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ABSTRACT 
 
This paper describes the development and implementation of a simulation testbed used to study 
the concept of employing intelligent agents to optimize the performance of building Heating, 
Ventilating, and Air Conditioning (HVAC) systems. One day simulated cost savings results are 
presented for intelligent agents employing both a simple optimization method (SOM) and an 
advanced optimization method (AOM).  The potential benefits and problems associated with 
each method are discussed and recommendations are made for future research efforts leading to 
the application of intelligent agents in real buildings. 
 
INTRODUCTION 
 
Over the last twenty years significant progress has been made in the integration of building 
control systems and building services through the development of standard communication 
protocols, such as BACnet and BACnet/IP (Bushby 1997).  Unfortunately, little or no progress 
has been made in actually making "intelligent buildings” (also called “cybernetic buildings”) 
intelligent or in optimizing the performance of building systems.  Heating, Ventilating, and Air 
Conditioning (HVAC) control systems are still basically proportional–integral (PI) or 
proportional–integral–derivative (PID) at the lowest level, with one or two higher levels of 
heuristic supervisory control.  Research on real-time optimal control was carried out by Z. 
Cumali (Cumali 1988), J. Braun (Braun 1989a, Braun 1989b), F. L. F. Pape (Pape 1990), J. 
House (House 1991), and others (ASHRAE 2007) in the late 1980’s and early 1990’s with mixed 
results.  They showed that while optimization was possible, it was computationally intensive and 
difficult to implement in real building systems.  This is because of the need to have information 
on the performance and status of all systems and equipment in one place and the difficulties in 
handling boundary conditions and the discontinuous systems found in buildings (e.g., HVAC 
equipment that turn on and off, systems that change operating states, systems with multiple 
modes of operation). 
 
The use of artificial intelligence (AI) techniques (Barr 1981) and, in particular, intelligent agents 
offers a possible solution to these problems.  The latter has been successfully implemented in a 
variety of applications (Barr 1982), including search engines and robotic systems, and a 
considerable amount of information already exists in the AI community on different agent 
architectures (e.g., deliberating, reactive, and hybrid), agent design and implementation, and 
agent programming.   Intelligent agents know or can learn the performance and status of the 
systems and equipment they monitor and can communicate and collaborate with other agents to 
achieve a common goal, such as minimizing energy consumption and/or cost of operation, 
maximizing comfort, identifying and diagnosing problems.  Intelligent agents make it possible to 
solve the problem of building system optimization in a distributed manner which greatly 
simplifies the computational methods required. 
 
To study the application of intelligent agents to the optimization of HVAC system performance, 
a simulation testbed was developed and used to study how intelligent agents can learn the 
performance (referred-to in this paper as “identification” (Ljung 1987)) of the building systems 
and equipment they monitor and then communicate and collaborate with other agents to achieve 
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a common goal, such as minimizing energy consumption or cost of operation.  Two optimization 
methods were developed and evaluated, a simple method and an advanced method.  The 
following sections of this paper discuss the testbed, the identification or learning method 
employed, the simple and advanced optimization methods, some cost savings results, and 
conclusions and recommendations. 
 
It is important to note that while the name “intelligent agents” is used in this paper for the 
program modules in the testbed that perform identification and optimization, they are far from 
being intelligent.  In fact, they are rather “simple” in comparison with “intelligent agents” used 
in other applications.  However, this is intended to be a proof of concept study and, as with any 
new research area, it is often best to start out simple and then move on to more complex 
approaches.  In addition, it has been shown again and again that “simple” is often “best” when 
trying to do control or perform fault detection or commissioning on HVAC systems, and the 
optimization of such systems is not likely to be any different. 
 
THE TESTBED 
 
The testbed currently consists of 17 “agents” written in the Java programming language running 
in a free framework program (Pantic 2005) that was developed at the Delft University of 
Technology as an AI teaching tool.  The agents simulate the performance of different building 
HVAC system components and exchange information using publish/subscribe “channels” within 
the framework.  There are eight variable air box (VAVBox) agents that simulate VAVBox/zone 
interactions, two air handling units (AHUs) which include cooling coils and variable speed 
supply air fans, two variable speed chillers, two variable air flow cooling towers, an agent for 
coordinating the control actions of the HVAC agents, an agent for accumulating and reporting 
costs, and an agent for controlling the simulation (SimulationTimer Agent).   
 
A block diagram of the fourteen agents that simulate various building/HVAC components (i.e., 
VAVBoxs and cooling loads, AHUs, chillers, and cooling towers) is shown in Figure 1a.  They 
all have a similar structure.  They first import the various Java packages needed to run the agent 
and then set up publish and subscribe channels that the agents use to communicate with each 
other.  Initial values are then defined and message “handlers” are setup to receive and parse 
messages on each subscribe channel. Whenever a message is received it is immediately 
processed.   
 
The SimulationTimer agent, which gets the “time” from the computer running the testbed, sends 
the time to the other agents every 5 seconds.  Each time an HVAC agent receives the time it runs 
that component’s simulation.  In the current implementation of the testbed, a second in the 
simulation corresponds to one minute in “real” time.  Thus a 12 hour “day” would take 12 
minutes to simulate.  After running each component simulation (every 5 seconds), the updated 
variable information (e.g., the air flow rate to each zone) is sent to other agents who use the 
information to carry out their own component simulation.  A single “SimulationData” channel is 
used to both publish and receive information need to carry out the simulation.   
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Figure 1a.  Diagram of HVAC simulation agents in the testbed, including Cooling 
Towers CT 1 and CT2, Chillers 1 and 2, AHUs 1 and 2, and VAV Boxes 1 through 8. 

