110 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 9, NO. 1, JANUARY 2012

A Semantic Product Modeling Framework and Its
Application to Behavior Evaluation

Jae H. Lee, Steven J. Fenves, Conrad Bock, Hyo-Won Suh, Sudarsan Rachuri, Xenia Fiorentini, and
Ram D. Sriram, Member, IEEE

Abstract—Supporting different stakeholder viewpoints across
the product lifecycle requires semantic richness to represent
product-related information and enable multiview engineering
simulations. This paper proposes a multilevel product modeling
framework enabling stakeholders to define product models and
relate them to physical or simulated instances. The framework is
defined within the Model-Driven Architecture using the multilevel
(data, model, metamodel) approach. The data level represents
real-world products, the model level describes models (product
models) of real-world products, and the metamodel level describes
models of the product models. The metamodel defined in this
paper is specialized from a web ontology language enabling
product designers to express the semantics of product models in
an engineering-friendly way. The interactions between these three
levels are described to show how each level in the framework is
used in a product engineering context. A product design scenario
and user interface for the product metamodel is provided for
further understanding of the framework.

Note to Practitioners—The views of stakeholders in a product
lifecycle may be different according to their concerns. How-
ever, they develop product models and data for a same product.
The product models and data should be managed in a single
framework to validate consistency of product information. The
framework proposed in this paper enables stakeholders to define
their product models and relate them to physical or simulated
instances. A generic metamodel is also proposed to guide engi-
neers in building their product models using engineer-friendly
terms. A product design scenario and user interface prototype was
implemented for further understanding of the framework and the
metamodel. If the prototype is integrated with a Computer-Aided
Design (CAD) system, it can be a powerful mechanism for seman-
tically annotating CAD models.

Index Terms—Multilevel modeling framework, OWL, product
information modeling, semantic product modeling.

Manuscript received April 28, 2011; accepted July 08, 2011. Date of publi-
cation September 15, 2011; date of current version December 29, 2011. This
paper was recommended for publication by Associate Editor Y. Ma and Ed-
itor M. Zhou upon evaluation of the reviewers’ comments. No approval or en-
dorsement of any commercial product by the National Institute of Standards
and Technology is intended or implied. Certain commercial equipment, soft-
ware, instruments, or materials are identified in this report to facilitate better
understanding. Such identification does not imply recommendation or endorse-
ment by the National Institute of Standards and Technology, nor does it imply
the materials, software, or equipment identified are necessarily the best avail-
able for the purpose.

J. H. Lee, S. J. Fenves, C. Bock, S. Rachuri, and R. D. Sriram are
with the National Institute of Standards and Technology, Gaithersburg,
MD 20899 USA (e-mail: lee.jachyun@nist.gov; steven.fenves@nist.gob;
conrad.bock @nist.gov; sudarsan @nist.gov; sriram @nist.gov).

H.-W. Suh is with the Korea Advanced Institute of Science and Technology,
Daejoen 305-701, South Korea (e-mail: hw_suh@Xkaist.ac.kr).

X. Fiorentini was with the National Institute of Standards and Technology,
Gaithersburg, MD 20899 USA. She is now an independent consultant in Italy
(e-mail: xenia.fiorentini@gmail.com.).

Digital Object Identifier 10.1109/TASE.2011.2165210

1. INTRODUCTION

OLLABORATIVE environments enable participants in

a product lifecycle to interact and reach agreement by
sharing design knowledge and product information [1], [2].
Product knowledge and information in a product lifecycle
requires representation of data and models in order to integrate
the systems across different lifecycle stages [3]. Product life-
cycle information also requires sophisticated product modeling
techniques such as multiple object representations and complex
semantic relationships [4]. In addition, collaborative environ-
ments need a product ontology to provide open semantics in
which knowledge from multiple sources can be easily com-
bined and checked for consistency [5]. The product ontology
should include a generic product model that: 1) can be readily
specialized for specific products; 2) can provide information to
all stakeholders (i.e., designer, engineer, manufacturer, supplier
etc.) throughout the product lifecycle; and 3) has explicit,
logical semantics of the concepts and relationships involved,
without requiring that the stakeholders be versed in ontological
thinking.

These needs gave rise to multilevel information modeling
frameworks. The frameworks defines the multilevel (data,
model, metamodel) approach to build product models and
relate them to physical or simulated data and thus enable
integration of product lifecycle information [6]. Fig. 1 shows a
high-level view of our framework and possible implementation.
The semantic-based product metamodel (SPMM) consists of
generic product domain concepts and relationships, such as
artifact, behavior, and their relationships (explained later in the
paper), which can guide engineers in building their product-spe-
cific models, such as models of cars, airplanes, and ships. An
impeller product model is shown in Fig. 1 as a product-specific
model example. Information about physical product data can be
defined from models built in the framework. Product-specific
models and physical product data are then saved in a formal
knowledge representation for reasoner to understand and infer
new knowledge.

The generic product domain concepts alleviate the burden
on engineers to learn syntax of the ontology language. Product
models and data defined by engineers are then converted into a
formal representation with axioms so that reasoners can check
consistency of the product information. Domain ontology and
rules for a product model can infer new knowledge from the in-
formation about the product model and its physical instances.

Among product lifecycle information, product behavior in-
formation must be modeled in a multilevel information mod-

1545-5955/$26.00 © 2011 IEEE

LEE et al.: A SEMANTIC PRODUCT MODELING FRAMEWORK AND ITS APPLICATION TO BEHAVIOR EVALUATION 111

Semantic-based product
meta-models (SPMM)

Artifact, Material, Geometry, Designed
Behavior, Test Behavior,

t® Visual modeling tool [:]

Product-specific models

<Material> Steel ~ <DesignedBehavior>

Making air-flow

Create/Reuse

@

<Artifact> Impeller

¥ -

Engineer <TestBehavior>

<Geometry> Cylind

Physical product data

T y—] | C

1 Impeller

2 |ID Component Making Air-flow
3 |#001

4 8002

‘ Save/Restore

A
vAyg
LF .
< £y Knowledge representation
easoning
engine for computers

Fig. 1. A high-level view of the product modeling framework.

eling framework because product behavior information involves
both data and languages. For example, product behavior infor-
mation can be either a behavior model or test data of prototypes.
Each level can have multiple degrees of abstraction within it.
For example, product behavior information in design can be a
behavior model of either conceptual design or detail design.

Behavior design models are generally evaluated by either
a simulation or a prototype test, so the relationship between
behavior models and test data of prototypes also should be
addressed in a multilevel information modeling framework.
Behavior evaluation is a design activity to find out whether
a product design model satisfies its requirements. Behavior
evaluation happens often in a product lifecycle. Test data can be
collected from a design prototype or simulation, manufactured
product, or product in use, and compared to the design model
for evaluation. Even when test data fail their design model
during evaluation, the evaluation result is a knowledge asset of
a company to improve future designs.

This paper defines the structure of an information modeling
framework for product behavior evaluation, and proposes
how engineers can build their product models and data in the
multilevel framework. The framework clarifies the meaning of
the product information modeling levels through: 1) the use
of generic product model, SPMM, as the product metamodel;
2) the description of product models using concepts and rela-
tionships in SPMM; and 3) the representation of information
about real-world products as instances of the product models.
The concepts and relationships in SPMM extend existing work
on ontological product modeling languages [6] and the Core

Product Model 2 (CPM?2) [7] to support behavior modeling in
the product lifecycle.

This paper is organized as follows. Section II reviews pre-
vious research on multilevel product modeling frameworks.
Section III presents an overview of the proposed multilevel
product modeling framework, including the generic product
model. Section IV addresses the concepts and relationships
in the generic product model, and their semantics. Section V
describes the interaction mechanisms between levels of the
framework. Section VI provides a proof-of-concept for SPMM
with a fan and motor example, and shows an SPMM editing
user interface. Section VII gives suggestions for future work
and conclusions of this paper.

II. PREVIOUS RESEARCH

Previous work on multilevel product modeling varies in
how they define levels in product ontologies. Lee et al. [8]
proposed a multilayered ontology architecture for collabora-
tive enterprises, in which representation layers and domain
modeling layers are separated, and adopted the Model-Driven
Architecture (MDA) [9] for the representation of layers. The
modeling layers included: a domain-independent layer; a do-
main-dependent layer; and a domain-specific layer. The domain
modeling layers could be built using a top-level ontology such
as the suggested upper merged ontology (SUMO) [10]. Lee
and Suh [11] proposed an ontology-based four-layered product
knowledge framework to manage comprehensive product
lifecycle knowledge. Product ontologies were classified into
four types: a product-context model; product-specific model;
product-planning model; and product-manufacturing model.
The ISO-15926 standard for Life Cycle Data for Process Plants
[12] also had a multilayered knowledge framework for plant
process information and built multilayered plant ontologies.
Yang et al. [13] proposed a multilayered ontology architecture
for product configuration consisting of four layers: a represen-
tation layer; a metamodel layer; a model layer; and an instance
layer. The CPM2 [7] focused on a generic product model that
encompasses a range of engineering design concepts beyond
the artifact’s geometry, including function, form, behavior, and
material, as well as physical and functional decompositions,
and various kinds of relationships among these concepts. The
CPM2 report [7] suggests a level named “intermediate model”
to express product-specific models specialized from the generic
concepts and relationships.

