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ABSTRACT 
Society increasingly depends on large distributed systems, 

such as the Internet and Web-based service-oriented 
architectures deployed over the Internet. Such systems 
constantly evolve as new software components are injected to 
provide increased functionality, better performance and 
enhanced security. Unfortunately, designers lack effective 
methods to predict how new components might influence 
macroscopic behavior. Lacking effective methods, designers 
rely on engineering techniques, such as: analysis of critical 
algorithms at small scale and under limiting assumptions; 
factor-at-a-time simulations conducted at modest scale; and 
empirical measurements in small test beds. Such engineering 
techniques enable designers to characterize selected properties 
of new components but reveal little about likely dynamics at 
global scale. 

In this paper, we outline an approach that can be used to 
predict macroscopic dynamics when new components are 
deployed in a large distributed system. Our approach combines 
two main methods: scale reduction and multidimensional data 
analysis techniques. Combining these methods, we can search a 
wide parameter space to identify factors likely to drive global 
system response and we can predict the resulting macroscopic 
dynamics of key system behaviors. 

We demonstrate our approach in the context of the 
Internet, where researchers, motivated by a desire to increase 
user performance, have proposed new algorithms to replace the 
standard congestion control mechanism. Previously, the 
proposed algorithms were studied in three ways: using 
analytical models of single data flows, using empirical 
measurements in test beds where a few data flows compete for 
bandwidth, and using simulations at modest scale with a few 
sequentially varied parameters. In contrast, by applying our 
approach, we simulated configurations covering four-tier 
network topologies, spanning continental and global distances, 
comprising routers operating at state-of-the-art speeds and 

transporting more than 105 simultaneous data flows with 
varying traffic patterns and temporary spatiotemporal 
congestion. Our findings identify the main factors influencing 
macroscopic dynamics of Internet congestion control, and 
define the specific combination of factors that must hold for 
users to realize improved performance. We also uncover 
potential for one proposed algorithm to cause widespread 
performance degradation. Previous engineering studies of the 
proposed congestion control algorithms were unable to reveal 
such essential information. 

 
1 INTRODUCTION 

Every month millions of users update their computers with 
new software components, designed to add new functionality 
or to address security flaws. Could one of these updates lead to 
widespread performance degradation? If so, could such 
performance degradation be predicted a priori? As we show in 
this paper, loading new congestion control algorithms into user 
computers could potentially degrade Internet performance, and, 
using methods we outline here, it should be possible to predict 
such degradations prior to their occurrence. 

The focus of our investigation concerns network 
congestion control procedures embedded in the transmission 
control protocol (TCP), which is used by all computers on the 
Internet. TCP congestion control procedures increase and 
decrease transfer rate on data flows, based on feedback 
measurements, such as losses and delays. The rate adjustments 
made on individual data flows influence the measurements seen 
by other flows, which adjust their own rates, and so on, leading 
to complex interactions that drive a global pattern of network 
congestion. To effectively understand and predict macroscopic 
behavior in such systems requires one to model large, diverse, 
configurations, covering many users, data flows, network 
routes and traffic types. Heretofore, simulating such systems 
has proven infeasible. By combing scale-reduction methods 
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with multidimensional data analysis techniques, we 
successfully simulated a large, diverse network, allowing us to 
understand key properties influencing the operation of Internet 
congestion control procedures. We were also able to compare 
and contrast various proposed replacements for standard TCP, 
and to identify a cautionary note with regard to widespread 
deployment of one of the proposed replacements. The 
information in this paper is abstracted from our study of 
Internet congestion control algorithms [1]. 

The paper is organized in six main sections. In Sec. 2, we 
briefly introduce the domain of Internet congestion control. The 
purpose of this short introduction is to provide sufficient 
grounding to follow Sec. 3, where we use some domain 
concepts to outline the main scale-reduction methods and 
multidimensional data analysis techniques we adopted for our 
study. In Sec. 4, we explain several replacements for standard 
TCP. These replacements have been proposed by various 
researchers in an effort to provide users with higher 
transmission rates as the speed of the Internet increases.  We 
close Sec. 4 with a synopsis of previous methods used to 
compare and evaluate proposed TCP replacements. In Sec. 5 
we describe MesoNet, a 20-parameter model for simulating 
Internet congestion control procedures. Sec. 5 also summarizes 
a MesoNet sensitivity analysis, revealing significant behavioral 
dimensions and identifying influential parameters that drive 
those behaviors.  In Sec. 6, we present key results from five 
simulation experiments we conducted to compare proposed 
TCP replacements. In Sec. 7 we discuss the implications of our 
experiment results. We conclude in Sec. 8. 
 
2 INTERNET CONGESTION CONTROL 

Computers attached to the Internet rely on the transmission 
control protocol (TCP) to send each flow of related data 
reliably as a sequence of segments. For example, a TCP flow 
may contain the data objects to be displayed by a Web browser 
when a user clicks on a Web link. In addition to ensuring 
reliability and sequencing of data segments on a flow, TCP also 
contains congestion control procedures that adapt the rate of 
data transfer to the conditions experienced on the flow. TCP 
reduces the transmission rate when congestion is detected, and 
increases rate when congestion is absent.  

A typical TCP flow evolves through three phases: 
connection, transfer and close. For purposes of congestion 
control, we limit our discussion to the connection and transfer 
phases. Fig. 1 gives a high-level view of these two phases. 
During the connection phase, a source attempts to establish 
contact with an intended receiver; inability to establish contact 
results in connection failure, which prevents data from flowing 
between source and receiver, so connection establishment 
provides one form of congestion control implemented by TCP. 
During the transfer phase, a source sends data segments on the 
flow until the required number has been received successfully. 
A receiver signals receipt of data segments by sending 
acknowledgments (ACKs) to the source. By sending duplicate 
ACKs, a receiver may also indicate failure to receive specific 

segments, which the source must then retransmit. Further, a 
sender may fail to receive ACKs, which requires the sender to 
raise a timeout and to retransmit unacknowledged data.  

 
 
Figure 1: Main phases and congestion control procedures in the 
life of a TCP flow 
 

During the transfer phase, congestion control procedures 
determine when a source may send data segments to a receiver. 
At any given time, a source may send a prescribed number of 
segments (known as the congestion window, or cwnd) prior to 
receiving an ACK. Thus, the size of the cwnd controls the rate 
of transmission on a flow. Using TCP slow start procedures, a 
source increases a flow’s cwnd exponentially from a small 
initial value until either a loss is detected or until the cwnd 
reaches a threshold, known as the initial slow start threshold, or 
sst. If the sst is reached, the source enters congestion 
avoidance, subsequently increasing the cwnd more slowly, at a 
linear rate. If a segment is lost, then the cwnd is reduced in half 
and then increased linearly until another segment is lost, after 
which the cwnd is reduced in half again, and so on. This 
algorithm is known as additive increase, multiplicative decrease 
(AIMD) [14]. The resulting saw-tooth pattern (illustrated in 
Fig. 2) in the cwnd induces a corresponding variation in the 
rate of transmission on a flow.  
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Figure 2: Change in cwnd (y axis in segments) vs. Time (x axis 
in 0.1 s units) for two TCP flows sharing a bottleneck path with 
162 ms round-trip time (rtt) – total average cwnd reported at 
top and average cwnd for the red and blue flows reported at 
bottom 
 

Fig. 2 shows the temporal evolution of cwnd for two 
competing TCP flows, each sourced from a separate computer, 
transiting a shared bottleneck path in a network. The path is a 



 3 Copyright © 2011 by ASME 

bottleneck because it can support only 21 segments per ms 
(about 252 Mbps – Megabits per second – assuming 1500 byte 
segments, which we do throughput the paper), while each 
computer is capable of transmitting 80 segments per ms (about 
960 Mbps). The round-trip time (rtt) on the bottleneck path is 
162 ms, so the path can hold 3402 segments, while 680 
additional segments can be held in buffers contained within 
routers on the path. Thus, the total number of outstanding 
segments can be 4082, after which segments are lost. TCP 
congestion avoidance procedures are designed so that flows 
sharing a bottleneck path use local decision procedures to 
adjust transmission rates so that each flow will achieve an 
equal share of available path capacity. Notice in Fig. 2 that the 
blue and red flows are moving toward such equilibrium. 

