in Sec. III C, having q ′ different from
q does not affect the validity of the PBR p values. But it
can reduce the expected log(p) value increment l. Let Sq

be the statistical strength of q for LR violation. We show
that

Sq � l � Sq − DKL(q|q ′). (A3)

For reasonable methods of estimating q ′ such as the one
described in Appendix 2 and independent and identically
distributed trials, q ′ almost surely approaches q so that
DKL(q|q ′) goes to zero. This shows that the PBR protocol
has asymptotic confidence-gain rate Sq .

To prove the first inequality in Eq. (A3), let pLR be the LR
distribution that minimizes the KL divergence from q, so that
Sq = DKL(q|pLR). We bound l as follows:

Sq − l =
∑

x

qx log2(qx/pLR,x) −
∑

x

qx log2(q ′
x/p

′
LR,x)

=
∑

x

qx log2(qx/tx), (A4)

where we define tx = pLR,xq
′
x/p

′
LR,x . Since q ′

x/p
′
LR,x is the

PBR, and pLR is an LR distribution, we know that c ≡ ∑
x tx �

1 [Eq. (20)]. Since t ′ = t/c is a probability distribution, we can
continue the calculation:

Sq − l = log2(1/c) +
∑

x

qx log2(qx/t ′x) � 0, (A5)

because the second term is a KL divergence.
To obtain the second inequality of Eq. (A3) we bound

l =
∑

x

qx log2(q ′
x/p

′
LR,x)

=
∑

x

qx log2(qx/p
′
LR,x) −

∑
x

qx log2(qx/q
′
x)

= DKL(q|p′
LR) − DKL(q|q ′)

� DKL(q|pLR) − DKL(q|q ′) = Sq − DKL(q|q ′). (A6)

The denominator p′
LR of the PBRs Rn must be computed

numerically. Consequently, the distribution p′
e,LR actually

obtained is typically not identical to p′
LR and may not minimize

the relevant KL divergence. Hence, there may be an LR
distribution p, for which 〈R′

n(x)〉p = 〈q ′
x/p

′
e,LR,x〉p is greater

than 1, and so the PBR p value is not valid if it is computed
according to Eq. (9) with R′

n. To maintain validity, we
determine the maximum value 1 + ε of 〈R′

n(x)〉p for all LR
distributions p and then set Rn = R′

n/(1 + ε). To determine
the bound 1 + ε, we recall that LR distributions are mixtures
of distributions pλ induced by “local hidden variables” λ.
Each λ assigns deterministic outcomes independently for each
setting of Alice and each setting of Bob. We write λA,i and
λB,j for Alice’s and Bob’s measurement outcomes given
settings i and j , according to λ. The probability for the
setting and outcome combination x = (i,j,a,b) is given by
pλ,(i,j,a,b) = pi,j δa,λA,i

δb,λB,j
. With these definitions,

1 + ε = max
p is LR

〈q ′
x/p

′
e,LR,x〉p = max

λ

∑
x

pλ,xq
′
x/p

′
e,LR,x . (A7)
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Because the number of different λ is finite, the value 1 + ε can
be calculated according to Eq. (A7). The EM algorithm that
we apply to KL-divergence minimization iteratively updates
the probability distribution over the set of hidden variable
assignments λ. To perform the updates requires the set of
values that are maximized in Eq. (A7), so the computation of
1 + ε can be integrated into the algorithm with little overhead.
Furthermore, the quantity ε can be used as a stopping criterion
for minimization. That is, the expected log(p) value increment
l̄e, assuming that the result x is distributed according to q ′,

satisfies

l̄e =
∑

x

q ′
x log2{q ′

x/[p′
e,LR,x(1 + ε)]}

= DKL(q ′|p′
e,LR) − log2(1 + ε)

� DKL(q ′|p′
LR) − log2(1 + ε). (A8)

Thus, for independent and identically distributed trials,
the asymptotic confidence-gain rate is lowered by at most
log2(1 + ε).
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C. Léger (Institute of Mathematical Statistics, Beachwood,
2003); also available as e-print arXiv:quant-ph/0110137.

[6] R. D. Gill, Proc. of Foundations of Probability and Physics-2,
Ser. Math. Modelling in Phys., Engin., and Cogn. Sc. Vol. 5,
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