Some previous efforts in multilevel product modeling
[8]-[13] have a level just for an ontology language, such as
first-order logic [14], description logic [15], or the web on-
tology language (OWL) [16]. Product information is captured
with instantiation relationships between product models and the
ontology language level. Specialization relationships are used
to build product-specific models from generic product models.
The “Previous Approach” column in Fig. 2 shows an example
of how these levels are related to each other. These approaches
assume product designers understand ontology languages well
enough to build product-specific models. However, it is a heavy
burden on product designers to understand these formalisms

112 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 9, NO. 1, JANUARY 2012

M2 OWL - Ontology modeling language
Previos i Meta-Model
approach Previous Approach [8-13] OPML [6] ?Specianzaﬁon
Levels
SPMM - Product meta-model
Ontology representation
N w2 JAVAN A
.............................. s SO -
1 Bl : Conformance
Generic product model | Artifact | Behavior | | Artifact | | Behavior |
N AN m M1 Product-specific models
""""""""""""""""" T Model -
Product-specific model I Fan IMake airﬂ0w| | Fan |Makeairﬂow| I Conformance
................ Ll AR} !
T L Mo Physical product dat
. L. ysical product data
Physical product data | Fan#l || Fan#2 | | Fan#l || Fan#2 | Individuals Measured Information
Fig. 3. Th Itilevel product inf ti deling fi k.
Legend D Class /:\ instantiation ZF‘ specialization ig. 3 © mitieve’ product trforfiatiofl Modeling tratmewor

Fig. 2. Multilevel approaches and relationships between levels.

and use them to define product models. Therefore, a generic
product modeling language specialized from an ontology lan-
guage is necessary for product designers to build and use their
product models based on generic product modeling concepts
that are independent of specific product domains.

The ontological product modeling language (OPML) [6] has
the capabilities of ontology languages, such as taxonomies,
which are available to engineers in their own terminology,
rather than in those of ontology languages such as OWL. The
OPML adopted the multilevel approach of the MDA [17], and
clarifies the meanings of three levels, labeled MO, M1, and
M2. Instantiation relationships express relationships between
each two adjacent levels. The MO level consists of individuals
that can have no further instantiations. The M1 level consists
of models that classify individuals. The M2 level consists of a
metamodel, and consists of shorthand expressions for the se-
mantics of the model. OPML defines a metamodel specialized
from OWL in M2. The “OPML” column in Fig. 2 shows an
example of how levels in the OPML are related to each other.

The multilevel product modeling framework is useful espe-
cially when both product-specific models and physical product
data are required during product development activities, such as
behavior evaluation. The generic product model of the CPM2
provides concepts and attributes for behavior evaluation such
as “behavior,” “observed behavior,” and “evaluated behavior.”
However, the CPM2 did not explain how to use these concepts
and attributes in a multilevel product modeling framework. The
OPML provides generic concepts and relationships for behavior
modeling, such as objects involved in behaviors. The OPML
also supports the concept of the Environment, the part of the
universe that uses, interacts with, or is affected by the artifact
being designed, but is beyond the designer’s control. However,
the OPML needs to be harmonized with additional aspects of the
CPM2, in particular, modeling and reasoning for behavior eval-
uation. This paper provides the harmonization of the OPML and
the CPM2 for behavior evaluation, and explains how behavior

concepts and relationships are modeled in the multilevel frame-
work and how reasoning can be exploited in the framework for
behavior evaluation.

III. THE MULTILEVEL PRODUCT INFORMATION
MODELING FRAMEWORK

The proposed framework contains three levels for ontological
product modeling, namely, metamodels (M2), models (M 1), and
individuals (MO). Fig. 3 shows the three levels and the relation-
ships among them.

The M2 level is for the metamodel, where SPMM is proposed.
As shown in Fig. 3, the classes and relationships in SPMM are
specialized from OWL classes, and the syntax and semantics of
SPMM inherit the syntax and semantics of OWL. The semantics
of SPMM need to be specified further because its classes and
relationships are specific to product modeling. Since OWL is
used as a basis for SPMM at M2, OWL is used to represent the
axioms of SPMM classes and relationships explicitly. A detailed
description of SPMM classes and relationships at the M2 level
will be given in Section IV.

The M1 level is for product models, representing information
about particular products. It consists of product concepts and
relationships such as artifacts, behaviors, forms, and structures
of specific products, including attributes and their (required or
designed) values. Product designers define the concepts and re-
lationships as instances of SPMM, so that they can be checked
by a reasoner to determine their conformity to the axioms of
SPMM (this is shown in Fig. 3 as Conformance between the
M1 and M2 levels). If the concepts and relationships at M1 do
not create any inconsistency with SPMM, they are valid, and
their axioms can be added or inferred. Domain experts can de-
fine most of the axioms at M1, but some of the axioms can be
inferred from axioms of the product metamodel at M2.

The MO level is for product data about physical instances ob-
served at a certain time and place, or in computer simulations.
The observed product data may or may not satisfy axioms of
its product model at M1, and their conformity can be checked
by a reasoner (this is shown in Fig. 3 as Conformance between
the MO and M1 levels). A conformance relationship between a
product model and a physical product is a relationship engineers

LEE et al.: A SEMANTIC PRODUCT MODELING FRAMEWORK AND ITS APPLICATION TO BEHAVIOR EVALUATION 113

domain
M2 rdf:Property
range
A
|owI:DatatypeProperty| ‘ owl:ObjectProperty ‘
JAN
domain
{redefinesdomain}
| DatatypeRelationship | | ObjectRelationship

range
{redefinesrange}

rdfs:Class

Legend

Q rdfs:subClassOf

domain
{redefines
domain}

| rdf:Property

M1_has_attribute

Attribute

e Behavior

ofBehavior ofEntity)

(DynamicProperty

StaticProperty
of Entity

Fig. 4. Relationships between OWL and SPMM classes.

want to know when they validate a product model or test a phys-
ical product. The relationship is particularly important when the
lifetime of the manufactured product is so long that the physical
instance may change over time, as in the case of ships, aircraft,
and buildings.

Fig. 3 includes specialization and conformance relationships.
The specialization relationship is used in conceptual modeling
to represent taxonomies, such as small cars being a specializa-
tion of cars in general. If a concept A is a concept specialized
from a concept B, then the instances of concept A are collec-
tively a subset of those of B, or more precisely, the instances
of A are also instances of B. The more specialized concept A
might constrain properties of concept B or introduce new ones,
but any constraints or properties of B apply to all the instances of
A as well as those of B, by the definition of specialization [18].
The specialization relationship is implemented in this paper as
the subclass relationship in OWL (“rdfs:subClassOf”), but this
is not to be confused with subclassing in software modeling,
which has a related but different meaning. The conformance re-
lationship between an instance and a class is an instantiation re-
lationship in which reasoners logically checked the consistency
of the instance along the class’s definition.

A physical individual at MO can conform to several product
models at M1 such as a requirement model, a conceptual design
model, an engineering model, etc. Since a physical individual
has detailed information, it can have more attributes than its
product models at M 1. Definitions at the M1 level can be used
to infer the conformance relationships between the MO and M1
levels. A detailed description of the interaction among the M0,
M1, and M2 level will be given in Section V.

IV. THE SEMANTIC-BASED PRODUCT METAMODEL: SPMM

This section describes the classes and relationships of the
product metamodel at the M2 level, in short, SPMM classes.
SPMM classes are described in OWL, but they are visualized
using UML class notation [19] in this section.

SPMM classes have axioms to specify their meanings explic-
itly. The axioms are also described in OWL, so that they can
provide OWL syntax for SPMM to describe specific product
models at M1. Fig. 4 shows the relationships between SPMM
classes and OWL primitives. The OWL primitives in Fig. 4

are shown with the “owl:” prefix before their class names. The
“spmm:Class” is the top class in SPMM, and it is a subclass
of the “owl:Class.” The “spmm:Class” can have relationships
with other “spmm:Class” through “spmm:ObjectRelationship”
class. The “spmm:Class” can also have relationships with
“spmm:Attribute,” which represents attributes of a class such
as “weight,” “color,” and “speed.” SPMM defines “spmm:At-
tribute” as a subclass of “spmm:Class” in order to give unique
identifications to each attribute at M1. Attributes in a product
model should be identified for defining constraints among
attributes and for sharing attributes among product models. The
“spmm:DatatypeRelationship” is used to represent relation-
ships between “spmm:Attribute” and “rdf:Literal” so that the
“spmm:Attribute” can have relationships with data-types, units,
as well as literal values. In the following sections, the bold font
is used in the text to avoid repeating usage of the “spmm:”
prefix. For example, Class means spmm:Class.