Fig. 2 shows that one (red) flow, operating on the path 
before time 2500, has average cwnd of about 2745, which 
implies a throughput of only 80 % of the path capacity. When a 
second flow shares the path, aggregate throughput increases to 
89 %. Lost capacity stems from the fact that TCP congestion 
avoidance procedures reduce the cwnd in half following a loss 
and then increase transmission rate linearly until the next loss is 
generated, and so on.  

Lost throughput on a single TCP flow can become quite 
large as the product of the path capacity and round-trip time 
increases. For example, researchers made empirical measures 
[15] on a 1 Gbps (Gigabits per second) path between Chicago 
and Dublin, finding that the average throughput was only 218 
Mbps, about 20 % of capacity. This finding, that average 
throughput on TCP flows is likely to decrease significantly as 
the capacity of the Internet backbone increases, motivated 
researchers to propose replacements for the standard TCP 
congestion avoidance procedures, so that users might 
experience increased throughput as Internet capacity increases. 
In this paper, we compare standard TCP with six proposed TCP 
replacements, as listed in Table 1. We explain the proposed 
TCP replacements in Sec. 4. 
 
Table 1: Identifiers, acronyms and names of congestion 
avoidance algorithms compared in this paper 

Identifier Acronym Name of Algorithm

1 BIC Binary Increase Congestion
Control

2 CTCP Compound TCP

3 FAST Fast Active Queue 
Management Scalable TCP 

4 HSTCP High Speed TCP
5 HTCP Hamilton TCP
6 STCP Scalable TCP

7 TCP Transmission Control 
Protocol

 
 

An entire Internet of individually adapting TCP flows 
makes a complex system, where individual flows adapt their 
transmission rate based on perceived congestion, which 
changes the pattern of congestion, which causes flows to 
readapt their transmission rates, and so on. This is why serious 
studies of Internet congestion control procedures must consider 
the macroscopic dynamics emerging from interactions among a 
large number of varying flows transiting across a large 
network. 

Predicting macroscopic behavior in a large network 
requires mathematical models exhibiting a substantial number 
of input parameters and output variables. Such models can be 
considered abstractly in functional form, as shown in Fig. 3, 
where a set of parameters (e.g., x1…xp), each assigned a value 
from within a range (e.g., 1…l), is input to a function (e.g., f) 
to yield a set of response variables (e.g., y1…yz). Varying the 
values assigned to each parameter results in different response 
values, which may be analyzed and plotted. The p parameters 
and associated range (1…l) of valid input values compose a 
model’s stimulus state-space, while the z output variables 
compose a model’s response state-space. 

 
 
 
 
 

 
 

Figure 3:  Functional model of a large network 
 

To be more concrete, in Table 2 we introduce the 20 input 
parameters for a network model called MesoNet [33]. We 
describe MesoNet parameters more fully in Sec. 5. As shown in 
Table 2, MesoNet parameters can be classified into five 
categories: network configuration, user behavior, sources and 
receivers, protocols, and simulation control and measurement. 
The four network configuration parameters define a topology 
(X4) of network routers and communication links, spanning a 
geography that defines propagation delay (X2) for segments 
flowing over network links. The network routers transmit 
segments at a specific rate (X1). When awaiting transmission, 
segments may be queued in buffers of specific size (X3). 

Attached to the topology are some number (X12) of 
sources and receivers, which can be distributed with different 
densities (X13 and X14) throughout the topology. Sources 
inject segments into the network at a specified maximum rate 
(X11). The behavior of sources is controlled by users who 
transfer Web objects of specific size (X5), while occasionally 
transferring files of larger size (X6). Between transfers, users 
think for some period of time (X7). During transfers, users may 
exhibit limited patience (X8), aborting transfers that take too 
long or progress too slowly. During specified time periods (X9) 
the size of user file transfers can be increased to create 
localized spatiotemporal congestion within a topology. In 
addition, specific long-lived transfers (X10) can be initiated. 

y1, …, yz = f(x1|[1,…,l] …, xp|[1,…,l])

Response State‐Space Stimulus State‐Space
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Long-lived flows entail users transferring as much information 
as possible during a specific simulation. 

Three protocol parameters influence MesoNet’s congestion 
control procedures. One parameter (X16) sets the initial cwnd, 
while another (X17) sets the initial sst. The remaining 
parameter (X15) gives the probability that a source uses any of 
the congestion avoidance algorithms identified in Table 1. 

The remaining MesoNet parameters control selected 
aspects of simulation and measurement, including how long a 
simulation executes (X19) and the probability and duration 
(X20) with which sources think prior to making an initial file 
transfer. The remaing parameter defines the interval (X18) at 
which MesoNet output variables are sampled. 

While MesoNet can report hundreds of output variables, 
here we introduce a sample subset1 in two categories: (1) 16 
responses (Table 3) characterizing macroscopic network 
behavior and (2) six responses (Table 4) characterizing 
throughput of various flow classes. We arbitrarily label the 
responses y1 through y22, which we use below in Sec. 3, when 
discussing our method to reduce the response state-space. 

The 16 macroscopic responses measure the temporal 
evolution of various network wide properties, such as number 
sources transmitting (y1), data segments entering (y3) and 
leaving (y4) the network, connection failures (y9), average 
fraction of segments retansmitting (y10), average cwnd (y11) 

                                                           
1 Elsewhere in the paper we introduce other response subsets with 

different arbitrarily assigned labels, beginning from y1 for each subset. 

and average rtt (y15). The remaining six responses report the 
average number of segments per second on flows transiting 
between pairs of routers of various speeds: D-class (very fast), 
F-class (fast) and N-class (typical). In general, DD flows, 
transiting two very fast routers, should achieve highest 
throughput and NN flows, transiting two typical speed routers, 
should achieve lowest throughput. Throughput on other flow 
classes (i.e., DF, DN, FF and FN) should fall between the 
extremes of the DD and NN flows. 

 
Table 3: Sample Macroscopic Response Variables 

Response Definition
y1 Number of sources transmitting
y2 Proportion transmitting [y1 / all sources]
y3 Number segments entering network
y4 Number of segments leaving network
y5 Loss Rate [y4/ (y3 + y4)]
y6 Flows completing per interval
y7 Flow-completion rate [y6/(y6+y1)]
y8 Connection failures per interval
y9 Connection-failure rate [y8/(y8+y1)]
y10 Retransmission rate
y11 Congestion window (cwnd)
y12 cwnd increases per interval
y13 Duplicate ACKs per interval
y14 Timeouts per interval
y15 Round-trip time (rtt)
y16 Queuing delay

 
 

Table 4: Sample Throughput Response Variables 

Response Definition
y17 Average Segments/Second on DD flows
y18 Average Segments/Second on DF flows
y19 Average Segments/Second on DN flows
y20 Average Segments/Second on FF flows
y21 Average Segments/Second on FN flows
y22 Average Segments/Second on NN flows

 
 
3 METHODS 

We adopt rigorous methods in two-main classes: scale 
reduction and multidimensional data analysis. Scale reduction 
methods guide us in limiting the number of parameter 
combinations that must be simulated, which can reduce 
significantly the time and expense required to conduct 
experiments. More importantly, our methods for reducing 
parameter combinations ensure that we vary those parameters 
that most significantly influence model behavior, allowing us to 

