
Counting the Leaves of Trees ∗

Brian Cloteaux
National Institute of Standards and Technology

Applied and Computational Mathematics Division

Gaithersburg, Maryland, USA

brian.cloteaux@nist.gov

Luis Alejandro Valentin
Department of Computer Science

College of William and Mary

Williamsburg, Virginia, USA

lavalentin@wm.edu

Abstract

A number of important combinatorial counting problems can be reformu-
lated into the problem of counting the number of leaf nodes on a tree. Since
the basic leaf-counting problem is #P-complete, there is strong evidence that
no polynomial time algorithm exists for this general problem. Thus, we pro-
pose a randomized approximation scheme for this problem, and then empir-
ically compare its convergence rate with the classic method of Knuth. We
then give an application of our scheme by introducing a new algorithm for
estimating the number of bases of a matroid with an independence oracle.

1 Introduction
The importance of combinatorial counting problems stems from the number of
application areas in which they are found. Counting problems appear in such
diverse areas as bioinformatics, network reliability, and computational chemistry.

Unfortunately, many of these counting problems that we are interested in ap-
pear to be computationally intractable. More precisely, a number of these prob-
lems have been shown to be #P-hard. From its definition, solving a #P-hard prob-
lem in polynomial time implies P = NP. In fact, it can be shown that being able
∗Official contribution of the National Institute of Standards and Technology; not subject to copy-

right in the United States.

1

to solve #P-hard problems in polynomial time collapses the entire polynomial-
time hierarchy to P [15]. Thus, there is overwhelming evidence that for #P-hard
problems, polynomial time algorithms cannot exist.

We also observe that many counting problems can be reformulated into in-
stances of the problem of counting the number of leaves on some tree. In par-
ticular, if the combinatorial objects that are being counted have some structure
that allows them to be sequentially built, we can construct a tree representation
in which each node represents a partially constructed object and each edge repre-
sents the sequential addition of a substructure. The complete objects that we are
interested in counting are the leaf nodes for this tree. Thus, being able to approxi-
mate the number of leaves for a tree gives us a powerful and general approach for
many difficult enumeration problems. Since the basic problem of leaf-counting is
#P-hard we investigate randomized methods for approximating the number of leaf
nodes. We introduce a new randomized method and then show an application of
this approach to a known #P-complete problem of counting the bases of a matroid.

2 Approximating the number of leaves
A straightforward method to count the number of leaves is by recursively sum-
ming over each of the subtrees. Thus, if #L(v) is the number of leaves on the tree
rooted at the node v, then the total number of leaves in the tree is

#L(v) =

{
1 v is a leaf node,

∑c∈child(v) #L(c) otherwise
(1)

For a tree of depth n, it is easy to see that there is potentially an exponential
number of leaf nodes. Thus, brute force counting requires exponential time. Fur-
ther, since the basic problem is #P-hard, it is doubtful that any polynomial-time
algorithm exists. In addition, it is thought that even polynomial-time determin-
istic approximations do not exist for this problem. Therefore, research into this
problem has predominately focused on developing new randomized approxima-
tion techniques.

One of the first randomized algorithms was given by Knuth [11]. Knuth’s
interest in the problem stemmed from wanting to approximate the run-time of a
recursive algorithm by estimating the size of its associated back-track tree. The
basic idea behind his approach is to take a sample of the tree by starting at the
root and randomly choosing a child node to explore until a leaf node is reached.
By recording of the number of different choices available as we descend down the
tree, we can multiply these values together to estimate the size of the tree. This
approach is shown by the following recursive formulation.

K(v) =

{
1 v is a leaf node,
degree(v) ·K(c) otherwise, for a random c ∈ child(v)

(2)

2

Knuth proved that this approach returns the correct expected value of E (K(v))=
#L(v). The principle advantage of this algorithm is the simplicity of understand-
ing and implementing it. Also, it often returns a reasonable estimate using only
a few samples for short and wide trees [13]. Knuth noted that many of the trees
arising from practical problems are amenable to this approach.