Entity, Behavior, StaticPropertyofEntity, and Propertyof-
Behavior are crucial concepts for building product models. En-
tity is things that can be described with static properties and
dynamic properties. Behavior is a dynamic property of one
or more Entities. A dynamic property includes the notion of
time in its description. For example, a behavior “rotating a fan”
happens over time, involving “motor” and “fan” entities. Stat-
icPropertyofEntity is a property of one or more Entity that
does not include the dynamics of the Entity, such as the shape
of a ‘motor’ entity being two cylinders. PropertyofBehavior is
a property of Behavior. It is specially defined to capture rela-
tionship information among product behaviors.

Entity, Behavior, StaticPropertyofEntity, and Propertyof-
Behavior have relationships among themselves, and have fur-
ther subclasses that inherit the relationships. The following sub-
sections will explain their subclasses further. Fig. 5 shows the
class hierarchy and relationships graphically.

A. Entity Class

Entity could be ExternalEntity and SpecifiedEntity, and
SpecifiedEntity is divided further into Artifact and Feature.

ExternalEntity is a kind of entity that interacts with artifacts
in a context of use, which is a required behavior. The required
behavior identifies some entities participating in it as the ex-
ternal entities. The external entities interact with the entity being

114 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 9, NO. 1, JANUARY 2012

m2 Class
[I | o is_staticproperty_of]
Property Behavior b + ’ ’ . is_form_of .| StaticProperty
B is_involved_in 0. - 0
ofBehavior (DynamicProperty = = Entity Is_geometry_of (SuPsets is_stafigproperty_off ofEntity
T ofEntity) {subsets is_form_of}
0.* 1. o Is_material_of
is_behproperty_of o . is feature of /I\ {subsets is_form_of}
- - is_involved_ext_entity - -
{subsets | 0.* ,J | 0.* X
— IS_| olved_in}ﬁ N - 0.. Form
Required 1* External Feature Specified |1.*
Behavior Entity Entity
0.* Geometry
InformalRequired
L Behavior Specified Artifact
T Feature o X
satisfy_informal_beh_required - Material
0.*

FormalRequired
Behavior

0.
satisfy_beh_required

0.*

Designed

has_designed_beh
{subsets is_involved_in}

has_criterion
Behavior

ﬁ
o
0.

TestBehavior

satisfy_beh_designed

has_test_beh
{subsets is_involved_in}

Evaluation
0.7
: Test 1.2
. Behavior
is_result_of
{subsets

is_behproperty_of}

Fig. 5. Entity, behavior, StaticPropertyofEntity, and PropertyofBehavior classes and relationships.

specified (the artifact), which is also involved in the required be-
havior. For instance, a person’s hand and mouth, and water can
be external entities for designing a water bottle because they are
involved in required behaviors of using a water bottle.

SpecifiedEntity is a kind of Entity that is specified with
SpecifiedBehavior and Form. Artifact and SpecifiedFeature
are subclasses of SpecifiedEntity. A specified entity must be
involved in at least one designed behavior. A specified entity
may have a form such as geometry or material information. For
example, a water bottle can be a specified entity that has a spec-
ified behavior “containing water” and a material (a subclass of
form) “plastic.”

Artifact is a kind of SpecifiedEntity which is designed, as
opposed to entities that are naturally occurring. Artifacts can
be involved in required behaviors through the “spmm:is_in-
volved_in” relationship between Entity and Behavior. They
can also have relationships with forms such as geometry and
material. Artifacts must be involved in at least one designed
behavior, otherwise they would be natural objects. Artifacts
may have a relationship with test behaviors if their designed
behaviors are tested.

Feature is a kind of Entity. It can be just a design idea, or
a portion of an external entity or artifact. The “spmm:is_fea-
ture_of” relationship associates Feature to either ExternalEn-
tity or Artifact. A feature has relationships with forms and be-
haviors because it is a subclass of Entity. SpecifiedFeature is
a kind of Feature that is designed by engineers, so it is also a
kind of SpecifiedEntity. A specified feature must have at least

one designed behavior. For example, a “bottleneck” feature of
a “water-bottle” artifact can be a feature the form of which is a
“through-hole,” and the designed behavior of which is “guiding
waterflow.”

B. Behavior (DynamicPropertyofEntity) Class

Behaviors are specialized into three subclasses: Required-
Behavior, DesignedBehavior, and TestBehavior. All of these
can identify entities participating as specified entities (artifacts)
and others as external entities. Behaviors of ExternalEntity in-
clude interactions with artifacts, so they are named Required-
Behavior in this paper. Required behaviors do not give any in-
formation about artifacts beyond the interaction with external
entities. They are specialized into two subclasses:

¢ InformalRequiredBehavior is an informal behavioral

description of the dynamics of the external entities
surrounding artifacts when they are used, including inter-
actions with the artifact. For example, “Person is drinking
water” might be an informal required behavior. A designer
can start to think about the interaction of the artifact and
external entities such as “person” and “water,” based on
the informal description by adding sub-behaviors: “Hand
holds the artifact” and “Mouth contacts the artifact.” Once
a description goes into any detail about the artifact, even
to classify it, such as being a water bottle, the behavior
crosses into design, and is no longer a pure requirement.

* FormalRequiredBehavior explicitly specifies the be-

havior of external entities, including their interactions

LEE et al.: A SEMANTIC PRODUCT MODELING FRAMEWORK AND ITS APPLICATION TO BEHAVIOR EVALUATION 115

with artifacts. A formal required behavior can be derived
from an informal required behavior. While an informal
required behavior is a class expressed with a sentence,
a formal required behavior is a class expressed with a
structured sentence and attributes. A structured sentence
consists of a subject, verb, and object [20]. Entities can be
used as a subject or object. From the previous example,
“person,” “hand,” “mouth,” and “water” are defined as
external entities, and a “water bottle” is defined as an
artifact. Verb taxonomies are required to specify verbs.
For instance, Hirtz [21] and Kitamura [22] defined verb
taxonomies to describe engineering behaviors and func-
tions, respectively. From the previous example, “drink,”
“hold,” and “contact” are verbs to describe the required
behaviors, and a formal required behavior “FBO1G,” can
be expressed with a subject “person,” a verb “drink,” and
an object “water.” Attributes are also needed to specify a
formal required behavior. For instance, the “FB01” formal
required behavior has an attribute “waterflow-rate” whose
value is “more than 50 cc/s.”

DesignedBehavior specifies behaviors of an artifact or fea-
ture beyond interaction with external entities, as determined by
product designers in response to formal required behaviors. For
example, “Water-bottle provides water to mouth” is a designed
behavior for the above required behavior example, because it
specifies that the artifact is a water bottle. The subject of its de-
scription should be an artifact or feature, while the subject of a
required behavior’s description is an external entity. A designed
behavior can have specific attributes and values that satisfy the
attributes and values defined at corresponding required behav-
iors. For example, the “waterflow-rate” of the above designed
behavior can have a value “more than 60 cc/s.”

Designed behaviors are defined to satisfy required behaviors.
The relationship between RequiredBehavior and DesignedBe-
havior, “satisfy_beh_required” relationship in Fig. 5, is used to
assert that the design behavior is enough for an artifact to per-
form its required behavior. For example, since the “waterflow-
rate” of the previous designed behavior is “more than 60 cc/s,”
it satisfies the “waterflow-rate” of the “FB01” formal required
behavior, which was “more than 50 cc/s.”

TestBehavior is a behavior of an artifact or feature that can be
observed after testing with a test method. External entities and
specified entities can be involved in a test behavior, but a test
behavior cannot exist without a related specified entity. TestBe-
havior is the observed behavior of the artifact or specified fea-
ture. It can be observed through test methods such as running
mathematical models or simulation models, or operating phys-
ical prototypes or manufactured items. Test behaviors should
keep their test method information by referring to classes of an
imported test method ontology, for example, by defining a test
method attribute of the test behaviors at the M1 level.

The proposed behavior classification is not a new one. The
CPM2[7] has classes such as requirement class, intended be-
havior class, and observed behavior class. A product model pro-
posed by Garcia et al. [23] also classifies product behavior into
three classes such as desired product behavior, predicted product
behavior, and observed product behavior. Although those class
names are different, their meanings are similar to the Required-
Behavior, DesignedBehavior, and TestBehavior.

The difference between the proposed behavior classes and the
classes in the CPM2 [7] is that the proposed behavior classes are
defined at M2 so that behavior classes at M1, defined by engi-
neers, can have logical and explicit definitions. The definitions
of behavior classes at M1 can be inputs for a reasoning engine to
infer specialization relationship among behavior classes at M1
as well as to check conformance relationship between behavior
classes at M1 and their individuals at M0. For example, let us
assume that an engineer defines “rotating_a_fan_req” and “ro-
tating_a_fan_des” classes at M1 as a formal required behavior
and a designed behavior of a motor, respectively, and each class
has definitions including their attributes and certain values. If
the engineer defines a “satisfy_beh_required” relationship be-
tween the two behavior classes, then the relationship is inter-
preted as a specialization relationship so that a reasoning engine
can check the consistency of the specialization relationship. The
usage of the inference for product behavior models will be ex-
plained more in Section V.