Table 2: MesoNet Parameters 

Category Identifier Name

Network
Configuration

X1 Network Speed
X2 Propagation Delay
X3 Buffer Provisioning
X4 Topology

User
Behavior

X5 Web Object Size for Browsing
X6 Proportion & Size of Larger Files
X7 Think Time
X8 Patience
X9 Selected Spatiotemporal Congestion

X10 Long-lived Flows

Sources &
Receivers

X11 Source & Receiver Interface Speeds

X12 Number of Sources & Receivers

X13 Distribution of Sources
X14 Distribution of Receivers

Protocols
X15 Congestion Control Procedures
X16 Initial Congestion Window
X17 Initial Slow Start Threshold

Simulation 
Control & 
Measurement

X18 Measurement Interval Size
X19 Simulation Duration
X20 Startup Pattern
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compare candidate algorithms under the most informative 
conditions. We also adopt scale reduction methods to limit the 
number of output variables we examine, while identifying 
essential system behaviors. Experimenters that use ad hoc 
selection techniques when choosing a subset of outputs 
variables may omit responses that characterize important model 
behaviors. Ad hoc selection methods may also overweight 
particular model behaviors, creating a skewed view of system 
dynamics. 

Multidimensional data analysis methods enable us to 
identify pervasive patterns of system behavior, while also 
helping to find underlying causes. In many cases, the 
multidimensional analysis techniques we employ leverage key 
characteristics of the scale reduction methods we use. When 
combined together, our rigorous methods for scale reduction 
and multidimensional data analysis yield powerful insights into 
the behavior of large models. 
 
3.1 Scale Reduction 

For large distributed systems, mathematical models, such 
as the one shown in Fig. 3, present two difficult challenges. 
First, the stimulus state-space can take on a large size (e.g., l p), 
which can be infeasible to search. Second, the response state-
space may be too large to examine effectively, or the response 
state-space may include parameters that redundantly represent 
similar behaviors, which will overweight the significance of 
those behaviors in subsequent analyses. To address these 
challenges, we adopt methods aimed at reducing both the 
stimulus state-space and the response state-space. To provide a 
realistic, concrete example, we consider modeling a 
communication network for purposes of comparing various 
congestion control procedures, as introduced above in Sec. 2. 
We begin by describing methods to reduce the stimulus state-
space of a model. Then we discuss reducing the response state-
space. 

3.1.a Stimulus State-Space Reduction. Detailed 
simulation models for communication networks based on TCP 
and the Internet protocol (IP), or so-called TCP/IP networks 
[2], can require an experimenter to specify numerous 
parameters. Hundreds or thousands of parameters might be 
necessary, depending on the particulars of the simulator [e.g., 
3-6] and the size of the simulated network. If we assume such a 
model requires us to specify 103 parameters and that each 
parameter can be specified by a 32-bit integer (i.e., has 232 
possible levels), then, as shown in Fig. 4, the resulting stimulus 
state-space would encompass about 109633 parameter 
combinations, compared to 1080 estimated atoms in the visible 
universe. Clearly, this stimulus state-space is impossible to 
search fully given any present day computational capability, or 
even any foreseen computational capability. For practical 
experiments, we must somehow reduce the model to a lower 
dimensional stimulus state-space. We adopted a combination of 
techniques, as illustrated in Fig. 4. The techniques include: 
parameter reduction, level reduction and orthogonal fractional 
factorial (OFF) experiment design. 

Parameter Reduction. One technique we adopt is to reduce 
the number of parameters (p) needed to model a network. This 
involves two main activities: (1) discarding parameters not 
germane to the focus of a particular study and (2) grouping 
retained parameters that can be discerned to represent aspects 
of the same model attribute. Conducting these activities 
requires significant domain expertise, and may also entail 
substantial trial and error. For the example discussed in this 
paper, we were able to construct MesoNet by first identifying 
56 parameters germane to our study and then finding that 36 of 
those parameters could be grouped together with other 
parameters. See our full study for details [1]. The resulting 
model reduced our stimulus state-space substantially to about 
10192, a number of parameter combinations that is still larger 
than atoms in the visible universe and, thus, still infeasible to 
search completely with modern computers. 

 

Use experiment design theory to reduce
parameter combinations  to 256

Use sensitivity analysis
to identity six most
significant parameters

(232)1000
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220‐12

Discard parameters not germane to study – reduce by 944 parameters

O(109633) [ 1080 = atoms in visible universe]

(232)56 O(10539)

(232)20 O(10192)
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(OFF) Experiment
Design 26‐1 32
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Use experiment design theory again  to reduce
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Sensitivity
Analysis
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Experiment
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Figure 4:  A sequence of techniques applied to reduce the 
stimulus state-space of a network model 
 

Level Reduction. To further reduce the search space, we 
adopt 2-level experiment designs [7], where each parameter is 
assigned only two of its possible values, providing an 
immediate reduction in the search space to 2p parameter 
combinations. Restricting parameters to only two levels has 
obvious limitations: only a small number of parameter values 
are explored and extrapolating from the results assumes a 
model behaves monotonically in the range between chosen 
levels. On the other hand, 2-level designs provide some 
advantages [7]: (1) requiring few runs per parameter, (2) 
facilitating interpretation of response data, (3) identifying 
promising directions for future experiments (which may be 
augmented with thorough local explorations), (4) fitting 
naturally into a sequential strategy, which supports the 
scientific method and (5) forming the basis for further 
reduction in parameter combinations through use of fractional 
factorial designs. 

While 2-level designs reduce the number of parameter 
combinations to simulate, a full search of 2p parameter 
combinations may still be infeasible. For example, a full 
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factorial experiment design with MesoNet (p = 20) would 
require (220 =) 1,048,576 simulations. Assuming that an 
average MesoNet simulation requires 28 processor hours, and 
assuming that 48 processors are available, a full search of 
parameter combinations would take (220 simulations x 28 
processor hours/simulation over 48 processors =) about 
611,670 hours, which is around 70 years. Adding processors 
could reduce the latency, e.g., to 3.4 years for 1000 processors 
or to 4 months for 10,000 processors, but the expense would 
remain constant, e.g., just under $3M assuming processors cost 
$0.10/hour. Thus the expense of a full search would prove 
infeasible for most researchers, which means the number of 
parameter combinations must be reduced further to fit within 
time and budget constraints. 

Orthogonal Fractional Factorial (OFF) Experiment 
Design. Reducing the time and cost of an experiment requires 
adopting a fractional factorial design [7], which simulates only 
a 2p-r subset of parameter combinations. While many 
experimenters adopt ad hoc techniques, such as factor-at-a-time 
(FAT) design [8], to select subsets of parameter combinations, 
orthogonal fractional factorial (OFF) theory [7] provides a 
principled approach to create designs, where the choice of 2p-r 

parameter combinations is made to achieve balance and 
orthogonality. 

In constructing an OFF design, an experimenter must 
ensure exploration of a sufficient number of parameter 
combinations to prevent confusion about the specific 
parameters responsible for variations in model responses. As a 
rule of thumb, experimenters should strive for at least a 
“Resolution IV” [7] design. Resolution IV designs ensure no 
confusion about effects2 attributable to individual parameters 
and also prevent confusion about whether effects are caused by 
individual parameters or by interactions among parameter 
pairs. Further, Resolution IV designs specify precisely which 
parameter pairs may be confused with which other parameter 
pairs. Typically, confusion involving specific parameter pairs 
can be resolved by a domain expert. A Resolution IV design 
must provide a sufficient number of simulations (n) to estimate 
a leading constant, each parameter (p) and each pair of 
parameters (p choose 2), or 
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pn .                                      (1) 

For example, MesoNet (p = 20) requires at least 211 (n = 1 + 
20 + 190) simulations to construct a Resolution IV design. For 
a 2-level design, choose the next higher power of 2 above n, 
i.e., 256 runs, which identifies the need for a 220-12 design. Box, 
Hunter and Hunter [7] give an algorithm for choosing specific 
combinations of parameters for various 2-level designs, where 
the levels are encoded as a -1 and a +1. The resulting 
experiment design exhibits balance, i.e., each parameter has 

                                                           
2 In a 2-level experiment, an effect is the mean model response when a 
parameter is set to one level minus the mean response when the parameter is set 
to the other level. 