 
In the current testbed, small time delays are employed in the simulation so that each component 
type (i.e., VAV boxes, AHUs, chillers, and cooling towers) carries out its particular simulation at 
a particular point in the 5 second simulation period.  Thus, all the VAVBox/zone simulations are 
first performed and the updated information sent out on the SimulationData channel.  This 
information is then read by the AHU agents, which then perform their own component 
simulations.  They then send out their updated information on the SimulationData channel for 
use by the chiller agents.  The cooling tower agents then take their turn receiving information, 
simulating the performance of the cooling towers, and sending updated information out on the 
SimulationData channel.  Finally the “Coordinator” agent and  a “CostMeter” agent  run.  The 
former coordinates the control actions of the HVAC agents.  The latter, which has been 
collecting “cost rate data” (i.e., cost per hour information) sent to it by the other agents during 
this 5 second simulation period, sends the information out on a “PlotData” channel in a format 
that can be easily processed and plotted using a commercially available spreadsheet.  While these 
delays may or may not be necessary from a simulation point of view, without them it would be 
extremely difficult to debug the various HVAC simulation agents in the testbed because 
information sent by an agent at one simulation time step could end up being used by another 
agent in a different time step. 
 
The first time an AHU, a chiller, or a cooling tower  simulation agent receives the time from the 
SimulationTimer  agent it setups a “timer” to periodically run an “intelligent agent”, which will 
henceforth be referred to in this paper as an “Agent” (with a capital A), that does the 
identification and optimization.  This Agent  runs independently of the simulation agent.  It 
receives information from the simulation agent through shared variables, and exchanges 
information with other Agents over the same SimulationData channel used to exchange 
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simulation information.  Although the testbed was designed to allow the various Agents to run at 
timesteps that were different from the timestep used by the simulation agents (currently 5 
seconds or 5 minutes in real time), this was not implemented in the current version.  Instead, the 
“timers” that trigger the running of the different Agents were set so that each Agent ran in the 
same time interval (described above) within the 5 second timestep used by the simulation agent 
that created it.  This was done to simplify debugging and because it seemed best to have the 
Agents run as frequently as possible (i.e., with the smallest possible timestep) when doing 
optimization, but not more frequently than the simulation agents. 
 
Figure 1b shows how information is exchanged between two simulation agents and the Agents 
they create.   
 
 

 
Figure 1b. Information exchange between simulation agents and the Agents they create.  
The Agents perform identification and optimization. 

 
 
HVAC SIMULATION MODELS 
 
The VAV box model uses a simple energy balance to determine the zone air temperature and air 
flow rate into and out of the zone.  A 10 minute time constant is used to simulate the zone 
dynamics.  External loads follow a half-sine function with a peak load at 2:00 PM and zero loads 
before 8:00 AM and after 8:00 PM.  Internal loads are varied each hour between 6:00 AM and 
5:00 PM in a manner that simulates different “typical” zone occupancy patterns.    
 
AHU1 handles VAV boxes 11, 12, 13, and 14; AHU2 handles VAV boxes 21, 22, 23, and 24.  
The cooling coil model is a second order polynomial that relates the water-side effectiveness to 
the fraction of mass water flow rate for a given air flow. It calculates the total supply/return air 
flow rate and the mixed return air temperatures.  This, along with the supply air temperature and 

 P/S 
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the chilled water supply temperature, are used by the cooling coil model in the AHU agents to 
calculate the chilled water flow rate and chilled water return temperature.   
 
The chiller model, which was obtained from a leading chiller manufacturer, is a “generic model” 
of a variable speed centrifugal chiller that was developed for ASHRAE Standard 90.1.  It uses 
three second order polynomials to relate capacity, power, and part load performance to three 
independent variables, chilled water supply temperature, chiller part load ratio, and entering 
condenser water temperature.  Power Ratio curves (i.e., curves of power/maximum power at 
standard rating conditions) for this chiller model are shown in Figure 2 for an entering condenser 
water temperature of 23.3 ˚C (74.0 ˚F) and part load ratios (plr), defined as chiller capacity 
divided  by  the maximum chiller capacity at reference conditions, of 0.9, 0.8, 0.6, and 0.4.   
 

Figure 2.  Chiller Power Ratio Curves for part load ratios of 0.9, 0.8, 
0.6, and 0.4 and an entering condenser water temperature of 23.3 ˚C 
(74.0 ˚F). 

 
 
Chiller1 is considered to be the “lead” chiller.  Its agent  calculates the temperature of the chiller 
water returning from the AHUs, decides how much of the total cooling load will be handled by 
each chiller, and sends the information to Chiller2.   Each chiller calculates the temperature of 
the condenser water leaving the chiller.  There is a one-time step delay of 5 seconds (5 minutes 
in “real” time) between the Chillers receiving information from the AHU agents and using it to 
simulate chiller performance.  Although this is an artifact of the simulation methodology 
employed, it can be considered to correspond to the “dead time” required for the chilled water to 
return from the AHUs to the chillers. 
 