C. StaticPropertyofEntity class

StaticPropertyofEntity has one subclass, Form. Forms are
properties of Entity that do not include time. Only one subclass
is defined in this paper, but the class hierarchy of StaticProp-
ertyofEntity can be expanded with more subclasses in future
work if product development domain requires more static prop-
erties of entities.

Form is properties of entities that explain geometry and ma-
terial aspects of the entities, giving the subclasses Geometry
and Material. Geometry describes the measurements of lines,
angles, surfaces, solids, and relationships among them. Mate-
rial describes the substances that entities can be made from. The
relationship between Form and Entity, “is_form_of™ relation-
ship, is used to specify forms of entities at the M1 level.

D. PropertyofBehavior Class

PropertyofBehavior has one subclass, TestBehaviorEvalu-
ation, currently, but the class hierarchy of PropertyofBehavior
can be expanded with more subclasses in future work. A test
behavior of an artifact or specified feature should be compared
to a designed behavior. It can satisfy the designed behavior if
its observed behaviors at the MO level satisfy the designed be-
havior at the M1 level. The evaluation results are recorded with
TestBehaviorEvaluation. Conformance relationships between
the MO and M1 levels are used to evaluate test behaviors, which
will be explained in Section V.

V. DEVELOPING PRODUCT MODELS AND
INSTANCES USING SPMM

Using SPMM at the level M2 will allow engineers to write
their product models at the M1 level in SPMM (i.e., interaction
between M2 and M1), which provides product-specific syntax
developed in SPMM, and adding semantics to the product
models (i.e., interaction between M1 and MO0). Once engineers
define product models using SPMM, they can instantiate their
product models and check conformance of the real-world
instances to the product models (i.e., interaction between M1
and MO).

116 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 9, NO. 1, JANUARY 2012

Index
(a) SPMM axioms
example

SPMM - OWL expressions

Class: SpecifiedEntity

SubClassOf: Entity
Class: Artifact

SubClassOf: SpecifiedEntity and

SubClassOf: (has_des_behavior only
DesignedBehavior) and

SubClassOf: (has_des_behavior some
DesignedBehavior)
<spmm:Artifact rdf:ID= “Motor™>

(b) Engineer’s
initial description
example

(c) Template
example provided

<spmm:Artifact rdf:1D= “Motor”>
<spmm:has_des_behavior rdf:ID=

by inference “©_ >
systems <spmm:DesignedBehavior rdf:ID=
«

</spmm:has_des_behavior>
</spmm:Artifact>

Fig. 6. An example of interactions between the M2 and M1 levels.

A. Developing Product Models (M2-M1 Interactions)

Engineers and inference systems perform the interaction be-
tween the M2 and M1 levels. Axioms of SPMM provide OWL
syntax for SPMM, and inference systems can assist engineers
by telling what classes and relationships need to be defined. In-
ference systems can also check syntactic consistency of engi-
neers’ descriptions at M1 based on the SPMM syntax. For ex-
ample, let us assume that there are SPMM axioms like those in
Fig. 6(a). The axioms are represented in the Manchester OWL
syntax [24]. They specify that every artifact at M1 must have
at least one relationship “has_des_behavior” with a designed
behavior. If an engineer defines a “Motor” artifact class, as in
Fig. 6(b), inference systems can check syntactic consistency of
the description and tell what information is missing. Then, sys-
tems can provide templates for engineers to describe the missing
information. The underlined portions of Fig. 6(c) are where en-
gineers fill the missing information.

B. Adding Semantics to Product Models at M1 Layer

If a product model description at M1 satisfies the axioms of
SPMM, engineers can add axioms for the product model de-
scription at M1. Axioms at the M1 level are defined for each
behavior, form, and entity. A behavior can be described with its
attributes and sub-behaviors. For example, let us assume that a
designed behavior “Rotating a fan” of a motor is described like
Fig. 7. A behavior can be differentiated from other behaviors
based on its attributes and sub-behaviors. So, the definition of
the behavior can be generated from the attributes and sub-be-
haviors, as in Fig. 8. The contents in Figs. 7 and 8 are shown for
explanation, but ideally would be generated automatically using
an SPMM editor user interface.

Product model axioms can also be generated automatically by
inference systems that have axiom generation rules. Axiom gen-
eration rules can be expressed or implemented in various ways.
Lee [25] and Liang [26] showed implementation of rules using
eXtensible Stylesheet Language Transformations (XSLT) [27]
and Java [28], respectively. They find patterns in a product de-
scription and generate axioms or definitions for the description.
The rules should be designed considering the axioms of SPMM

<spmm:DesignedBehavior rdf:ID= “Rotating_a_fan>
<spmm:specifies>
<spmm:Artifact rdf:ID= “Motor”/>
<spmm:ExternalEntity rdf:ID= “Fan” />
</spmm:specifies>
<spmm:M1_has_attribute>
<spmm:Attribute rdf:ID= “torque”>
<spmm:M1_has_value> [>50, <100]
</spmm:M1_has_value>
<spmm:M1_has_datatype rdf:Resource= “xsd:integer”/>
<spmm:M1_has_unit rdf:Resource = “ut:Nm” />
</spmm:Attribute>
<spmm:Attribute rdf:ID= “rpm”>
<spmm:M1_has_value> [>3000, <5000]
</spmm:M1_has_value>
<spmm:M1_has_datatype rdf:Resource= “xsd:integer”/>
<spmm:M1_has_unit rdf:Resource = “ut:rpm” />
</spmm:Attribute>
</spmm:M1_has_attribute>
<spmm:has_sub_behavior>
<spmm:DesignedBehavior rdf:ID= “Receive_electricity”/>
<spmm:DesignedBehavior rdf:ID= “Spin_axis”/>
</spmm:has_sub_behavior>
</spmm:DesignedBehavior>

Fig. 7. A behavior description example at the M1 level.

Definition Note
spmm:DesignedBehavior: Rotating_a fan

EquivalentTo

(spmm:MO_has_attribute only (torque or rpm))

and

(spmm:MO_has_attribute exactly 2) and

(spmm:MO_has_attribute some (torque and

(spmm:MO_has_value some int[>50,

<100))

and

(spmm:MO_has_attribute some (rpm and

(spmm:MO_has_value some int[>3000,

<50001)))

and

(spmm:has_sub_behavior only
(Receive_electricity or Spin_axis))

and

(spmm:has_sub_behavior some
Receive_electricity)

and

(spmm:has_sub_behavior some Spin_axis)

Axioms for
attributes
‘torque” and
‘rpm’

Axioms for
sub-behaviors

Fig. 8. A behavior’s definition example at the M1 level.

at the M2 level. Then, axioms at the M1 level can be generated
automatically from the sentences defined by engineers. How-
ever, axioms generated by rules may not be sufficient to specify
all the semantics of product models in M1. Especially when the
semantics concern engineering knowledge that is product spe-
cific, some axioms must be generated manually by engineers to
express the exact meanings of concepts. For example, if engi-
neers know what attributes and sub-behaviors can discriminate
the “Rotating_a_fan” behavior from other behaviors, they can
select attributes and sub-behaviors for the definition.

Axioms for form and entity descriptions in M1 can also be
generated like behavior axioms can. Since entities are described
with their behaviors, axioms of entities can reuse the axioms
of the behaviors by referring to the behaviors. For example, a
“Motor_A” artifact class can be defined as an artifact that must
have a designed behavior “Rotating_a_fan.” Then, the definition
of the motor will refer to the behavior, and the definition of the
behaviors will be included in the definition of the motor.

LEE et al.: A SEMANTIC PRODUCT MODELING FRAMEWORK AND ITS APPLICATION TO BEHAVIOR EVALUATION 117

w
0 AN
Behavior ' Entity Propertyof
Behavior
Designed has_designed_beh Artifact
Test Behavior has_test_beh
Behavior ™ 2 crterion_of TestBehavior
L~ has_result Evaluation
" B

{ « air flow rate > 3.0 m3/s H FanMak:esAirFlow

has_spec[fie

criterion_of

as_test_beh |

has_result

H AirFlowTestBehavior
AR

{ - air flow rate

FanBehaviorEvaluation ‘
N N A

Mo

{ - air flow rate = 3.1 m%/s H EFanTest1

{ - air flow rate = 3.2 m3/s H

| FanTest2

{ - air flow rate = 2.9 m3/s H FanTest3

*
has_result

\ TestEvaIua:tionE1 |

{» Result = satisfactory }

has_test_beh . . .
has lesl beh « Diameter = 15 mm ‘ : ‘
FanPrototype2 { Blaﬂtﬁ—}’/ TestEvaluation3

FanProl:oter1 _

* Diameter = 15 mm
* BladeNum = 28 ea

[TestEvaluation? |

has_result E Sult = satisfactory }

{» Result = failure }
has_result

Legend

SPMM Class

cl Individual |
ass Individual i conformance | relationship | specialization { List of (attribute + (condition | values))}

Fig. 9. Behavior evaluation of MO0 instances.