128 -1 levels and 128 +1 levels, and orthogonality, i.e., each 
pair of parameters has 64 settings at each of (-1, -1), (-1, +1), 
(+1, -1) and (+1, +1). Balance minimizes variance in estimated 
effects. 

Searching the MesoNet stimulus state-space with only 256 
parameter combinations requires (256 runs x 28 processor 
hours per run/ 48 processors =) just over 149 hours, which can 
be completed in one week instead of the 70 years required for a 
full search of parameter combinations. Further, the fixed 
computational cost will be reduced from nearly $3M to just 
under $725. And, as we discuss below (Sec. 5), using these 256 
simulations to conduct a sensitivity analysis allowed us to 
identify six key parameters that influence MesoNet behavior, 
which implies that subsequent experiments would require 
simulating only 64 parameter combinations for each congestion 
control algorithm compared. In fact, applying OFF experiment 
design a second time, we could reduce the number of parameter 
combinations further, for example to (26-1 =) 32. Next, we 
consider methods to reduce the response state-space of a 
model. 

3.1.b Response State-Space Reduction. Typical network 
simulation models [e.g., 3-6] can measure system response 
through hundreds to thousands of outputs, which might 
represent aspects of fewer significant underlying model 
behaviors. Usually, experimenters select a subset of model 
outputs to analyze because considering all available responses 
proves too time consuming or computationally infeasible. 
When choosing a subset of simulation outputs, experimenters 
using ad hoc selection techniques may omit responses that 
characterize important model behaviors. Further, experimenters 
may select outputs in a fashion that overemphasizes particular 
behaviors. Overweighting or underweighting significant model 
behaviors can yield invalid conclusions, thus some method is 
required to identify precisely the model outputs that correspond 
to each significant behavior. 

Fodor [9] identifies principal components analysis (PCA) 
as the best linear dimension-reduction technique in terms of 
mean-square error, which is a typical technique to quantify 
differences between values implied by an estimator and the true 
values of the quantity being estimated. PCA transforms a set of 
possibly correlated variables into a smaller set of uncorrelated 
variables called principal components (PCs). While PCA might 
be the best linear-dimension reduction technique, some 
difficulties arise in application. Because PCs are uncorrelated 
variables created from a set of possibly correlated variables, 
PCA guarantees no obvious domain interpretation for even the 
top 2 or 3 PCs. Even when a reasonable domain interpretation 
is possible, PCs may take both positive and negative values for 
which experimenters cannot determine any obvious 
interpretation, even after establishing a meaning for a PC itself. 
While one can avoid using the PCs by substituting response 
variables in their place, selecting specific response variables to 
use depends upon heuristics for which there exist no definitive 
criteria [11]. Different heuristics can lead to different sets of 
response variables. To overcome these limitations, we 
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developed Correlation Analysis and Clustering (CAC), an 
alternate approach to selecting response variables. 

CAC begins with a preliminary step: computing correlation 
coefficients (r) for each pair of responses, and summarizing the 
results in a matrix, which gives pair-wise scatter plots in cells 
above and to the right of the diagonal and corresponding 
correlation coefficients (scaled x 100) below and to the left of 
the diagonal.  Fig. 5, for example, shows 231 pair-wise scatter 
plots encompassing 22 responses (recall Tables 3 and 4) 
measured under 64 parameter combinations. We color the 
scaled correlations: above 80 red, below 30 green and 
intermediate values blue. We order the matrix by decreasing 
value of mean correlation for each response.  For example, 
consider the gray cell labeled 13 (response y13) in the middle 
of Fig. 5. The column of cells moving upward gives scatter 
plots for y13 and each of the 11 responses higher on the 
diagonal (i.e., moving up from y9 to y7 in the top left corner). 
The row moving leftward gives the corresponding correlation 
coefficients. The row of cells moving rightward from 13 gives 
scatter plots for y13 and each of the 10 responses lower on the 
diagonal (i.e., moving down from y11 to y6 in the lower  right 

corner). The column moving downward gives the 
corresponding correlation coefficients. 

Given pair-wise correlations, an experimenter must decide 
which pairs to include in further analyses and which pairs to 
discard. To help with this decision, we plot a frequency 
distribution (Fig. 6) of the absolute values, |r|, of correlation 
coefficients for all response pairs. We use the frequency plot to 
select a threshold for correlations to consider further. Here, we 
chose |r| > 0.65 because the histogram shows a notable change 
in pattern above that value, appearing as a separate (sub) 
distribution of 42 pair-wise correlations centered on a different 
mode. 

Next, we construct an index-index plot, where both the x 
and y axes indicate the index of corresponding responses (1 – 
22). We plot a blue dot for each of the 42 yi,j pairs where |r| > 
0.65. We identify the response that is correlated with the most 
other responses and create a self-contained subset from those 
responses. We then repeat the process for those responses 
remaining outside the subset, forming a second self-contained 
subset. We continue repeating the process until all responses 
have been allocated to a subset. Subsequently, we reorder the 

Figure 5: Pair-wise correlation matrix: scatter plots above diagonal, correlation coefficient (r x 100) below diagonal, response 
number on the diagonal is ordered by decreasing value of mean correlation. 

Red 80 > |r|x100 < 100     Blue 30 > |r|x100 < 80    Green |r|x100 < 30 
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axes of the index plot so that response identifiers are arrayed in 
increasing order of the cardinality of the subset of which they 
are a member. Response identifiers within each subset are 

ordered arbitrarily. Fig. 7 shows the resulting sorted index-
index plot generated from the 42 correlation pairs selected from 
Fig. 6. Fig. 7 reveals seven behavioral dimensions: five subsets 

 
2 responses uncorrelated
(1) throughput on DD flows
(2) flow completion rate

25 correlation
pairs reflecting 
congestion

14 correlation
pairs reflecting
packet losses

3 pair-wise correlations:
(1) throughput on flows constrained by F-class routers
(2) network delay
(3) packets entering and leaving the network

Figure 7: Index-Index plot sorted by increasing count of correlation pairs to identify clusters of mutual correlations that 
represent seven behavioral dimensions in the response state-space of MesoNet 

Figure 6: Frequency distribution of |r| for pair-wise correlations – bins highlighted for |r| > 0.65 
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(or clusters) of mutually correlated responses and two 
responses that were not correlated with any others. The largest 
cluster (25 correlation pairs) includes responses that reflect 
network congestion. The second largest group (14 correlation 
pairs) includes responses reflecting data losses. Three pair-wise 
correlations reflect: (1) throughput on flows constrained by F-
class access routers, (2) network delay and (3) data entering 
and leaving the network. One u ncorrelated response (y17) 
measures average throughput on DD flows, while the other 
(y6) measures flows completed per second. An experimenter 
can use domain knowledge to select one variable to represent 
each identified behavior. 
 
3.2 Multidimensional Data Analysis 

Even after reducing a response state-space, specific 
experiments can produce multivariate datasets containing a 
large number of elements. For example, a typical experiment 
with MesoNet might compare eight congestion control 
algorithms with respect to 48 responses under 32 conditions 

over three time periods using two different protocols, yielding a 
multivariate dataset containing approximately 60,000 elements. 
Inferring meaning from such large datasets requires employing 
a variety of multidimensional data analysis methods. Here, we 
discuss those techniques we found to be most useful: (1) main 
effects analysis, (2) cluster analysis, (3) primary principal 
components plots and (4) condition-response summaries. 