The cooling tower model employs a fifth order polynomial with twenty-seven coefficients that 
relates the Approach (defined as the temperature difference between the water temperature 
leaving the cooling tower and the ambient wet bulb temperature) to the air flow rate ratio 
(defined as the ratio of the air flow rate to the maximum air flow rate), the water flow rate ratio 
(defined as the ratio of the water flow rate to the maximum water flow rate) , the range 
temperature (defined as the inlet water temperature minus the outlet water temperature), and the 
inlet air wet-bulb temperature.  CoolingTower1 serves Chiller1, while CoolingTower2 serves 
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Chiller2.  Each cooling tower model calculates the air flow through the tower that will give a 
specified Approach.  In the current version of the testbed, the condenser water flow rate is held 
constant.   
 
The chilled water and condenser water pump models and the AHU fan models use second and 
third order polynomials to calculate the “variable speed” performance costs of pumps and fans. 
A “work day” during which energy consumption data is collected runs from 7:00 AM to 5:00 
PM. 
 
IDENTIFICATION 
 
In a real building/HVAC system, an intelligent agent must first learn (identify) the characteristics 
of the equipment it is responsible for before it can attempt to optimize its performance.  The 
existence of nonlinearities in these systems and, in particular, the models described above make 
on-line identification difficult.  To develop the best identification method for implementation in 
the testbed, the HVAC component models described above were exercised over the allowable 
range of independent variables and the results were compared with different simpler models.  
Both multivariable linear regression and piece-wise linear regression in one or two variables 
were examined to determine which simplified model worked best in each application.   
 
For the cooling coil, piecemeal linear regression was used to relate the water side effectiveness to 
(1) the ratio of the water flow rate through the coil to the maximum water flow rate and (2) the 
ratio of air flow rate through the coil to the maximum air flow rate.  However, while this works 
reasonably well, it was not used in the intelligent agent optimization process because the chiller 
model did not use the returning chilled water temperature and the energy consumed by the 
chilled water pump was small in comparison to that used by the chiller.  This allowed the effect 
of changes in chiller water return temperature and chilled water flow rate to be ignored in 
determining the optimal supply air and chilled water temperatures setpoints.  It also allowed for a 
simpler approach to be employed in carrying out joint chiller-AHU optimization that involved 
not permitting the difference between the supply air temperature setpoint and the chilled water 
temperature setpoint to be less than 5.56 ˚C (10.0 ˚F).  This simplification is based upon a 
separate analysis of a typical cooling coil, which showed that  (1) for a properly sized coil and 
large cooling loads, a supply air temperature set point 5.56 ˚C (10.0 ˚F) above the chilled water 
temperature setpoint was either optimal or very close to optimal, and (2) for moderate and low 
cooling loads, while the optimal supply air temperature setpoint was closer to the chilled water 
temperature setpoint,  the effect on the cost of operation of keeping it 5.56 ˚C (10.0 ˚F) above the 
chilled water temperature was very small.  (See Appendix A.)   
 
For chiller performance identification, all three independent variables (i.e., the chilled water 
supply temperature, the chiller part load ratio, and the entering condenser water temperature) 
were required to do the performance identification.  The part load performance curves giving 
chiller power as a function of the variable x , defined as  chiller capacity/maximum chiller 
capacity at reference conditions, were determined over two different load ranges (0.3 < x <= 0.6 
and 0.6 < x <= 0.9) for two different values of chilled water supply temperatures, 2.78 ˚C (37.0 
˚F) and 6.67 ˚C (44.0 ˚F), and two different values of the entering condenser water temperature, 
23.3 ˚C (74.0 ˚F) and 26.9 ˚C (84.0 ˚F).  This created eight regions for which the part load 
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performance curves were determined (by linear regression) as a linear function of x.  These 
curves were then used to calculate the chiller’s power ratio, pwrRatio, for eight chilled water 
supply temperatures between 0.56 ˚C (33.0 ˚F) and 12.2 ˚C (54.0 ˚F)) and the current value of 
entering condenser water temperature.  The chiller power consumption at a specific chilled water 
supply temperature was found by interpolation between these eight values. 
 
The above chiller performance identification process required two simulation days (Day #1 and 
Day #2) to carry out and gave reasonably good results as shown in Figure 3. 
  

 
 
Figure 3.  Comparison of the power consumption (shown as a power ratio) of 
the identified chiller model with the actual chiller model for an entering 
condenser water temperature of 25.6 ˚C (78.0 ˚F) and two different chilled 
water supply temperatures.  The “solid lines are results from the Chiller 
simulation model; the dotted and dashed lines show results from the piece-wise 
linear identification process.

 

 
 
In developing a performance identification method for the cooling towers, it was found by trial 
and error that the number of independent variables could be reduced by defining the new 
variable, w, given by: 
 

 
where Trange is the cooling tower range temperature (˚C). 