A problem with this approach is that its variance can be exponentially large.
Knuth showed an exponential upper bound for the variance of the method, and
Stockmeyer proved sampling on a tree with N nodes can require Ω(

√
N) samples

to converge within polynomial bounds [14]. This result implies that in the general
case we need to take an exponential number of samples to guarantee a polynomial-
bounded variance.

This difficulty particularly manifests itself when sampling tall and skinny trees
[13]. Here, we see that an exponentially large number of samples are required in
order to find the deep nodes in these types of trees. Without reaching the deepest
nodes in a tree, Knuth’s algorithm underestimates the number of leaves and so
convergence will be exponentially slow. In order to improve the results from
the basic Knuth algorithm several extensions have been suggested: importance
sampling [11], partial backtracking [13], and stratified sampling [5].

In his original paper, Knuth noted that if we bias the sampling probabilities
of the child nodes, we can potentially lower the variance. (You can reference Be-
ichl and Sullivan [3] for a nice introduction to importance sampling.) In fact, he
pointed out that there must exist an importance function that reduces the sampling
variance to zero. Unfortunately, determining this function is at least as hard as the
exact counting problem and so is also #P-hard. Further, even finding an impor-
tance function that gives polynomial bounds on the estimate is computationally
difficult. It has been shown that sampling using an importance function that is
able to estimate relative subtree size to within some constant bound is still unable
to guarantee subexponential variance [9]. Thus, the use of importance functions
for Knuth-style sampling seems limited to very specific families of trees.

To overcome some of the difficulties in Knuth’s sampling method, Purdum
introduced the idea of allowing a certain amount of backtracking when encoun-
tering leaf nodes during a sample [13]. Although this idea improves the sampling
results for many trees, it requires allowing an exponential amount of backtracking
in the tree to guarantee polynomial bounds on the estimate it produces. Finally,
Chen offered a stratified sampling approach to the problem [5]. His approach does
reduce the variance but it requires some level of specific domain knowledge of the
family of trees being analyzed.

Because of the difficulties with these techniques for extending Knuth’s algo-
rithm, we reexamine the problem in view of more recent results in randomized
algorithms. In particular, we look at the breakthrough result by Aldous and Vazi-
rani on how to randomly explore a tree, and then tie it back to the leaf-counting
problem.

3

3 Finding deep leaves in a tree
How can we improve Knuth’s scheme? Let us put aside, for the moment, the prob-
lem of counting leaves in a tree, and instead look at the closely related problem
of finding a deepest leaf node in a tree. Aldous and Vazirani gave a breakthrough
result on this problem by publishing an algorithm that, using only a polynomial
number of samples, has a high probability of finding a deepest leaf node [1]. They
call their algorithm “Go with the winners” (GWTW).

To describe their algorithm, we use the terminology from their paper. We
visualize a directed tree with a root node at the top. Into the root node, we release
N number of particles. For each discrete time step, the particles move to a random
child node if possible. If a particle is at a leaf node and there are other particles at
non-leaf nodes, then the particle will randomly jump to one of the non-leaf nodes
that contain a particle. Finally, if all particles are at leaf nodes, then the algorithm
ends. The basic GWTW algorithm is:

1. Start with N particles on the root node

2. If all N particles are on leaf nodes, then we are done

3. For each particle currently on a leaf node, randomly move that particle to a
non-leaf node which contains another particle

4. For all particles, move to a random child

5. Jump back to step 2

We can think of the GWTW algorithm as a parallel implementation of Knuth
sampling. Since we are allowing interactions among the simultaneous trials, in-
stead of relying on backtracking when we are stuck at a leaf node (like in Purdom’s
method), the algorithm uses knowledge about where non-leaf nodes exist that is
obtained from other particles. An example of how three particles explore a tree
using the GWTW approach is shown in Figure 1(a).

This algorithm was originally conceived as a model for analyzing the effec-
tiveness of heuristic search strategies such a simulated annealing. As a practical
algorithm though, using GWTW to find the deepest nodes in a tree has limited
usefulness. While the number of particles needed to have a high probability of
finding a deepest node is polynomial, the polynomial itself can be quite large
[7]. For our purposes though, we are not interested in always finding the deepest
nodes in tree, but rather in obtaining a near uniform sampling of the tree in order
to provide a good size estimate.