3.2.a Main Effects Analysis. Main effects analysis (MEA) 
[12] compares the mean value for a response variable when 
each model parameter is set to each level (-1 and +1) in a 2-
level experiment design. During a sensitivity analysis (e.g., as 
discussed below in Sec. 5), MEA provides the basis for 
identifying significant parameters influencing key responses. 
Fig. 8 shows a sample MEA evaluating the influence of each of 
the 20 MesoNet parameters (see Table 2) on the average 
number of transmitting sources during a particular time period 
in one simulation experiment. For each parameter the plot gives 
two means: (1) when the parameter is set to the -1 level and (2) 
when set to the +1 level. 

Figure 5: Frequency distribution of |r| for pair-wise correlations – bins highlighted for |r| > 0.65 

 

Figure 8: Main effects plot showing absolute and relative influence of each MesoNet parameter (x axis) from Table 2 on mean 
(y axis) number of sources transmitting (y1 from Table 3) and identifying six statistically significant parameters – network speed 
(X1), topology (X4), file size (X5), think time (X7) and number (X12) and distribution (X13) of sources 
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Fig. 8 shows that the mean number of sending sources was 
just under 13,000 when network speed (X1) was low (-) and 
was about 8500 under the higher network speed (+). For each 
parameter, a line connects the two means to indicate direction 
and magnitude of the effect when changing the parameter from 
its -1 level to +1 level. Two numbers are reported just above 
each parameter label. The top number gives the effect in raw 
terms (e.g., 4145 fewer sending sources under the higher 
network speed) and the bottom number gives the percentage 
change (e.g., 39 % fewer sending sources under higher network 
speed), which is called the relative effect. 

We used a t-test to determine the likelihood of a true 
difference in effect for each parameter, inserting two asterisks 
(**) for parameters, such as network speed, where the 
estimated effect had a probability of statistical error p < 0.01. 
We inserted one asterisk (*) for effect estimates with p < 0.05. 
Interpreting Fig. 8, we find that shorter think time (X7 -) 
coupled with more sources (X12 +) distributed in a peer-to-
peer pattern (X13 +) induce the largest of the six statistically 
significant effects on the number of sending sources. The effect 
of these parameters is followed by larger file size (X5 +) and 
larger topology (X4 +). The indicated values for these five 
parameters increase demand on the network. The remaining 
significant increase in sending sources arises from lower 
network speed (X1 -). In short, greater demand offered to a 
slower network increases congestion, which causes longer file 
transfer times for sources, leading more sources to be in the 
sending state. Similar analyses are possible for each MesoNet 
response in a specific experiment. 

3.2.b Cluster Analysis. While MEA enables an 
experimenter to discern the influence of specific parameters on 
individual responses, cluster analysis can be used to discern 
similarities and differences in behavior when considering all 
responses as a multidimensional space. Cluster analysis can be 
accomplished using commonly available software, such as the 
hierarchical clustering tools from the MATLAB™ Statistics 
Toolbox™ [13]. Hierarchical clustering requires selection of a 
function to compute distances between points in the vector 
space composed by the response data. We used the 
standardized Euclidean distance function. 
                          
 
                                                                                                 (2) 
 
 

We measure the linkage between clusters of algorithms as 
the average distance between responses associated with each 
algorithm in each cluster. In this example, we use a subset of 45 
responses, not listed here. The linkage function, shown in (3), 
uses the Euclidean-distance function from (2). 

 
 

(3) 
 
 

 
Equation (3) computes the linkage between any two clusters r 
and s, containing nr and ns congestion control algorithms, 
respectively. Yk,r represents the response vector for the kth 
congestion control algorithm in cluster r; similarly, Yl,s 
represents the response vector for the lth congestion control 
algorithm in cluster s. The linkage function is used to place 
binary clusters into larger clusters, forming a hierarchical tree. 

The final step in hierarchical clustering is to decide which 
congestion control algorithms should be included within the 
same cluster. For this purpose, we use the MATLAB™ 
dendrogram ( ) function to color the lines on the hierarchical 
tree whenever the linkage value between two clusters falls 
below 70 % of the maximum linkage value. The net result from 
clustering is a diagram, such as Fig. 9, suggesting relationships 
among congestion control algorithms. Integer identifiers for the 
seven congestion control algorithms (see Table 1) are plotted 
on the x axis and the y axis displays standardized distances 
between algorithms in the subordinate cluster(s). Here, the 
clustering suggests algorithms 4 and 6 give similar results and 
algorithms 1 and 2 give similar results. The remaining 
algorithms are less similar, with algorithm 3 being most 
dissimilar from the others. 

 
 
 
 
 
 
 
 
 
 
 

Figure 9: Dendrogram illustrating clustering based on 45 
responses for one particular combination of parameters (i.e., 
condition 4) – x axis gives an identifier assigned to each of 
seven congestion control algorithms and y axis gives the 
standardized Euclidean distance between algorithms or clusters 
of algorithms. 
 

Clustering must be performed individually on each 
parameter combinations because differing conditions can yield 
results that are quite dissimilar. One may obtain an overall 
picture of clustering across conditions by plotting together 32 
dendrograms, one per parameter combination. Fig. 10 shows 
such a plot for seven congestion control algorithms and related 
responses. Review of the plot reveals that algorithm 3 appears 
distinctive under about 23 of the 32 conditions. Further, the 
responses generated by the different algorithms are 
indistinguishable in six conditions – in fact, are identical for 
condition 12, where the corresponding dendrogram shows zero 
distance between the algorithms. The remaining three 
conditions (2, 27 and 32) find small distinctions among the 
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algorithms. As Fig. 10 illustrates, clustering analysis can reveal 
significant overall patterns in multidimensional data. 

 
3.2.c Primary Principal Components Plots. PCA can be 

used to explore relationships among responses, usually by 
plotting the primary component, PC1, which accounts for most 
variance in the dataset, against PC2, which accounts for second 
most variance in the dataset. For example, consider a 
multivariate dataset that contains the average throughput 
achieved on network connections using seven different 
congestion control algorithms under 32 different parameter 
combinations for 48 different flow types. We generate subsets 
of the data, where each subset, selected by congestion control 
algorithm and parameter combination, contains average 
throughput achieved on each flow type. We conduct PCA on 
each of the (7 x 32 =) 336 subsets, and then in Fig. 11 we plot 
PC1 (x axis) vs. PC2 (y axis) for each subset. 

Fig. 11 shows three clear groupings of (circled) points, 
which can be considered with respect to the parameter 
combinations in common. Points within the blue circle 
represent cases where network speeds were lower (i.e., X1 set 
to level -1). The remaining points include only conditions with 
higher network speeds (X1 set to level +1): the red circle 

contains points with longer propagation delays (X2 set to +1) 
and the green circle contains points with shorter propagation 
delays (X2 set to -1). Points within the red circle can be further 
subdivided such that points above the dashed line represent 
small file sizes (X5 set to -1) and points below represent larger 
file sizes. Points within the green circle can also be subdivided 
based on relative file size. The main inference from Fig. 10 is 
that, under the specific parameter combinations simulated, 
throughput is influenced primarily by network speed, 
propagation delay and file size; choice of congestion control 
algorithm played no significant role here. 

3.2.d Condition-Response Summaries. In many cases, 
statistical techniques can reveal not only overall behavioral 
patterns but can also provide evidence suggesting causality. In 
our case, we conducted detailed statistical comparisons for 
measured responses to identify conditions under which 
congestion control algorithms varied. Comparing the parameter 
combinations composing each condition allowed us to discern 
underlying causes. Subsequently, we extracted information 
from each detailed analysis to produce condition-response 
summaries that revealed explicit overall patterns showing under 
what conditions and for what responses algorithm 3 produced 
different behavior. 