Axioms for SPMM relationships also need to be generated
and added to the product model descriptions. Some SPMM rela-
tionships are interpreted as specialization relationships, such as
“satisfy” relationships among behaviors. If a designed behavior
satisfies a required behavior, then the attributes and sub-behav-
iors of the designed behavior should satisfy the attributes and
sub-behaviors of the required behavior. A specialization rela-
tionship between two classes enables inference systems to verify
the “satisfy” relationship between behaviors.

Engineers can also define specialization relationships be-
tween behaviors, entities, or forms if they wish to represent
the same product at different levels of detail [6]. Then, a
“Motor_A” in a detailed design can be a specialization of a
“Motor” concept in a conceptual or preliminary design because
all physical motors conforming to “Motor_A” should also
conform to “Motor,” by the definition of specialization. In
addition, the specialization relationship can save engineers
the effort of defining duplicate axioms at the M1 level. Since
specialization implies axiom inheritance, engineers can use
specialization relations to reuse existing axioms of concepts.
For example, if axioms of a “Motor” artifact exist, a new
specialized “Motor_A” concept inherits the axioms, because
all physical motors conforming to “Motor_A” should also con-
form to “Motor” and its axioms. Moreover, the specialization
relationship between classes can be inferred by ontological rea-
soning (i.e., description logic (DL) reasoning). If the axioms of
classes at the M1 level are consistent, ontological reasoning can
exploit those axioms to find new specialization relationships

between classes. For example, if a designed behavior satisfies
a required behavior, entities specified by them should also
have a specialization relationship. Reasoners can also check if
specialization relationships have been added incorrectly. For
example, if an engineer says a designed behavior satisfies a
required behavior, and adds a specialization relationship to
capture this, reasoners can check if the axioms of the designed
behavior are consistent with those of the required behavior.

C. Developing Product Instances (M1-MO Interactions)

Product models are realized in the real-world as physical
items. The interaction between the M1 and MO levels is neces-
sary to build and trace the relationships between product models
and physical items. While the M1 level represents different
views of a product model, the MO level represents occurrence
or measured information about physical realizations (items) of
the model. A physical entity at MO can be involved in multiple
behavior occurrences. While a designed behavior at M1 is
invariant once it is specified, behavior occurrence information
of physical items at MO is dependent on its observation time
and place. Measurement information may also depend on the
accuracy and precision of instruments used, so there can be
multiple measurements of the same MO physical item that gives
different values and uncertainties. SPMM does not address
multiple measurements of the same item, or measurement
uncertainties.

The interaction between the M1 and MO levels is im-
plemented as a conformance relationship. Conformance

118 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 9, NO. 1, JANUARY 2012

Rearwindow

Air purifier

Fig. 10. Air purifier product structure and its installation environment.

relationships between classes at the M1 and instances at the MO
can be established automatically by inference systems if the
information pertaining to the instances satisfies the definitions
of the classes at the M1 level. In addition, if an instantiation
relationship is manually established between a class at the
M1 level and an instance at the MO level, inference systems
can check whether the information of the instance satisfies the
definition of the class or not.

A conformance relationship can be established between a be-
havior class and behavior occurrence. A behavior occurrence at
the MO level is used to test (measure) behavior information of a
physical item. A behavior occurrence may or may not satisfy a
designed behavior. If a behavior occurrence satisfies a definition
of a designed behavior, it means that the physical item performs
well as designed. Since engineers learn more from failures than
successes, tested behaviors and their evaluation results at MO
should be connected to the respective product model at M1.
For instance, behavior occurrences (FanTest]l and FanTest2) in
Fig. 9 have attributes and their values that satisfy a definition
of a designed behavior (FanMakesAirFlow). The occurrences
should be inferred to be instances of the designed behavior, and
their behavior evaluations have a result attribute whose value
is “satisfactory.” If a behavior occurrence (FanTest3) has at-
tributes and values that do not satisfy a definition of a designed
behavior, then the occurrence should be inferred not to be an in-
stance of the designed behavior, and its behavior evaluation has
a result attribute whose value is “failure.”

Attributes of a class at M1 and attributes of an individual at
MO are listed in braces and have a relationship to each corre-
sponding class or individual in Fig. 9. Attributes at M1 are in-
stances of the Attribute class in SPMM, and attributes at MO are
instances of the attributes of M 1. However, those instantiation
relationships are omitted in the figure to simplify the diagram.

Air purifier
has_subArtifact

M1

Impeller
has_subArtifact

v v

| Bearing | | Fan | | Motor |

has_feature

Fig. 11. An impeller structure.

VI. ILLUSTRATIVE CASE AND PROTOTYPE OF SPMM

In this section, a product design example is provided to illus-
trate the concepts in SPMM. In addition, an SPMM editing user
interfaces are shown in this section though they are under cur-
rent development. The scenario used in the example is about de-
veloping an impeller assembly, which is a subassembly of an air
purifier product, and consists of three components: a fan, motor,
and bearing. The air purifier product is an automotive part in-
stalled behind a back seat of a car under a rear window, and
hence the size of the air purifier is restricted to the space between
the rear window and shelf behind the back seat. Fig. 10 shows
the air purifier product model and its installation environment.
Generally, passengers prefer an air purifier which can clean air
quickly and quietly. So, the air purifier should be designed small
enough to fit in the given space and move air quickly without
much noise. The impeller is a critical subassembly of the air
purifier. The air flow-rate of the impeller is determined by the
design of its components: fan and motor. A bigger fan can gen-
erate more air flow, but the size of the fan is restricted because
it should be assembled into the air purifier with other compo-
nents. Engineers can make several fan design alternatives under
the size restriction by changing material, shape, angle, and num-
bers of blades to satisfy the air flow-rate required for the air pu-
rifier and the noise restriction. Fig. 11 shows a product structure
of the impeller.

Three actors play roles in the scenario. First, a project man-
ager (PM) coordinates the air purifier design and makes require-
ments for a fan and motor. Second, a fan designer (FD) makes a
fan model to satisfy the requirements given by the PM, including
definition of required behaviors for the fan motor. Third, a motor
buyer (MB) selects a motor model from a motor catalog, with
behaviors satisfying the requirements given by a FD and PM.

The scenario consists of four product design steps: 1) defining
requirements of a fan and motor (by PM); 2) making design
alternatives of fan (by FD); 3) finding a proper motor model
from a market (by MB); and 4) after making a design prototype,
testing it and evaluating test results (by FD). These steps are
performed with SPMM and are described below.

1) Defining Requirements of a Fan and Motor (by PM):
Let us assume that a project manager must develop an air
purifier that should be installed in a car. The PM defines
required behaviors of the artifact “AirPurifier” informally.
In Fig. 12, the PM defines three informal required behav-
iors (“InformalRequiredBehaviorl,” “InformalRequired-
Behavior2,” and “InformalRequiredBehavior3”) and one

LEE et al.: A SEMANTIC PRODUCT MODELING FRAMEWORK AND ITS APPLICATION TO BEHAVIOR EVALUATION 119

ha _georign/
is_involve Entity Geometry
M2 Behavior z= : ~
£ is_involved_ext_entity [] H :
I RequiredBehavior I External Specified | :
z= Entity Behavior ! :
InformalRequired FormalRequired K A
Behavior Behavior Pl :
N Yo P

descrlptlon =
within 5 min.”

description= "Passengers cannot tolerate more

{than 40 dB noise”

{. description = “Car provides electricity to air-purifier. H InfofmalReqmredBehaworS
{- description ="Airin a car is moved.”

- air flow rate > 1.8 m3/s

« description = “Passenger can tolerate noise.’
*noise <40 dB

« description = “Passenger can tolerate noise
*noise <20 dB

{made by a fan.”

‘.
"
I

'

“Air inside of a car need to be cleanegy ™
HH InformaIRequlredBehaV|or1

}6—‘ Inf¢rmaIReqUIredBehaV|or2

H FormaIRequlredBehaVIor1

AirPurifier

ShapeBgundary

«angle < 30 degreé

}%—{ FormaIRequwedBehaworz

« description ="Airin a car is moved by a fan.”
- air flow rate > 2.5 m3/s

FormaIRéquired
Behavior3

FormalRequired
Behavior4

swidth <1000 mm;
+height < 300 mm!
+low_length < 600 mm

Fan
ShapeBoundary

*length< 200 mm
*height < 200 mm
*width< 700 mm

olved_in

Fig. 12. Defining informal/formal required behavior and geometry for an air purifier.

*noise <40 dB

« description = “Passenger can tolerate noise.”