4

(a) An example run of the GWTW algorithm (b) Leaf counting on the sampled subtree

Figure 1: An example of how the GWTW algorithm explores a tree. For the
sampled subtree, it is then shown how the AV-K algorithm estimates the number
of leaves in the tree

4 A generalized counting scheme based on subtree
sampling

We now propose a new method for counting the leaf nodes of a tree. This algo-
rithm is composed of two steps. First, using a polynomial number of particles,
we explore the tree T using the GWTW algorithm. We create a new tree S by
recording each node that a particle visits in T along with number of children the
node in T has. This will give us a polynomial sized subtree of the original tree.

For the second step, we recursively traverse the tree S to estimate the size of
the original tree. For a node v, an estimate is made by combining the estimates for
the explored subtrees of v with averages of those values for the unvisited subtrees.
In other words, using the tree S, we approximate the number of leaf nodes in T
using the following estimator G where childP(v) is the set of children nodes of v
in the tree P.

G(v) =

{
1 v is a leaf node,
|childT (v)|
|childS(v)| ∑c∈childS(v) G(c) otherwise

(3)

For O(nc) particles where n is the tree depth and c is a constant, then the size of
the tree S will be O(nc+1) nodes. Thus, this algorithm runs in polynomial time in
the depth of the tree T .

To see that the algorithm converges to the number of leaves in the tree, we
observe that whenever a particle reaches a leaf node, a Knuth estimate is made of

5

the number of leaves in the subtree back to the last node which shared multiple
particles. Since the expected value of Knuth sampling is the number of leaves
in the subtree [11], then from the linearity of expected values we can combine
estimates for an expected value of the number of leaves at the root of the subtree.
By inductively applying these estimates up the tree, we see the expected value at
the root is the number of leaves in the tree.

Since this algorithm combines the Knuth estimator with the tree exploration
algorithm of Aldous and Vazirani, we denote it as the AV-K approach. An example
run of this method is shown in Figure 1(b). The shaded nodes represent the subtree
created from GWTW exploration shown in Figure 1(a). The labels on the nodes
show the estimate of the number of leaf nodes given by the algorithm for the
subtree rooted at that node.

5 Comparing the algorithms
In the case of one particle, we get identical estimates between the two methods.
As we will show, for multiple particles the AV-K method always has a smaller
variance. Even if the particles do not share information during the sampling (such
as when all leaves are on the same level of the tree), the AV-K method still gives an
improved estimate over the simple Knuth method. Since the algorithm combines
Knuth estimates over smaller subtrees, this reduces the growth in variance over
Knuth’s basic method. While this shows that the AV-K method has a lower vari-
ance, it is still open whether the AV-K approach allows us to estimate the number
of leaves with polynomially bounded variance.

Since analytically comparing the average-case behavior of the two algorithms
is extremely difficult, we opted to compare the rate of convergence between the
AV-K method and Knuth’s method through a series of computational experiments.
Our experiments consisted of generating a set of random trees [17] with logarith-
mically bounded depth. We tested how many particles (or samples) were neces-
sary to estimate the number of leaf nodes to within one percent. We also tested
the sample variance between the two methods by running each method multiple
times on the same random graph and recording the average sample variance. In
Figure 2(a), we give the results of our experiments.

From our experiments, we see that the AV-K method shows a pronounced
reduction in the sample variance when compared to Knuth’s method. In our tests,
the difference in variance between the two methods was between one and two
orders of magnitude. This difference is magnified when examining the number of
samples need for convergence to within one percent of the actual number of leaves.
For the relatively small trees of our tests, we see differences involving four orders
of magnitude. This suggests that a significant reduction in computational cost is
possible by computing over a GWTW sampled tree.

6

(a) Variance comparison

(b) Convergence comparison

Figure 2: Comparison of the sample variance and convergence rate of Knuth sam-
pling versus the AV-K approach. In Figure 2(a), the average sample variance is
shown. In Figure 2(b), we see the average number of particles or samples re-
quired for convergence to one percent of the true number of leaves. The values
are recorded on a logarithmic scale.