 

Figure 10: Cluster analysis comparing seven congestion control algorithms with respect to 45 responses under 32 parameter 
combinations (i.e., conditions) 
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Fig. 12 shows a plot comparing retransmission rates for 
seven congestion control algorithms under 32 different 
parameter combinations. The x axis in Fig. 12 shows the 32 
conditions. Here, conditions are sorted by increasing magnitude 
of the largest difference in the response variable produced by 
congestion control algorithm. The upper left corner of the plot 
gives the minimum and maximum values for the raw responses 
when considering the data across all algorithms and conditions. 
The y axis gives the spreads of residuals about the mean. 

Here, each residual is computed by subtracting the mean 
response for all algorithms for a given condition from the 
response for a given algorithm and the same condition. For 
each condition, we plot a box within which we place algorithm 
identifiers (1-7). The location of each identifier indicates the 
distance of the response generated by that algorithm (i.e., the 
residual) from the mean response over all algorithms for the 
same condition. Here, the residuals range from zero (all 
algorithms in condition 12, 8, 20 and 2) to about 0.55 (for 
algorithm 3 and condition 29). Below each box we display 
vertically the level settings (+/-) for each input factor 
(X1…X6) that generated the relevant condition. Here we used 
a subset of six input parameters identified by a sensitivity 
analysis (Sec. 5) to have significant influence on system 
behavior, which we measured with 45 responses in this 
particular experiment. 

The remainder of the plot consists of four 32-column rows 
of quantitative information, where each column gives four 
statistics applicable to the algorithms and responses for the 

related condition. The first statistic identifies the extreme 
algorithm – that is the algorithm with the largest residual. The 
identifier is listed as -1 when the algorithms cannot be 
distinguished numerically. Explicitly listing the extreme 
algorithm is helpful when the residuals are too close together to 
be visible in the box – for example in conditions 12 to 11. The 
second statistic reports the absolute magnitude (log 10) 
associated with the maximum residual. The exponent of the 
absolute magnitude can be reported concisely on the plot at the 
cost of some numerical precision. The third statistic reports the 
relative effect as a % of the mean response. A domain analyst 
can consider both absolute and relative differences when 
judging whether an effect is significant from an engineering 
view. The fourth statistic reports G, which results from a 
Grubbs’ test for outlying observations [12] associated with the 
extreme residual for each condition. The Grubbs’ test computes 
G by dividing the largest residual by the sample standard 
deviation (s). 

 
                                                                                         (4) 

 
 
Assuming no significant differences among congestion 

control algorithms, we would expect measured residuals to be 
normally distributed. For this reason, residuals that deviate too 
far from the mean could be characterized as statistically 
significant outliers. For our plots we declare an outlier 
significant (p < 0.05) when G > 2.08. The entire column 

Figure 11: PC1 (x axis) vs. PC2 (y axis) from a multivariate dataset containing average throughput achieved on network 
connections using seven different congestion control algorithms under 32 different parameter combinations. Circles identify 
groupings of points and lines within circles distinguish additional subgroups. 
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(factors and statistics) is highlighted for conditions where the 
Grubbs’ test identifies an outlier. Green identifies positive 
outliers (e.g., 23 conditions in Fig. 12) and red identifies 
negative outliers (no such conditions in Fig. 12). Columns are 
printed in black when no numerical difference could be 
detected among the responses (e.g., conditions 12, 8, 20 and 2 
in Fig. 12). The remaining columns are printed in blue. 

We can produce plots such as Fig. 12 for any response, and 
such plots can be quite revealing, but we use condition-
response summaries, as shown in Fig. 13, to allow us to discern 
overall patterns associated with all responses under all 
conditions. To construct a condition-response summary, we 
extract information from analyzing individual plots similar to 
Fig. 12.  

Fig. 13 shows a condition-response summary identifying 
any congestion control algorithms that were statistically 
significant outliers for 45 responses under 32 conditions. Each 
row in Fig. 13 corresponds to a specific condition (identified on 
the left). The first six columns report level settings (+/-) for the 

six input parameters defining the condition. The remaining 
columns represent individual responses. (Note the response 
variable number 6 in Fig. 13 corresponds to the information 
extracted from Fig. 12.) Vertical blue lines group related 
responses. For example, in this particular experiment, 
responses 1 through 8 relate to macroscopic behavior, 
responses 9 through 12 relate to throughput on DD flows, 
responses 42 through 45 relate to distribution of flow states and 
so on. Cells, formed by condition-response intersections, 
contain an algorithm identifier (1 to 7) when there is a 
statistically significant outlier – red denotes low outliers and 
green denotes high outliers. 

A scan of Fig. 13 shows that algorithm 3 arises as a 
statistically significant outlier in many cells. The highest 
concentration of outliers appears for congested conditions 
(measured by retransmission rate); fewer outliers appear for 
less congested conditions. No algorithm appears as an outlier 
for condition (i.e., row) 12. These results agree with the cluster 
analysis (recall Fig. 10) for the same dataset. Both analyses 

Figure 12: Sample plot analyzing the influence of condition and congestion control algorithm on the segment retransmission rate (in 
this experiment retransmission rate was designated as y6) – y axis gives residuals around the mean value for each condition and x 
axis gives conditions ordered by increasing range of residuals  
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identify algorithm 3 as distinctive under congested conditions. 
Fig. 13 has the advantage of identifying precisely the particular 
responses for which algorithm 3 exhibits different behavior. 

To focus analysis on the most significant behavioral 
differences, we can apply various filters when generating a 
condition-response summary plot. For example, Fig. 14 shows 
a summary plot reporting statistically significant outliers from 
Fig. 13 that also achieve a relative effect greater than 10 %. 
The pattern of outliers is now sparser, so we can focus our 
analysis on responses y2 (congestion window increase rate, in 
this experiment), y6 (retransmission rate in this experiment), 
y42 (average number of connecting flows), y44 (average 
number of transmitting sources using standard TCP congestion 
avoidance) and y45 (average number of transmitting sources 
using an alternate congestion avoidance algorithm). The 
responses measuring buffer usage (y36 – y41) exhibit outliers 
but there is no evident pattern. 

We also gleaned significant information from a wide range 
of other multidimensional analysis techniques, such as Y-Y 
scatter plots, condition-by-condition relative bar graphs, and 
rank matrices. For an explanation and application of these and 
other techniques, refer to our complete study [1] comparing 
selected Internet congestion control algorithms. 
 
4 PROPOSED TCP REPLACEMENTS 

Recall from our discussion of Internet congestion control 
(Sec. 2) that standard TCP achieved throughputs of about 20 % 
of link capacity for large files transmitted over long-distance, 
high-speed network paths. This implies that individual TCP 
users with access to such paths may not realize high 
throughputs and that such expensive links may be 
underutilized. For this reason, many researchers [16-21] have 
proposed improved congestion control algorithms to replace 
standard TCP on the Internet. The general aim of the proposed 

Figure 13: Condition-response summary identifying any statistically significant outliers among congestion control algorithms for 
each of 45 responses measured over 32 different conditions in this particular experiment  
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TCP replacements is to allow users improved throughputs when 
transferring large files over high-speed network paths that 
cover long distances. Internet users and operators may also 
reasonably expect that proposed TCP replacements achieve 
some other desirable goals: providing high link utilizations, 
sharing bandwidth equally under high congestion and 
converging quickly to equal bandwidth usage as flows come 
and go on network links. Most of these topics have been 
studied in the context of limited numbers of flows sharing 
bottleneck links, as we showed in Sec. 2 for standard TCP. 
Prior to our work, these topics have not been studied in the 
context of large networks, under the arrival and departure of 
hundreds of thousands of flows with varying characteristics. 
We used the methods described in Sec. 3 to conduct such a 
study [1] for proposed TCP replacements, as enumerated in 
Table 1. 