}%—{ F0|‘%:

malRequiredBehavior2

-angle < 30 degreé
swidth <1000 mmi

FormalRéquired

J6_involved_ext_entity

+height < 300 mm!
+low_length < 600; mm

has_sub_al

has_geo
M2 - is_involve Entity IH’FNGeometry I
Behavior . == : A
N involved_ext_entity [] H ;
I RequiredBehavior I External Specified | |
o~ Entity Behavior ! :
InformalRequired FormalRequired O '
Behavior Behavior N
N PN NN Lo | At "
M1 . : E i E is_involved_ext_entity Air__in_car ;l - air vojume , 500 "?[‘3 } :

« description = “Air inside of a car need to be cleane . 7 S : 3 ;
{within 5 g’lin.” dH InfotmaIRequlredBehawon Car : :

- description = “Passengers cannot tolerate more) ' i : ! !
{than 40 dB noise” H Inf¢rmaIReqUIredBehaworZ] AirPurifer !
{- description = “Car provides electricity to air-purifier.” H Infol‘maIRequwedBehawors ;S geome:w

- description = “Air in a car is moved.” : ' : AirPurifier
{. air flow rate > 1.8 m3/s H| Foqr?alRequlfedBehawon ShapeBoundary

made by a fan.”

« description=
*noise<20dB

« description =“Airin a car is moved by a fan.”
- air flow rate > 2.5 m¥/s

“Passenger can tolerate noise }

Behavior3

FormalRequired
Behavior4

Fig. 13. Defining designed behaviors and forms of a fan.

geometry class (“AirPurifierShapeBoundary”) of the artifact.
External entities can be also defined from the informal required

behaviors.

The PM can define formal required behaviors from the in-
formal required behaviors. The PM can make two formal behav-

Fan
ShapeBoundary

*length<200 mm
+height < 200 mm
*width< 700 mm

iors like “FormalRequiredBehaviorl” and “FormalRequiredBe-
havior2” in Fig. 12. Each formal behavior has an attribute and
value. The PM can define formal required behaviors of sub-
assemblies considering those of the air purifier. The attribute
values are assigned by the PM based on domain expertise. For

120

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 9, NO. 1, JANUARY 2012

has_designed_beh

= is_involved_in n
M2 | Behavior ke Entity
Designed Required is_involve -
Behavior Behavior External Specified
~ == satisfy_informal_beh_required El‘ltlty Behavior
t 7 aw
4 FormalRequired InformalRequired . =
Behavior Behavior [Artifact
M1 '."\v [: is_involved_ / v."” . 1
{ - description = “Car provides electricity to ajr purifier.” H InfarmalRequired | **-*1"™Y H e .
BeHavior3 Car 1 4 Impeller_v1 |
W satisfy_informal_be| _requlr:bdi | :' "haéf_sub_ar!'
description = “Car provides electricity.” % — s Involysaext entity [
{. elec_force=12V EOLma!Ref)qu"eu = Motor has_syb artifact
-elec_current=15mA W ehavior is_involved. Design Library
- description = “Fan_v1 is rotated by a motor.™ | FormalRequired isifivolved g Fan_v1 m
« rotation speed> 2000 pPm “‘ Behavior6 has_designéd_Beh —
-torque > 15 Nm Uy has_degigngd_|
i aya [DC_Motor | [AC_Motor |
Y _Motor _Motor
- description = “Motor receives electricity” N
- elec_force=12V DesignedBehavior5
elec_current= 15 mA -. DCMotor_A || DCMotor B |

« description = “Motor rotates Fan_v1.”
« rotation_speed> 3000 rpm
- torque > 25 Nm

}e—{ DesignedBehavior6

Fig. 14. Reasoning example for interaction between M1 and MO layer.

elec_force =12V
elec_current = 15 mA
rotation_speed > 3000 rpm,
torque > 30 Nm

M2
- is_involved_in B A
Propertyof Behavior Entity StaticProperty
Behavior Ar ofEntity
= N has_material
Test Designed | has_designed beh | Specified
Behavior |} Behavior | has_test ben Entity
TestBehavior - e | = —
- as_result H e
Evaluation ; Artifact
criterion_of H has_geomet
Z) ! ; 4
M1 « description = “Fan makes alr-ﬂovW Design:ed Steel
- air flow rate > 2.5 m?/s E Behavior3 as_designed_beh :
; : Fan_v1
! { description = “Fan makes noise” E riterfon_of N Material !
; +noise< 13 dB i i :
Fan_vi_ 8 Desrl_giqed :
Test v Behayior4 Fan_v1
Evaluation has_redult | | H Geometry
- description ="Air flow test behavior’ L | TéstBehavior | ; + Diameter = 15 +/- 0.1 mm
- air flow rate . VN T + BladeNum = 25 +/- 3 ea
« description = “Noise test behavior” TestBéHaviorZ :
! *noise e :
: : N h; | : : : E
Mo |:TestEvaIuat|on1 Pa— I i1 i1 FanTest1 !
T {Resul = satisfactory] Air flow-rate = 3.| /s, Npise = 14 dB + Diameter = 15 mm
L . ‘ { i i ! 1 i ' FanPrototype1 * BladeNum = 28 ea
! . as_resul
‘TestEvaluation2 i FanTest2
1 {Result = satisfactory} (Alrflowwate‘ 3.2 m*/s, Noise = 13.5 dB} has test beh
N has_result [astesl e * Diameter = 15 mm
TestEvaluation3 FanTest3 FanPrototype2 « BladeNum = 24 ea

{Result = failure}

Fig. 15. Reasoning example for interaction between M1 and MO level.

example, “Fan” needs to make more air flow (“FormalRequired-
Behavior3”) than the air purifier (“FormalRequiredBehaviorl”)
because there will be loss of air flow when the fan is assem-
bled with other parts such as a fan scroll and air filter. The PM
also makes a component layout of the air purifier, and assigns

{Air flow-rate = 3.2 m%s, Noise = 17.1 dB}

an available space for a fan. The “FanShapeBoundary” geom-
etry in Fig. 12 is a shape boundary of the fan design.

2) Making Design Alternatives of Fan (by FD): A FD can
make many fan design alternatives satisfying the required be-
havior and forms given by a PM. Design alternatives may have

LEE et al.: A SEMANTIC PRODUCT MODELING FRAMEWORK AND ITS APPLICATION TO BEHAVIOR EVALUATION

% SPMM Editor.
File Edit M2:MetaModel Mi:Models MO:Individuals View
Model View List| Product Model | Comy € » | Model View

Help

121

Product model in OWL
FILE RELOAD

</owlClass>

SPMM

& [MiClasses
DesignedBehavior3

B Fan_v1_TestEvaluation
B DesignedBehaviord
B TestBehaviorl
B TestBehavior2
B Fan_vt
B Fan_v1_Geometry
B Fan_vi_Material

o

]

Designe
Behavi
a3
...

d =]

is_cyiefion_of s_desighed_beh

Fan_v1_

<owl Class rdf.ID="DesignedBehavior3">
<rdf.type rdf-resource="http:/ /v w3.0rg/2002/07 /owlitiClass™ />
<rdf.type

ExtemalEntity

=} Feature
="http://spmm. duct_meta_model/D

<rdfs:subClassOf>
<owl:Restriction>
<rdf:type rdf-resource="http://www.w3.01g/2002/07 JowltiClass” />
<rdftype =" hitp: /. iction” /5
<owkonProperty rdfresourc
<owlallValuesFrom rdf.reso
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>

p
=, Behavior
=&, RequiredBehavior
InformalRequiredBehavi

0_has._attribute” />

FormalRequiredBehavi
| Hair_flow_tate" />

DesignedBehavior
TestBehavior
=}, StaticPropertyofEntity

Verb
0Obj
< I

Fan_v
Fan_v1:individual2

Status:

Fig. 16. A screenshot of SPMM user interface.

specific design behaviors or forms that satisfy required behav-
iors and forms given by a PM. So, each design alternative is
defined as a specialization of the “Fan,” as shown in Fig. 13.
Fig. 13 shows the FD’s description about “Fan_v1” artifact that
has airfoil blades. The “Fan_v1” artifact has more specific de-
signed behaviors and forms than the “Fan” artifact. So, a spe-
cialization relationship can be defined between two artifacts at
Ml.

3) Selecting a Proper Motor Model (by MB): Let us as-
sume that two formal required behaviors are defined for a motor
design.

* FormalRequiredBehavior5

description: “A car provides electricity to a motor.”
attributes: elec_force = 12V, elec_current = 15 mA.

* FormalRequiredBehavior6

description: “A car provides electricity to a motor.”
attributes: rotation_speed > 2000 rpm, torque >
15 Nm.

The “FormalRequiredBehavior5” can be defined by a fan
designer after “Fan_v1” is designed. The “FormalRequiredBe-
havior5” is defined to satisfy the “InformalRequiredBehavior3.”