7

6 Counting the bases of matroids
There are a number of combinatorial problems that can be reformulated into leaf-
counting problems (for example, many of the problems in Welsh’s survey [16]).
We show one application of the AV-K method by introducing a new algorithm
for approximating the number of bases of a matroid that is represented by an
independence oracle. (For definitions and basic results concerning matroids, see
Oxley [12].)

We define the matroid M = (G, I), where G is the ground set and I is the
independence set. An independence oracle takes as input a set S ∈ 2G and returns
whether true if S ∈ I and false otherwise. If the set S ∈ I, then the oracle will also
return a base of the matroid that contains S as a subset. This type of query to an
independence oracle is called a probe.

While for certain classes of matroids, such as the graphical matroids, there
does exist a polynomial-time algorithm for counting the number of bases (for
graphical matroids see the first chapter of Jerrum’s book [10]), in general this
problem is #P-hard. In fact, it has been shown that even deterministic approxi-
mation schemes for estimating the number of bases have exponential bounds for
a polynomial number of probes [2]. Thus, research into this problem has predom-
inantly been in creating randomized approximation schemes for estimating the
number of bases (such as [8, 4]). While it is an open problem whether a fully poly-
nomial randomized approximation scheme (fpras) exists for all matroids, the most
successful polynomial-time algorithm has been the sampling method of Chavez-
Lomeli and Welsh [4], which has been shown to work for almost all matroids
[6].

We introduce a new algorithm for the base-counting problem by representing
the independence set of the matroid as a tree. The idea behind this construction is
to define the directed and rooted tree T = (NT ,ET) where each node N ∈ NT has a
mapping f to an independence set, i.e. f : NT → I. The root of the tree is mapped
to the empty set. For each node Ni in T there is an edge to a child node N j (i.e.
(Ni,N j) ∈ ET) if and only if there exists an element e ∈ E such that e ∈ f (N j) and
f (N j)−{e}= f (Ni). The depth of this tree is precisely the rank, r, of the matroid
M and each leaf node maps to a base in M . It is easy to show inductively that
the number of leaves in T is exactly |B(M)| · r! where B(M) is the set of bases
for M .

Algorithm 1 is a GWTW-type algorithm for sampling the tree T and construct-
ing a sampled tree S. By traversing the sampled tree S, we return an estimate of
the value |B(M)| · r! Since the bases all have identical rank r, the leaves in the
resulting tree are all on the same level. Thus, no particle jumping can occur be-
tween steps. Even though we are not able to take advantage of sharing knowledge
between particles as the tree is sampled, the resulting sampling does provide a
good approximation of the number of bases.

To gauge the quality of the results, we performed a set of computational ex-

8

CreateTree(M , np)
Input: M –a matroid where M = (G, I), np–number of particles for

sampling
Output: S–a sampled tree of the bases
Create tree S = ({N/0}, /0)
foreach Pi where 1≤ i≤ np do

Pi← /0
end
C← 1
while C < r do

foreach Pi where 1≤ i≤ np do
Qi = {g ∈ G|Pi∩{g}= /0∧Pi∪{g} ∈ I}
Randomly choose q ∈ Qi
T ← Pi∪{q}
Create node NT
if NT 6∈ S then

S← (N(S)∪{NT},E(S)∪{(NT ,NPi)})
end
C←C +1
Pi← T

end
end
return S

Algorithm 1: Algorithm for creating a tree for counting the number of bases
of a matroid. We use the shorthand notation of NA to designate a node where
f (NA) = A.

periments to compare Chavez-Lomeli and Welsh sampling to the AV-K approach.
We generated a number of random graphical matroids in order to be able to ef-
ficiently compute the exact answer. We then compared the average number of
samples needed for the Chavez-Lomeli and Walsh method to converge to within
one percent of the exact answer for the number the bases to the number of parti-
cles needed for convergence of the AV-K method. Figure 3 shows the results of
this experiment.