While different in many significant details, most of the 
proposed TCP replacements share some common features. All 

of the proposals retain standard TCP procedures for connection 
establishment and initial slow start, changing only congestion 
avoidance. All but two of the proposals define a threshold, such 
that normal TCP congestion avoidance procedures are used 
when the cwnd is below the threshold. Of the remaining two, 
one adopts normal TCP congestion avoidance procedures for a 
period of time following a lost segment and the other never 
uses TCP congestion avoidance procedures. In general, the 
proposals adopt one (or both) of two main principals: (1) 
decrease transmission rate by less than half following a lost 
segment and (2) increase transmission rate more than linearly 
following a rate reduction. Next, we explain each proposed 
TCP replacement that we studied. 

BIC. Binary Increase Congestion Control (BIC) [16] aims 
to make aggressive increases in cwnd when the current cwnd is 
far from a target and smaller increases as the current cwnd 
nears the target. BIC determines the target by conducting a 
binary search within some range around the current cwnd. 

 

Figure 14: Filtered condition-response summary identifying any congestion control algorithms that are statistically significant 
outliers and that exhibit at least a 10 % relative effect for each of 45 responses measures over 32 different conditions 
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When the target falls beyond the search range, BIC adjusts the 
cwnd by a fixed increment and then reinitiates the binary search 
within the new range. Implementing this behavior requires 
rather complex logic. The resulting cwnd evolution for BIC 
reflects its complexity – reproducing a function that appears to 
change in a pattern resembling a human heartbeat. 

Fig. 15 shows the temporal evolution of cwnd for two 
competing BIC flows, under conditions identical to those used 
in comparing competing TCP flows in Fig. 2. Here, BIC 
provides flows with much higher average cwnd than TCP, and 
BIC allows the flows to converge to equal sharing much more 
quickly than TCP does. In fact, the average cwnd exceeds the 
path capacity of 3402 segments, which means that the flows 
use 100 % of path capacity, carrying between 200 and 345 
segments in buffers within routers on the path. These 
properties, high utilization and quick adaptation in sharing 
capacity with newly arriving flows, are exactly those that 
researchers hoped to achieve by proposing improvements to 
standard TCP.  
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Figure 15: Change in cwnd (y axis in segments) vs. Time (x 
axis in 0.1 s units) for two BIC flows sharing a bottleneck path 
with 162 ms rtt – total average cwnd reported at top and 
average cwnd for the red and blue flows reported at bottom 

 
CTCP. Compound TCP (CTCP) [17] augments cwnd with 

a second component, called the delay window (dwnd). CTCP 
procedures update the dwnd periodically, typically once per rtt. 
The dwnd is added to the cwnd to establish the transmission 
rate used on CTCP flows. CTCP defines rules for increasing 
dwnd aggressively when a flow is underutilizing available 
transmission capacity and also defines rules for reducing dwnd 
as a flow’s transmission rate nears available capacity. Upon 
detection of congestion, either through explicit segment losses 
or timeouts, CTCP reduces dwnd toward zero. As a flow’s 
transmission rate nears equilibrium around some estimated 
available capacity, CTCP tends to cause the transmission rate to 
oscillate slightly by exponentially increasing the dwnd when 
the estimated number of segments queued for a flow falls 
below a threshold and then linearly decreasing dwnd when the 
estimated number of queued segments exceeds the threshold. 

On the other hand, when the transmission rate is increasing on 
a flow, CTCP exponentially increases the dwnd without 
exerting a countervailing linear decrease. Consequently, the 
CTCP transmission rate can become large relatively quickly 
when a transmission path exhibits no congestion. 

Fig. 16 shows the temporal evolution of cwnd for two 
competing CTCP flows under the identical conditions used in 
Fig. 2. When only the red flow uses the path, CTCP achieves 
throughput comparable to TCP. On the other hand, when two 
flows share the path, CTCP converges to cwnd values that use 
the entire path capacity with only a few segments held in 
network buffers. 
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Figure 16: Change in cwnd (y axis in segments) vs. Time (x 
axis in 0.1 s units) for two CTCP flows sharing a bottleneck 
path with 162 ms rtt – total average cwnd reported at top and 
average cwnd for the red and blue flows reported at bottom 
 

FAST. Fast Active Queue Management Scalable TCP (i.e., 
FAST) [18] adopts a fundamentally different approach from the 
other congestion control procedures considered in this study. 
First, FAST aims to achieve an equilibrium cwnd that remains 
stable, while other congestion control mechanisms lead to an 
oscillating cwnd. Second, FAST updates the cwnd based mainly 
on measured changes in queuing delay, using loss signals only 
when congestion prevents reaching a lossless equilibrium. 
Third, FAST does not resort to standard TCP congestion 
avoidance procedures; instead, FAST uses its own procedures 
at all times during congestion avoidance. FAST adopts these 
approaches based on the idea that queuing delay can be 
measured quite frequently and thus accurately, while segment 
losses are rare events that provide insufficient information to 
estimate loss probability on a given flow. 

The FAST congestion control procedures include –tuning 
as an option. The –tuning variant of FAST, monitors flow 
throughput and adjusts  up and down as various thresholds are 
crossed. The  term is added to the cwnd computation by 
FAST, so adjusting  can push the cwnd up and down with 
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variable thrust, compared with when  is fixed. The designers 
of FAST indicate [18] that –tuning is no longer used routinely 
within FAST implementations. Instead, the designers suggest 
fixing  to a value suitable for expected network conditions. Of 
course, the designers recognize that fixing  is not a general 
solution and list –tuning as an open issue. We studied FAST 
both with and without –tuning. We call the latter alternative 
FAST-AT. 

Fig. 17 shows the temporal evolution of cwnd for two 
competing FAST flows under the identical conditions used in 
Fig. 2. Here, FAST achieves its aim of a fixed cwnd when a 
single (red) flow uses the path and also adapts quickly to lower 
fixed cwnd when the blue flow arrives to share the path. The 
resulting average cwnd exceeds path capacity, so segments will 
be queued in network routers and the path will be utilized at 
100 % capacity. Also note that both the red and blue flows 
achieve nearly equal shares of the path capacity. This 
demonstrates FAST achieving the aims of its designers. 
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Figure 17: Change in cwnd (y axis in segments) vs. Time (x 
axis in 0.1 s units) for two FAST flows (with  fixed at 80) 
sharing a bottleneck path with 162 ms rtt – total average cwnd 
reported at top and average cwnd for the red and blue flows 
reported at bottom 

 
Fig. 18, showing the temporal evolution of cwnd for two 

competing FAST-AT flows under the identical conditions used 
in Fig. 17, illustrates an artifact that –tuning can cause when 
flows share a network path. Notice that the two flows quickly 
reach equilibrium at similar cwnd values after the blue flow 
arrives. Subsequently, the cwnd values diverge, with the blue 
flow achieving significantly higher transmission rate than the 
red flow. Such divergence, also seen in empirical studies [15], 
arises because the red flow adjusts  downward as decreasing 
throughput crosses a threshold. The blue flow, under increasing 
throughput, crosses a threshold and adjusts  up. As an 
additional threshold is crossed, the  values are adjusted yet 
again. As a result, while FAST-AT achieves full utilization of 
link capacity, the competing flows achieve 30 % (red) and 70 

% (blue) shares. This deviates significantly from the desired 
goal of 50 % capacity share for each of the two flows. 
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Figure 18: Change in cwnd (y axis in segments) vs. Time (x 
axis in 0.1 s units) for two FAST-AT flows sharing a 
bottleneck path with 162 ms rtt – total average cwnd reported 
at top and average cwnd for the red and blue flows reported at 
bottom 

 
HSTCP. High Speed TCP (HSTCP) [19] retains the 

fundamental additive-increase and multiplicative-decrease 
(AIMD) strategy adopted by standard TCP, but HSTCP alters 
the AIMD parameters to become a function of congestion 
window size. The altered AIMD functions result in more 
aggressive increases and less aggressive decreases at larger 
window sizes. 