Then, a MB can define specific designed behaviors that sat-
isfy the two formal required behaviors. Fig. 14 shows two de-
signed behaviors defined by a MB (“DesignedBehavior5” and
“DesignedBehavior6”). If designed behaviors of a motor are de-
fined, a definition of the motor can be generated as explained in
Section V. The definition of a motor can be used to search a
motor design library. Motor models in the design library should
also have their definitions with their behaviors including spe-
cific attributes. Fig. 14 shows an example of inference result of
searching a motor design library.

4) Testing a Prototype and Evaluating Test Results (by FD):
After the MB selects a motor, the FD makes a prototype of the
fan design model and tests its behaviors to validate the fan de-
sign model. Fig. 15 shows an example of testing a fan proto-

Material =] Form <owl:Restriction>
E"féﬁa"‘j i © oot <rdftype rdf-resource="http://www.w3.0rg/2002/07 fowlHClass" />
Eal| _ = haterial — <rdltype rd-resource="htp://www.w3.010/2002/07 /owl#Restriction />
TestEval [_Citerion_of jas_designed_tehl Fan_y1 R Material <owl-onProperty rdf.resource="M0_has_attibute"" />
uation =64 ProoertvolBehavior M| 1 <owl:someValuesFrom rdf:resource="tair_flow_rate" />
L] | 3 </owlRestiiction>
:_resiits as desCbehayitt - </idfs:subClassOf>
= W MiRelationships ~ TestBeh has_gedmelty E] % M2Relationship < /owlClass>
is_criterion_of B aviorl Fan_v1_ &, M2Relationship Candidates <o Class rdfID="DesignedBehaviord">
= e s e is_res0R of as_testbehavior Geomelr 47 is_ciiterion_of <rdltype rdfresource="hitp: //uwwwy.w3.010/2002/07 /owlHiClass" /> El
has._designed_beh Y 47 specifies <rditpe
I has_designed_bel 44500 dresource="http: #/spram {_meta_model/D s
B has_test_behavior 717 satisty_required_behavior <rdlfs:subClassOf>
B has_test_behavior L TestBeh 47 is_sub_designed_behavior <owtRestiction>
@ ie_crteson_of avior <rdltype rdfresource="hitp: //www.w3.010/2002/07 /owltiClass" />
- L <rdltype rdtresource="hitp://www.w3.0r0/2002/07 /owl#Restriction" />
L] owtonProperty rdfresourc as_altribute" />
<ow:allValuesFrom rdfreso 3
File info </owl Restriction>
</rdfs:subClassOf>
v <rds: subClassOf>
<owl Restriction> =
& i] <rdftype rdresource="http: //ww.w3.01g/2002/07 /owitiClass™ />
— <rdtype rdi-resource="hitp://wiww.w3.0r0/2002/07 /owl#Restriction />
Al Individuals | Individuals of Fan_v1 <owkenProperty rdfresource="#M0_has_atiibute” />
ClassName <owl:someValuesFrom rdf:resource="#noise" />
E </owlRestiiction>
ClassDescription | Fan makes ai flow Fan_vl:individuald < /rdfs:subClassOf>

</owlClass>

<owl Class rdf.ID="TestBehavior1">
<rdf.type rdf-resource="http:/ /v w3.0rg/2002/07 /owlitiClass™ />
<rdftype

rdf-resource="http: //spmm. com/product_meta_model/TestBehavior" />

</owlClass>

- <owl:Ontology rdf:about="Ontology">

type. The “FanPrototypel” and “FanPrototype2” in the figure
are physical prototype fans. The former has two tested behavior
occurrences (“FanTest]l” and “FanTest2”), and the latter has a
tested behavior occurrence (‘“FanTest3”). The behavior occur-
rences measure air flow-rate and noise of the prototype fans.
Each tested behavior occurrence can be evaluated, and its eval-
uation result is recorded. Fig. 15 shows the behavior evalua-
tion results of the fan prototypes. The “FanPrototypel” item
at can be inferred as an instance of “Fan_v1” model because
its form-related attributes and behavior occurrences satisfy the
form and designed behaviors of “Fan_v1” artifact at M1. How-
ever, the “FanPrototype2” item at MO cannot be an instance of
“Fan_v1” model because its behavior occurrence does not sat-
isfy a designed behavior (“DesignedBehavior4”) at M1.

Fig. 16 shows the graphical user interface for the SPMM ed-
itor and OWL generator. The two tree-views on the right side
of the SPMM editor show SPMM classes and relationships at
the M2 level. The two tree-views on the left side of the SPMM
editor show the list of classes and relationships defined by users
at the M1 level. The graphical map in the center of the editor
is where users can build their product models graphically using
the provided M2 classes and relationships. The grid-view in the
bottom-left of the editor shows descriptions and attributes of the
MI class selected by the user. The bottom-middle section in the
editor includes multiple tabs, and each tab shows a list of MO
individuals of the selected M1 class, with their attributes and
values. The number of tabs can be increased as users create in-
dividuals for other M1 classes. The SPMM editor implements
an inheritance mechanism at the M1 level so that attributes of
a superclass are inherited by its subclasses. The attributes of an
M1 class are also used to create attributes of MO individuals.
The interface enables users to manage both product models at
M1 and their individuals at MO in one place.

The OWL generator is shown at the right side of Fig. 16. It
takes product model and individual information from the SPMM

122 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 9, NO. 1, JANUARY 2012

editor, and then creates an OWL file. The product model in-
formation in the OWL file can be shared or modified in other
applications.

VII. CONCLUSION

In this paper, a multilevel product modeling framework is
proposed. The framework has three levels of product informa-
tion for metamodels (M2), models (M1), and individuals (MO).
The semantic-based product metamodel (SPMM) is proposed
to include specific classes and relationships to define and model
product design and manufacturing. Classes such as “Behavior,”
“Artifact,” etc. are defined in OWL (M2 level), so that the se-
mantics of OWL can be exploited by designers and engineers.
This enables designers and engineers to check whether partic-
ular entities are behavior, artifact, or other classes in SPMM. It
is also to be noted that the axioms that define “Behavior,” “Ex-
ternalEntity,” and “Artifact” can be extended for specific needs,
thus supporting extensions to SPMM.

The proposed framework needs additional work and im-
plementation to be usable as a product modeling system. The
SPMM editor interface allows description of product models
using methods and terminology familiar to engineers, hiding
from them the underlying formal logic-based representation
of the product models. In addition, user interfaces for inte-
gration with applications such as design knowledge bases and
computer-aided design (CAD) systems could be implemented.
Then, SPMM can be a powerful mechanism for annotating
CAD models, so that the CAD models can be semantically en-
riched with information beyond geometry such as requirement,
function, and behavior.

In terms of information modeling scope, SPMM currently
focuses on product structure and behavior evaluation within a
product lifecycle. Additional information modeling issues need
to be addressed such as version control, product configuration,
assembly relationship, tolerance, and sustainability.

ACKNOWLEDGMENT

The authors would like to acknowledge the comments and
suggestions of the reviewers. They also would like to acknowl-
edge the NIST colleagues J. Lubell and P. Witherell in im-
proving the paper, but any residual mistakes remain ours.

REFERENCES

[1] R. D. Sriram and S. Szykman, “The NIST design repository project:
Project overview and implementation design,” National Institute of
Standards and Technology (NIST), Gaithersburg, MD, NIST Intera-
gency/Internal Rep. (NISTIR) 6926, 2002.

[2] S.Szykman, S.J. Fenves, W. Keirouz, and S. B. Shooter, “A foundation
for interoperability in next-generation product development systems,”
Comput.-Aided Design, vol. 33, pp. 549-559, 2001.

[3] V. Srinivasan, “An integration framework for product lifecycle man-
agement,” Comput.-Aided Design, vol. 43, no. 5, pp. 464-478, 2011.

[4] G. T. Nguyen, D. Rieu, and J. Escamilla, “An object model for en-
gineering design,” in Proc. Eur. Conf. Object-Oriented Programming,
ECOOP’92, 1992, vol. 615, LNCS, pp. 233-251.

[5] T. Gruber, “Toward principles for the design of ontologies used for
knowledge sharing,” Int. J. Human-Comput. Studies, vol. 43, pp.
907-928, 1995.

[6] C. Bock, X. F. Zha, H. W. Suh, and J. H. Lee, “Ontological product
modeling for collaborative design,” Adv. Eng. Inform., vol. 24, pp.
510-524, 2010.

[7] S. J. Fenves, S. Foufou, C. Bock, S. Rachuri, N. Bouillon, and R. D.
Sriram, “CPM 2: A revised core product model for representing design
information,” National Institute of Standards and Technology (NIST),
Gaithersburg, MD, NIST Interagency/Internal Rep. (NISTIR) 7185,
2005.

[8] J. Lee, H. Chae, C. H. Kim, and K. Kim, “Design of product ontology
architecture for collaborative enterprises,” Expert Syst. With Appl., vol.
36, pp. 2300-2309, 2008.

[9] Object Management Group, “Model-driven architecture,” 2007. [On-
line]. Available: http://www.omg.org/mda

[10] I. Niles and A. Pease, “Towards a standard upper ontology,” in Proc.
2nd Int. Conf. Formal Ontology Inform. Syst., FOIS’01, Ogunquit, ME,
2001, pp. 2-9.