All matroids that were generated had a rank of 20 with varying sizes of the
ground sets. For each point, ten different random matroids were created. Then
for each matroid, both algorithms were applied for 30 separate instances and the
number of samples or particles needed for convergence to within one percent of
the correct answer were recorded. The points in the figure represent the average
number of samples needed for convergence for all the random matroids of that
particular size. Although we were forced to limit the size of our tests in order
to make the computations tractable, the results do show two orders of magnitude
difference on average in the number of samples needed between the two methods.

9

Figure 3: Comparison of the number of samples between the Chavez-Lomeli and
Welsh algorithm and an AV-K algorithm needed to converge to within one percent
of the actual answer for a number of random matroids.

7 Conclusion and future research
This research started out of a need for a practical method for attacking general
combinatorial enumeration problems. By extending Knuth’s sampling technique
with the tree exploration algorithm of Aldous and Vazirani, we have created an
algorithm which has empirically shown itself as a fast estimator for the number of
leaves in a tree.

Future research involves establishing analytic bounds on the performance of
the algorithm. In particular, we are interested in a bound on the number of particles
versus the error bounds of the estimate.

References
[1] D. ALDOUS AND U. VAZIRANI, “Go with the winners” algorithms, in

Foundations of Computer Science, 1994 Proceedings., 35th Annual Sym-
posium on, 1994, pp. 492–501.

[2] Y. AZAR, A. Z. BRODER, AND A. M. FRIEZE, On the problem of approxi-
mating the number of bases of a matroid, Information Processing Letters, 50
(1994), pp. 9–11.

[3] I. BEICHL AND F. SULLIVAN, The importance of importance sampling,
Computing in Science and Engineering, 1 (1999), pp. 71–73.

[4] L. CHAVEZ-LOMELI AND D. WELSH, Randomised approximation of the
number of bases, Contemporary Mathematics, 197 (1996), pp. 371–376.

10

[5] P. C. CHEN, Heuristic sampling: A method for predicting the perfor-
mance of tree searching programs, SIAM Journal on Computing, 21 (1992),
pp. 295–315.

[6] B. CLOTEAUX, Approximating the number of bases for almost all matroids,
Congressus Numerantium, 202 (2010), pp. 149–153.

[7] T. DIMITRIOU AND R. IMPAGLIAZZO, Go with the winners for graph bisec-
tion, in Proceedings of the ninth annual ACM-SIAM symposium on Discrete
algorithms, SODA ’98, Philadelphia, PA, USA, 1998, Society for Industrial
and Applied Mathematics, pp. 510–520.

[8] T. FEDER AND M. MIHAIL, Balanced matroids, in STOC ’92: Proceedings
of the twenty-fourth annual ACM symposium on Theory of computing, New
York, NY, USA, 1992, ACM, pp. 26–38.

[9] D. HARRIS. Personal communication, 2009.

[10] M. JERRUM, Counting, sampling and integrating: algorithms and complex-
ity, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2003.

[11] D. E. KNUTH, Estimating the efficiency of backtrack programs, Mathemat-
ics of Computation, 29 (1975), pp. 121–136.

[12] J. G. OXLEY, Matroid Theory, Oxford University Press, New York, 2006.

[13] P. W. PURDOM, Tree size by partial backtracking, SIAM Journal on Com-
puting, 7 (1978), pp. 481–491.

[14] L. STOCKMEYER, On approximation algorithms for #P, SIAM Journal on
Computing, 14 (1985), pp. 849–861.

[15] S. TODA, PP is as hard as the polynomial-time hierarchy, SIAM Journal on
Computing, 20 (1991), pp. 865–877.

[16] D. WELSH, Some problems on approximate counting in graphs and ma-
troids, in Research Trends in Combinatorial Optimization, 2009, pp. 523–
544.

[17] D. B. WILSON, Generating random spanning trees more quickly than the
cover time, in STOC ’96: Proceedings of the twenty-eighth annual ACM
symposium on Theory of computing, New York, NY, USA, 1996, ACM,
pp. 296–303.

11