 
For different wet-bulb temperatures, one finds that the results obtained for the cooling tower 
Liquid-Gas ratio (LG ratio), defined as the ratio of the water flow rate ratio to the air flow rate 
ratio, are clustered together and can be approximated by straight lines over a wide range of the 
variable w.  This is illustrated in the Figure 4 for a wet-bulb temperatures of 20 ˚C (68 ˚F) and 
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Approaches of 5.56 ˚C (10.0 ˚F), 11.1 ˚C (20.0 ˚F), and 16.7 ˚C (30.0 ˚F).  The thicker line in 
this figure illustrates that a linear approximation to the data works well.  Similar results were 
obtained at other wet bulb temperatures. 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.   Plot of the Liquid-Gas ratio predicted by the cooling tower 
model used in the HVAC system simulation against the variable w = 
Approach/(Trange + 1.67 ˚C). Results are for a wet bulb temperature of 20 
˚C (68 ˚F); Trange was varied between 1.1 ˚C (2.0 ˚F) and 11.1 ˚C (20.0 
˚F).  The thick line illustrates a linear approximation to all the data shown. 

 
To determine whether this is an adequate simplification for identifying cooling tower 
performance, the testbed was run over a period of one day (from 6:00 AM to 6:00 PM) for a wet-
bulb temperature of 20 ˚C (68 ˚F) and an Approach of 5.56 ˚C (10.0 ˚ F).  Linear regression was 
then used to find the LG Ratio as a function of the variable w.   The results are shown in Figure 
5.  Series 1 is the actual results from the simulation model.  Series 2 is the predicted results using 
the equation obtained by linear regression.  The top graph gives the “actual” and predicted LG 
Ratio for each time step in the one day simulation, while the bottom graph plots the “actual” and 
predicted LG Ratio against the variable “w”.  Similar results were found for approaches equal to 
11.1 ˚C (20.0 ˚F) and 16.7 ˚C (30.0 ˚F).  The excellent agreement between the “actual” and 
predicted results indicates that this simplified method of identifying cooling tower performance 
appears to work well. 
 
 

0
1
2
3
4
5
6
7
8
9

10

0 2 4 6 8

w = Approach/(Trange + 1.667 ˚C)

Li
qu

id
 G

as
 R

at
io

App = 5.6 ˚C

App = 11.1 ˚C

App = 16.7 ˚C



9 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.  Comparison of the Liquid-Gas ratio predicted by the actual 
cooling tower model (Series 1) with that predicted the simplified model 
(Series 2). The top graph shows the results for both models over a 
simulated day.   The bottom graph  shows the same results plotted against 
the variable w = Approach/(Trange + 1.67 ˚C). 

 
 
SIMPLE OPTIMIZATION METHOD 
 
A simple optimization method (SOM) was the first method implemented in the testbed.  In the 
SOM, the various Agents (after identifying the performance of each piece of HVAC equipment) 
take turns optimizing the performance of the particular piece of equipment for which  they are 
responsible.  To this end, each of these Agents was given the ability to evaluate the effect of a 
proposed set point change on the “rate of operating cost” (i.e., cost/hour) of the particular HVAC 
component (e.g., chiller) it was responsible for and to communicate with other Agents to 
determine what effect such a change would have on the “rate of operating cost” of other HVAC 
components (e.g., AHUs).  After the total cost of making the proposed set point change has been 
determined, the Agent proposing the change decides whether or not to proceed with the set point 
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change.  Each Agent participating in the optimization process takes turns adjusting the set points 
under its control to minimize the cost of operation of the building system.    
 
One approach to implementing the SOM is to employ a “token” that is passed from one Agent to 
another.  When an Agent receives the token it decides, based upon cost information it calculates 
for the piece of HVAC equipment it controls and cost information it receives from other Agents, 
whether to raise or lower or keep unchanged its particular setpoint.  It then passes the token on to 
the next Agent which then adjusts its own setpoint.  While this type of token passing might be 
ideal for a real building HVAC control system, it causes problems in a research project where it 
is important to examine the effect of various combinations of Agents working together to 
implement a simplified optimization method.  Thus, in the current version of the testbed it was 
decided to employ a Coordinator Agent.  This Agent’s job is to dictate which Agents are allowed 
to change their setpoints and the order in which the Agents act.  This has the same effect as token 
passing but avoids the difficulty of having to rewrite computer code every time the number of 
Agents employed in the optimization process changes.  It also simplified the development of an 
Advanced Optimization Method (discussed below) since such a Coordinator Agent would be 
able to receive “optimization proposals” from different Agents and decide which one should be 
implemented.  The alternative of having the different Agents negotiate among themselves, while 
probably better in the long run, was beyond the scope and intent of the current research effort. 
 
As implemented in the SOM, the Coordinator Agent sends a “take action” token to a particular 
HVAC Agent that tells the Agent that it may now raise or lower or keep the same the setpoint it 
is responsible for.  When the HVAC Agent has completed its “action”, it sends a “task 
completed” token back.  When the Coordinator receives this “task completed” token, it can either 
send a new “take action” token back to the first HVAC Agent or to another HVAC Agent.  By 
simply changing the token the Coordinator Agent sends to each HVAC Agent, the Coordinator 
can control which HVAC Agents are involved in the optimization process.  Changing the tokens 
in the Coordinator involves only changing a few numbers and is simple to implement. 
 