[11] J. H. Lee and H. W. Suh, “Ontology-based multi-layered knowledge
framework for product lifecycle management,” Concurrent Eng. Res.
Appl., vol. 16, pp. 301-311, 2009.

[12] D. Leal, “ISO 15926 life cycle data for process plant: An overview,”
Oil and Gas Sci. Technol., vol. 60, pp. 629-638, 2005.

[13] D. Yang, M. Dong, and R. Miao, “Development of a product configura-
tion system with an ontology-based approach,” Comput.-Aided Design,
vol. 40, no. 8, pp. 863-878, 2008.

[14] R.J. Brachman and H. J. Levesque, Knowledge Representation and
Reasoning. New York: Elsevier, 2004, ch. 2.

[15] R.J. Brachman and H. J. Levesque, Knowledge Representation and
Reasoning. New York: Elsevier, 2004, ch. 9.

[16] D. L. McGuinness and F. V. Harmelen, 2004, “OWL web ontology
language overview W3C,” Recommendation, Feb., 10, 2004. [Online].
Available: http://www.w3.org/TR/owl-features/

[17] Object Management Group, “Unified modeling language: Infrastruc-
ture.” [Online]. Available: http://doc.omg.org/formal/2010-05-03 2010

[18] A. Taivalsaari, “On the Notion of Inheritance,” ACM Comput. Surveys,
vol. 28, pp. 438-479, 1996.

[19] D. Berardi, D. Calvanese, and G. De Giacomo, “Reasoning on UML
class diagrams,” Artif. Intell., vol. 168, no. 1, pp. 70-118, 2005.

[20] A. Weissman, S. K. Gupta, X. Fiorentini, S. Rachuri, and R. D. Sriram,
“Formal representation of product design specifications for validating
product designs,” National Institute of Standards and Technology
(NIST), Gaithersburg, MD, NIST Interagency/Internal Rep. (NISTIR)
7626, 2009.

[21] J. Hirtz, R. B. Stone, D. A. McAdams, S. Szykman, and K. L. Wood,
“A functional basis for engineering design: Reconciling and evolving
previous efforts,” Research in Engineering Design, vol. 13, pp. 65-82,
2002.

[22] Y. Kitamura, “A functional concept ontology and its application to au-
tomatic identification of functional structures,” Adv. Eng. Inform., vol.
16, no. 2, pp. 145-163, 2002.

[23] A. C. B. Garcia, J. Kunz, M. Ekstrom, and A. Kiviniemi, “Building
a project ontology with extreme collaboration and virtual design and
construction,” Adv. Eng. Inform., vol. 18, no. 2, pp. 71-83, 2004.

[24] M. Horridge and P. F. Patel-Schneide, “OWL 2 Web Ontology Lan-
guage Manchester Syntax,” W3C Working Group Note 27, Oct. 2009
[Online]. Available: http://www.w3.org/TR/owl2-manchester-syntax/

[25] J. H. Lee and H. W. Suh, “OWL-based product ontology (POWL) ar-
chitecture and representation for sharing product knowledge on a web,”
in Proc. ASME 2007 Int. Design Eng. Tech. Conf. Comput. Inform. Eng.
Conf. (IDETC/CIE), Las Vegas, NV, 2007, pp. 853-861.

[26] V. C. Liang, C. Bock, and X. F. Zha, “An Ontological Modeling Plat-
form National Institute of Standards and Technology (NIST), Gaithers-
burg, MD, NIST Interagency/Internal Rep. (NISTIR) 7509, 2008.

[27] J. Clark, 1999, “XSL Transformations (XSLT),” W3C, Recommen-
dation, Nov. 16, 1999, ver. 1.0. [Online]. Available: http:/www.w3.
org/TR/xslt

[28] J. Gosling, B. Joy, G. Steele, and G. Bracha, The Java Language Spec-
ification, 3rd ed. Reading, MA: Addison-Wesley, 2005.

Jae Hyun Lee received the M.S. and Ph.D. degrees
in industrial engineering from the Korea Advanced
Institute of Science and Technology (KAIST), Dae-
jeon, in 2001 and 2008, respectively.

He has been an Associate Researcher since 2008
in the Systems Integration Division, Engineering
Laboratory, National Institute of Standards and Tech-
nology (NIST), Gaithersburg, MD. He has worked
on developing information models for sustainable
product design, manufacturing, and environmental
declarations.

LEE et al.: A SEMANTIC PRODUCT MODELING FRAMEWORK AND ITS APPLICATION TO BEHAVIOR EVALUATION 123

Steven J. Fenves received the B.S., M.S., and
Ph.D. degrees from the University of Illinoisat
Urbana—Champaign, Urbana.

He taught at the University of Illinois from 1958 to
1971 and at Carnegie Mellon University, Pittsburgh,
PA, from 1972 to 1998.

He is University Professor Emeritus of Civil and
Environmental Engineering at Carnegie Mellon Uni-
versity. He is the author of six books and over 400
papers. His research and teaching dealt with design
data modeling, design standards, knowledge-based
systems, and structural analysis. He was a Guest Researcher at the National
Institute of Standards and Technology (NIST), Gaithersburg, MD, from 1999
to 2009.

Dr. Fenves has coauthored with NIST co-workers and have won the Best
Paper Award and recognitions as one of the most influential papers and first
in citations.

Conrad Bock received the B.S. and M.S. degrees in
physics and computer science from Stanford Univer-
sity, Stanford, CA.

He is a Computer Scientist at the Engineering
Laboratory, National Institute of Standards and
Technology (NIST), Gaithersburg, MD, specializing
in formal product and process modeling. He was the
founding editor for the Activity and Action models
in the Unified Modeling Language and Systems
Modeling Language at the Object Management
Group, as well as a primary contributor to interaction
modeling in the Business Process Model and Notation.

Hyo-Won Suh received the B.S. degree in mechan-
ical engineering from Yonsei University, Seoul,
Korea, in 1981, the M.S. degree in mechanical
engineering from the Korea Institute of Science and
Technology (KAIST), Seoul, in 1983, and the Ph.D.
degree in industrial engineering from West Virginia
University, Morgantown, in 1991.

Currently, he is a Professor with the Department of
Industrial Engineering, KAIST, Daeajeon, Korea. His
research interests are product lifecycle management
(PLM), ontology application to engineering and he
has published several papers in these areas.

Sudarsan Rachuri received the M.S. and Ph.D. de-
grees from the Indian Institute of Science, Bangalore.

He is a Computer Scientist in the Systems Inte-
gration Division, Engineering Laboratory, National
Institute of Standards and Technology (NIST),
Gaithersburg, MD. He is the regional editor (North
America) for the International Journal of Product
Development, and Associate Editor for the Interna-
tional Journal of Product Lifecycle Management.
His primary objectives at NIST are to develop and
transfer knowledge to industry about standards and
information models for sustainable manufacturing, green products, assembly
representation, system level analysis, and tolerance representation.

Dr. Rachuri is a member of ASME Y14.5.1.

Xenia Fiorentini received the M.Sc. degree in
industrial engineering from the Systems Engineering
College, Politecnico di Milano, Milan, Italy, and the
Diploma degree from the Alta Scuola Politecnica,
Milan, a school for the management of complex
innovation projects.

She is one of the founders of Engisis, a company
that supports the adoption of international standards
for product data exchange and business collab-
oration. She serves as Consultant in the areas of
integrated logistic support, systems interoperability,
and standards application. Before founding Engisis, she worked for four years
as a Guest Researcher at the National Institute of Standards and Technology
(NIST), Gaithersburg,b MD.

Ram D. Sriram (M’85-SM’02) received the
B.Tech. degree from the Indian Institute of Tech-
nology, Madras, and the M.S. and Ph.D. degrees
from Carnegie Mellon University, Pittsburgh, PA.

He is currently the Chief of the Software and
Systems Division, Information Technology Labora-
tory, National Institute of Standards and Technology,
Gaithersburg, MD. Before joining the Software
and Systems Division, he was the leader of the
Design and Process Group, Manufacturing Systems
Integration Division, Manufacturing Engineering
Laboratory. Prior to joining NIST, he was on the Engineering Faculty of the
Massachusetts Institute of Technology (1986-1994). He has coauthored or
authored nearly 250 publications, including several books.

	A Semantic Product Modeling Framework and ItsApplication to Behavior Evaluation
	I. INTRODUCTION
	II. PREVIOUS RESEARCH
	III. THE MULTILEVEL PRODUCT INFORMATIONMODELING FRAMEWORK
	IV. THE SEMANTIC-BASED PRODUCT METAMODEL: SPMM
	V. DEVELOPING PRODUCT MODELS ANDINSTANCES USING SPMM
	VI. ILLUSTRATIVE CASE AND PROTOTYPE OF SPMM
	VII. CONCLUSION
	ACKNOWLEDGMENT
	REFERENCES