After an HVAC Agent receives a “take action” token from the Coordinator Agent, the HVAC 
Agent  uses the identified simple model to calculate the “rate of operating cost” (in dollars per 
hour) of the HVAC equipment it is responsible for at the current setpoint and at two “proposed” 
new setpoints, one above and one below the currrent setpoint.  For the AHU and Chiller1 
Agents, 1.1 ˚C (2.0 ˚F) above and below the current supply air temperature setpoint and the 
current chilled water temperature setpoint, respectively, are used as proposed new setpoints.  For 
the cooling towers, 1.1 ˚C (2.0 ˚F) above and below the current Approach setpoint are used.  The 
HVAC Agent also sends an “inquireCost” message to the other affected equipment’s Agent 
asking for information on the rate of operating cost at conditions corresponding to the current 
setpoint and the two proposed setpoints.  A receiving Agent then uses information obtained from 
its performance identification process to calculate and then return the requested information.  
The Agent who received the “take action” token then calculates the “total” change in the rate of 
operating cost at the two proposed setpoints.  If the total rate of operating cost can be reduced by 
changing the current setpoint to one of the proposed setpoints, it sends a “requestAction” 
message to itself.  If this (proposed) setpoint change also involves another Agent changing its 
setpoint, the Agent receiving the “take action” token also sends out a  “requestSetpointChange” 
message.  The Agent receiving the “requestSetpointChange” message then decides on whether or 
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not to implement requested setpoint change.  If it implements the requested change, it sends a 
“completed” message back to the requesting Agent.  Upon receiving both a “requestAction” 
message and, if appropriate, a “completed” message, the Agent having the “take action” token 
makes the requested setpoint change and the total rate of operating cost of the entire HVAC 
system should be reduced. 
 
ADVANCED OPTIMIZATION METHOD (AOM) 
 
In the AOM, each Agent determines the “total rate of operating cost” of the HVAC equipment it 
is responsible for over the entire range of possible setpoint values.  This involves (1) determining 
how different proposed setpoint changes affect the “rate of operating cost” of the HVAC 
component it controls, (2) communicating with other Agents to determine how the different 
proposed setpoint changes affect the “rate of operating cost” of other HVAC components, (3) 
calculating the expected “total rate of operating cost” for all possible setpoint changes, and (4) 
finding the proposed setpoint change having the minimum “total rate of operating cost.”  After 
each Agent has completed these four tasks, the Agent proposing the setpoint change with the 
lowest “total rate of operating cost” is allowed by the Coordinator Agent to make that particular 
setpoint change.  This process is then repeated until the Agents involved receive a “no 
optimization” token from the Coordinator Agent.  It is assumed that the optimal operating point 
is reached when none of the Agents in the optimization process can propose a new setpoint 
having a lower “total rate of operating cost”. 
 
As described above, the AOM requires each Agent to determine the effect of all possible setpoint 
changes on the “rate of operating cost” for its HVAC and for other HVAC components that may 
be affected.  The latter is accomplished by sending a “inquireCost” messages to other Agents and 
receiving a “costResponse” messages back for particular setpoint changes.   
 
After an Agent has determined the “total rate of operating cost” for all possible setpoint changes 
under its control, it is necessary to compare the results with other Agents and then make a 
decision on which Agent gets to implement the “best” setpoint change.  To simplify this 
comparison, it was decided to use a modified version of  the Coordinator Agent that was 
developed for the SOM.  Also, rather than trying to compare “total rate of operating costs” 
directly, each Agent calculates the decrease in the “total rate of operating cost” between the 
setpoint having the lowest “total rate of operating cost” and the current setpoint and sends this 
information, along with the current and proposed new setpoint, to the Coordinator Agent.  If 
there is no setpoint with a lower “total rate of operating cost” than the current setpoint, the Agent 
sends the current setpoint as the new proposed setpoint to the Coordinator Agent along with a 
“zero” decrease in the “total rate of operating cost” (i.e., no operating cost savings is possible).   
 
After receiving the current setpoint, proposed new setpoint, and the expected decrease in the total 
rate of operating cost from all the Agents involved in the optimization, the Coordinator Agent 
determines which Agent has the largest decrease in total rate of operating cost and sends a 
message back to that Agent telling it to change the setpoint to the proposed new value.  This 
sequence of Agents determining the effect of all possible setpoint changes, sending a proposed 
new setpoint corresponding to the largest expected decrease in the total rate of operating cost to 
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the Coordinator Agent, and the Coordinator Agent deciding which setpoint change to implement 
is repeated as long as the optimization process is underway. 
 
It should be clear from the above discussion that the AOM is considerably more complicated 
than the SOM.   It requires a lot more information to be exchanged between the various Agents 
and between the Agents and the Coordinating Agent.  This in turn makes debugging the testbed 
program much more difficult.  Also, since the testbed does both the HVAC system simulation 
and the optimization process in the same program, instability problems can occur when changes 
are made in the various setpoints.  For example, if the chiller simulation uses a new chilled water 
supply temperature setpoint in its chiller performance calculation before the AHU simulations 
know about the setpoint change, it is possible to get simulated chiller capacities that are larger 
than the maximum capacity of the chillers.  To avoid this problem, the various setpoint changes 
were implemented in stages so that the different Agents encountered them in the proper 
sequence.  This greatly complicated the implementation of an AOM in the testbed.  Also, 
allowing large setpoint changes can cause system instability problems.  A large change in the 
cooling load can result in a large setpoint change followed by oscillations in the setpoint until the 
system stabilizes.  This was encountered to some degree in the testbed when the internal cooling 
loads were changed on the hour, even though a time constant on the zone air temperature tended 
to smooth out these effects.  To avoid this problem, the current version of the AOM was 
constrained to allow setpoint changes of no more than 2.2 ˚C (4.0 ˚F) at any one time.  This 
avoided most of the instability problems, but meant that under certain conditions it took several 
“optimization steps” to arrive at the “optimal” operating point. 
 
RESULTS 
 
The results obtained using the SOM and the AOM are shown in Table 1 for different Agents 
doing the optimization.  The table presents the cost savings in percent obtained on Day 3 when 
the Agents performed optimization relative to the case of no optimization.  The no optimization 
case or “reference case” employed fixed values of supply air temperature, chilled water supply 
temperature, and entering chiller condenser water temperatures of 15.6 ˚C (60.0 ˚F), 5.56 ˚C 
(42.0 ˚F) and 25.6 ˚C (78.0 ˚F), respectively.  Since the savings from the cooling towers 
optimization was so small ( i.e., less than 1%) , it was not combined with the “AHUs + Chiller1” 
optimization shown below. 
 
 



13 
 

Table 1. Cost savings in percent (relative to the reference case with no optimization) for the 
simplified optimization method (SOM) and the advanced optimization method (AOM) with 
different Agents doing the optimization. 
 
  Simplified Optimization Method - % Savings 
Optimizing 
Agent(s) 

  
costAHUFans 

  
costChillers 

  
costChWPumps 

  
costCTFans 

  
costTotal 

AHUs  53.64 -0.01 -18.18 -0.01 21.19 
Chiller1  -0.10 17.09 -61.99 2.69 5.17 
CTs  0.00 -4.37 0.00 31.79 0.79 
AHUs + Chiller1 64.68 -11.74 -4.45 -2.33 21.08 
       
       

  Advanced Optimization Method - % Savings 
Optimizing 
Agent(s) 

  
costAHUFans 

  
costChillers 

  
costChWPumps 

  
costCTFans 

  
costTotal 

AHUs  53.76 0.08 -18.96 0.08 21.29 
Chiller1  0.18 17.08 -62.01 2.66 5.29 
CTs  0.19 -4.23 0.03 31.97 0.94 
AHUs + Chiller1 61.71 -7.34 -8.00 -1.01 21.72 

 
 
It is important to note that an “optimization” performed by the AHU Agents working alone or the 
Chiller1 Agent working alone is not much of an optimization.  Because of the shape of the AHU 
fan and chiller performance curves, when these Agents consider only the performance of the 
equipment they are responsible for, the optimal operating point lies at end of the range of 
allowable setpoints.  Thus the AHU Agents push the supply air temperature as low as it is 
allowed to go and then keep it there.  Similarly the Chiller1 Agent pushes the chilled water 
supply temperature a high as it is allowed to go, where it remains. 
 
A much more interesting optimization is the when the AHU Agents and Chiller1 agents work 
together to optimize the overall HVAC system performance.  As can be seen in Table 1, when 
the Agents work together they find that the overall cost savings can be maximized by increasing 
the chiller energy costs ( -11.74 % and -7.34 % cost savings for the SOM and AOM methods, 
respectively) while reducing the AHUs fan energy costs ( 64.68 % and 61.71 % savings for the 
SOM and AOM methods, respectively). 
 
For this particular reference case, the combined AHUs + Chiller1 optimization achieves a total 
cost savings of 21.1 % when the SOM is employed and a total cost savings of 21.7 % when the 
AOM was used.  For the SOM and AOM, respectively, this turns out to be approximately 93 % 
and 96 % of the maximum possible savings.  The maximum possible savings of approximately 
22.7 % was found by running the testbed for fifteen chilled water supply temperature setpoints 
between 2.22 ˚C (36.0 ˚F) and 11.1 ˚C (52.0 ˚F) (with the supply air temperature setpoint set 5.56 
˚C (10.0 ˚F) above the chilled water supply setpoint) and at each time step selecting the lowest 
total operating cost.  The lowest operating costs at each time step were then summed to 
determine the minimum possible (or optimal) operating cost. 
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The total rate of operating cost and the rate of operating cost of the different HVAC components 
for the reference case (no optimization) is shown for Day 3 on the left hand side of Figure 6.  
The right hand side of Figure 6 shows the same costs for the AOM method when the AHU and 
Chiller1 Agents are acting together to do the system optimization.  Days 1 and 2, which are not 
shown, were used for performance identification.  

 
 

Figure 6.  “Rate Of Operating Costs” for the reference case (no optimization) is shown 
for Day 3 on the left side of this figure. The same costs for the AOM method with the 
AHU and Chiller1 Agents working together to do the  system optimization is shown on 
the right hand side. 

 
 
Figure 7 shows the resulting changes in the chilled water supply temperature setpoints for the 
third simulation day (Day #3) when the AHU1, AHU2, and Chiller1 Agents worked together to 
optimize the overall system performance using the SOM and AOM.  Also shown in this Figure is 
the “optimal” chilled water supply setpoint found from running the fifteen cases described above 
and at each time step selecting the chilled water supply setpoint having the lowest rate of total 
operating cost.  From approximately 11:00 AM to approximately 5:00 PM, the optimal chilled 
water supply temperature setpoint was found to be 4.44 ˚C (40.0 ˚F).  During this same period, 
the AOM found the optimal setpoint to be 3.89 ˚C (39.0 ˚F), while the SOM found it to be 3.33 
˚C (38.0 ˚F).  These differences from the true optimal setpoint that resulted from employing the 
AOM and SOM are likely to be caused by slight inaccuracies in identified chiller performance or 
the identified supply air fan performance and/or, in the SOM case, by the fact that setpoint 
changes were made in 1.1 ˚C (2.0 ˚F) increments. 
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Figure 7.  True optimal chilled water supply temperature setpoints (solid line) for 
simulation Day #3 and the “near optimal” setpoints found by the Chiller1 and 
AHU Agents working together using the SOM and the AOM. 

 
 
While the total cost savings of 21.1% and 21.7% achieved by AHU and Chiller1 Agents working 
together using the SOM and AOM, respectively, appear to be significant, they are strongly 
dependent on the reference case chosen and cannot be considered representative of the actual 
savings that might be achieved in a real building/HVAC system.  For example, if the reference 
case was changed so that the supply air temperature setpoint was 12.8 ˚C (55.0 ˚F) instead of 
15.6 ˚C (60.0 ˚F) and the chilled water supply temperature and the entering chiller condenser 
water temperatures setpoints were kept, respectively, at 5.56 ˚C (42.0 ˚F) and 25.6 ˚C (78.0 ˚F), 
the total cost savings achieved by the AHUs and Chiller1 Agents working together using the 
AOM would only be 6.3%.  This is because the maximum (true optimal) total cost savings 
possible with this reference case is only 7.9%. 
 
Conclusions and Recommendations 
 
Although the limitations of the current testbed (e.g., a single simulation day, a fixed ambient air 
wetbulb temperature, a simplified approach to handling cooling coil performance, etc.) make it 
difficult to draw definitive conclusions regarding the potential energy savings resulting from the 
use of intelligent agents,  the current work clearly demonstrates that the concept of using 
intelligent agents to optimize the performance of a real building/HVAC system is extremely 
promising.  The testbed showed that piecewise linear regression appears to work well for 
identifying the  performance of HVAC equipment and that intelligent agents can work together 
to achieve “near optimal” results.  The use of intelligent agents make it possible to solve the 
problem of building system optimization in a “distributed manner” and avoids many of the 
problems associated with optimization methods that require that information on the performance 
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and status of all HVAC systems and equipment be available in one location (i.e., at the device 
doing the optimization).   
 
Both the simplified optimization method (SOM) and the advanced optimization method (AOM) 
discussed in this paper performed almost equally well in reducing the operating cost of the 
simulated building HVAC systems.  For both methods, when the AHU and Chiller1 Agents acted 
together to do the optimization, the total “one day”  cost savings was approximately 21.1% and 
21.7%, respectively, for the reference case (no optimization case)  having a supply air 
temperature, chilled water supply temperature, and entering chiller condenser water temperature 
setpoints of 15.6 ˚C (60.0 ˚F), 5.56 ˚C (42.0 ˚F) and 25.6 ˚C (78.0 ˚F), respectively. For the SOM 
and AOM, respectively, this was approximately 93% and 96% of the maximum possible savings.  
However, since these cost savings are strongly dependent on the reference case chosen, they 
cannot be considered representative of the actual savings that might be achieved in a real 
building/HVAC system. 
 
As discussed above in the section on the Advanced Optimization Method, the implementation of 
the AOM was not easy.  The AOM involves the exchange of large amounts of information 
among Agents and can result in very large setpoints changes.  The latter can cause instability 
problems when disturbances, such as cooling load changes, occur.  The SOM on the other hand, 
is considerably easer to implement.  It involves Agents taking turns in optimizing the particular 
piece of HVAC equipment they are responsible for and requires only small changes in the 
setpoints.  For the optimization cases discussed in this report, both methods achieved almost the 
same cost savings.  Because of this, it is strongly recommended that, in any future studies 
involving the use of intelligent agents to optimize building/HVAC performance, consideration 
first be given to implementing the SOM rather than the AOM. 
 
Finally, since simulation studies can never fully replace the need for “real world” experience, the 
work and conclusions of this paper need to be verified by future studies under controlled 
laboratory conditions and in real building/HVAC systems. 
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Appendix A 
 
As described in the section entitled Identification, both the SOM and the AOM allowed for a 
simplifying approach to be employed in carrying out joint chiller-AHU optimization.  It involved 
not permitting the difference between the supply air temperature setpoint and the chilled water 
temperature setpoint to be less than 5.56 ˚C (10.0 ˚F).  This simplification is based upon a 
separate analysis of a typical cooling coil, which showed that  (1) for a properly sized coil and 
large cooling loads, a supply air temperature set point 5.56 ˚C (10.0 ˚F) above the chilled water 
temperature setpoint was either optimal or very close to optimal, and (2) for moderate and low 
cooling loads, while the optimal supply air temperature setpoint was closer to the chilled water 
temperature setpoint,  the effect on the cost of operation of keeping it 5.56 ˚C (10.0 ˚F) above the 
chilled water temperature was very small.  
 
Since the very simple cooling coil model employed in the testbed did not allow for an adequate 
check on the validity of this simplified approach, a separate analysis was conducted using a 
simplified cooling coil model developed by Yao-Wen Wang (Wang 2004) for “control and 
optimization of HVAC systems”.  Wang derived a heat transfer equation for a HVAC cooling 
coil given by: 
 

 

 

 
where: 
 

Q = cooling coil load 
rateSA = supply air mass flow rate, 
rateChw = chilled water mass flow rate, 
tempChw = temperature of chilled water entering the cooling coil, and 
tempAirIn = entering air wet bulb temperature for a wet coil. 

 
The coefficients C1, C2 and e were set equal to 2.439, 0.498, and 0.8, respectively.  These values 
were determined experimentally by Wang, for a cooling coil with a cooling capacity reasonably 
close to that of the cooling coil used in the testbed (400 kW vs. 470 kW, respectively). 
 
Also, since the cooling coil model used in the testbed does not consider latent cooling loads, it 
was assumed that the cooling coil model developed by Wang was applicable to dry cooling coils 
and the variable tempAirIn in the above equation was set equal to the entering air dry bulb 
temperature. 
 
After defining a part load factor, plf , given by: 

 
plf = Q/Qmax, 
 
where Qmax is the cooling capacity of the cooling coil used in the Testbed, 

Q ..C1 ( )rateSA e

1 .C2 rateSA
rateChw

e
( )tempAirIn tempChw
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and using the fact that  
 
rateSA = plf*Qmax / ( cp*(tempAirIn – tempSA)), 
 
where cp is the specific heat capacity of air, 
 
and setting tempAirIn equal to 24.0 ˚ (75.2 ˚F),  
 

the above equations for Q and rateSA were solved to give the chilled water flow rate, rateChw, 
for different values of plf, tempChw, and tempSA.   
 
Figure A1 shows the calculated values of rateChw for plf = 1, three values of tempChw ( 3.33 ˚C 
(38.0 ˚F), 5.56 ˚C ( 42.0 ˚F), and 8.33 ˚C (47.0 ˚F)) and for values (on the x-axis) of tempSA 
between 1.0 ˚C  (1.8 ˚F) and 10 ˚C (18 ˚F) above tempChw.  Note that at this plf the rateChw  
rises rapidly as tempSA approaches tempChw.   

Figure A1.  Chilled water mass flow rate for plf = 1 and tempChw equal to 3.33 ˚C        
( 38.0 ˚F), 5.56 ˚C ( 42.0 ˚F), and 8.33 ˚C ( 47.0 ˚F). 

 
Employing the fan and pump performance curves used in the testbed and assuming an electricity 
cost of $0.09/kWh, the combined rate of operating cost of an AHU supply air fan and a chilled 
water pump can be calculated.  (For moderate to large cooling loads, there will be two cooling 
fans and two chilled water pumps running.  Also, the operating cost of the chillers can be ignored 
because it is constant for specific values of plf and tempChw).  
 
Figures A2, A3, and A4 show the rate of operating cost of operating an AHU supply air fan and 
a chilled water pump for plf equal to 1.0, 0.7, and 0.3, respectively.  Each  figure shows the 
results for three values of tempChw ( 3.33 ˚C (38.0 ˚F), 5.56 ˚C ( 42.0 ˚F), and 8.33 ˚C (47.0 
˚F)) and for values (on the x-axis) of tempSA between 1.0 ˚C  (1.8 ˚F) and 10 ˚C (18 ˚F) above 
tempChw. 
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Figure A2.  Rate of Operating Cost for a AHU Supply Air Fan and a Chilled Water 
Pump for plf = 1 and tempChw equal to 3.33 ˚C ( 38.0 ˚F), 5.56 ˚C ( 42.0 ˚F), and 8.33 
˚C ( 47.0 ˚F). 
 

 
 
 

 
 
Figure A3.  Rate of Operating Cost for a AHU Supply Air Fan and a Chilled Water 
Pump for plf = 0.7 and tempChw equal to 3.33 ˚C ( 38.0 ˚F), 5.56 ˚C ( 42.0 ˚F), and 
8.33 ˚C ( 47.0 ˚F). 
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Figure A4.  Rate of Operating Cost for a AHU Supply Air Fan and a Chilled Water 
Pump for plf = 0.5 and tempChw equal to 3.33 ˚C ( 38.0 ˚F), 5.56 ˚C ( 42.0 ˚F), and 
8.33 ˚C ( 47.0 ˚F). 
 
 
As shown in Figure A2, for a plf = 1.0, the minimum cost for the thee different tempChw shown 
occurs when tempSA is between 4.4 ˚C (8.0 ˚F) and 5.56 ˚C (10.0 F) above tempChw.  
However, the minimum is very flat and there is little difference in the operating cost within this 
range. 
 
For plf equal to 0.7 and 0.5, Figures A3 and A4 show that the minimum is not very well defined 
for moderate and small cooling loads.  These figures also show that for these loads, choosing a 
tempSA 5.56 ˚C (10.0 ˚F) above tempChw does not have a significant impact on the cost of 
operation. 
 
These results substantiate the assumption used in developing the Testbed that an optimization 
method (either SOM or AOM) that does not permit the supply air temperature setpoint to be less 
than 5.56 ˚C (10.0 ˚F) above the chilled water sepoint will give near optimal results.  
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