Fig. 19 demonstrates that, under the conditions here, 
HSTCP bounds the cwnd within a smaller range than standard 
TCP and oscillates up and down more quickly. The path is fully 
utilized (with some segments buffered in network routers) and 
the two flows converge reasonably quickly to an equal share of 
the available link capacity. 

HTCP. Hamilton TCP (HTCP) [20] differs from the other 
TCP replacements in two main aspects. First, HTCP determines 
cwnd increases as a function of elapsed time since the most 
recent segment loss. The increase is scaled by the rtt 
experienced on the network path in order to compensate for 
differences in feedback delay. The motive is to give larger 
increases in cwnd during periods of low network congestion, so 
a flow could reach higher transmission rates more quickly on 
uncongested, high-capacity, long-delay paths. HTCP adopts 
standard TCP cwnd increase procedures for a specified time 
after each loss. Second, HTCP implements an adaptive back-
off procedure to determine the multiplicative decrease in cwnd 
after a loss. The back-off factor is varied based on estimating 
the queuing delay on a path. The motive is to prevent senders 
from backing off too much after packet losses. HTCP adopts 
standard TCP decrease procedures when flow throughput has 



 18 Copyright © 2011 by ASME 

changed by more than a specified amount since the most recent 
loss. 
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Figure 19: Change in cwnd (y axis in segments) vs. Time (x 
axis in 0.1 s units) for two HSTCP flows sharing a bottleneck 
path with 162 ms rtt – total average cwnd reported at top and 
average cwnd for the red and blue flows reported at bottom 
 

Fig. 20 shows that HTCP achieves full path utilization and 
that the cwnd sizes converge quickly to equilibrium when the 
second (blue) flow arrives. The flows achieve an equal share of 
the available capacity. 
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Figure 20: Change in cwnd (y axis in segments) vs. Time (x 
axis in 0.1 s units) for two HTCP flows sharing a bottleneck 
path with 162 ms rtt – total average cwnd reported at top and 
average cwnd for the red and blue flows reported at bottom 

 
STCP. Scalable TCP (STCP) [21] adopts a simple, fixed-

increase rule aimed at allowing a flow to increase its 
congestion window more quickly than would be the case with 
standard TCP. In addition, Scalable TCP defines a decrease 
rule that limits a flow to a fixed multiplicative decrease that is 

recommended to be much less than the 50 % decrease used by 
standard TCP. The STCP rules are defined in an additive-
increase, multiplicative-decrease (AIMD) form, but the rules 
actually amount to a multiplicative-increase, multiplicative-
decrease (MIMD) regime. Researchers have shown [14] that 
MIMD algorithms are not guaranteed to converge to fair 
capacity sharing in networks, such as the Internet, which drop 
arriving segments when a queue is filled. 

Fig. 21 illustrates the SCTP convergence problem. The 
first (red) flow achieves full utilization of the path, with 340 
segments buffered in routers in the network. The second (blue) 
arriving flow experiences great difficulty gaining much of the 
path capacity, achieving an average share of only 2 % of the 
available capacity. Thus, SCTP achieves full utilization, while 
providing greatly unequal sharing of the available capacity. 
This behavior has been produced in empirical measurements 
[15], as well as in the simulations shown here. 
 

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 1 .104
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Time

C
on

ge
st

io
n 

W
in

do
w

avg. cwnd = 3742 avg. cwnd = 3852

avg. red  cwnd =  3758
avg. blue cwnd = 94

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 1 .104
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Time

C
on

ge
st

io
n 

W
in

do
w

avg. cwnd = 3742 avg. cwnd = 3852

avg. red  cwnd =  3758
avg. blue cwnd = 94

 
Figure 21: Change in cwnd (y axis in segments) vs. Time (x 
axis in 0.1 s units) for two STCP flows sharing a bottleneck 
path with 162 ms rtt – total average cwnd reported at top and 
average cwnd for the red and blue flows reported at bottom 

 
4.1 Previous State of the Art 

These, and other, proposed congestion control procedures 
have been studied using a variety of techniques, which 
constitute the state of the art in network modeling, analysis and 
measurement. The designers of the proposed protocols 
construct analytical models to study likely behavior under 
various situations [16-21]. In addition, some researchers [22] 
construct and compare analytical models of several proposals 
operating within the context of single, long-lived flows. Other 
researchers [23-24] construct analytical models of some 
proposals to consider the average behavior of a large number of 
flows sharing a single path. Such analytical studies provide 
insights related only to the specific, typically quite constrained, 
situations modeled. Modeling a single, or pair, of long-lived 
flows does not illuminate the more typical situation where 
many flows with differing characteristics come and go over 



 19 Copyright © 2011 by ASME 

time. Even analyses with many flows idealize the situation so 
that all flows have the same characteristics. 

Another technique entails simulation studies [25] 
comparing proposed congestion control procedures in small 
topologies. While insightful, simulations of small topologies do 
not exhibit the same spatiotemporal dynamics that would be 
experienced in a large network with varying user demands 
arriving and departing and spreading throughout the topology 
[32]. Most simulation studies use small topologies because 
configuring, executing and analyzing such simulations can be 
completed within reasonably available resources. 

Another valuable technique compares proposed congestion 
control procedures empirically within small topologies. In fact, 
the graphs shown in Figs. 15-21 were simulations of scenarios 
that had been measured empirically by other researchers [15]. 
The simulations were produced with our model (MesoNet), 
explained below in Sec. 5. The existence of such empirical 
measurements on a single bottleneck path helped us to verify 
that we had correctly modeled the proposed TCP replacements 
prior to simulating them in a large topology. Researchers [15, 
26] also measured the performance of small numbers of long-
lived flows under each proposed TCP replacement when 
perturbed by cross traffic consisting of Web flows regulated by 
standard TCP. A few researchers [27-28] have configured 
topologies of a few hundred flows to measure the performance 
of FAST. Similar experiments should be feasible using other 
configurable test beds [29-31]. 

We can sum up some of the shortcomings of state-of-the-
art modeling, analysis and measurement techniques with 
respect to comparing proposed TCP replacements. First, most 
existing techniques focus on long-lived, i.e., infinite length or 
very large, flows, while Internet traffic consists of a wide 
variety of flow sizes, where flows come and go dynamically. 
Second, most existing techniques focus on congestion 
avoidance behavior, omitting other key congestion control 
phases, including connection establishment and initial slow 
start, which might influence significantly congestion behavior 
in a large network. Third, most existing techniques consider 
from several to 100 flows, which transit a shared path, or a few 
shared paths, in a small topology. We will show how our 
methods can address these shortcomings, and advance the state 
of the art in modeling and analysis of large networks. 
 
4.2 Advancing the State of the Art 

Below, we demonstrate how to combine reduced-
parameter modeling, 2-level OFF experiment design and 
multidimensional data analysis techniques to simulate more 
than 105 simultaneous flows operating at high network speeds 
and in realistic topologies under a wide range of congestion 
conditions, while measuring and analyzing high dimensional 
response spaces that provide new insights about proposed TCP 
replacements. We begin in the next section by explaining 
MesoNet, our 20-parameter model of a TCP network, and we 
show how a sensitivity analysis of the model can be used to 
identify key response dimensions, and the model parameters 

that significantly influence those dimensions. We move on in 
Sec. 6 to describe experiments, which leverage our methods to 
provide insights about Internet congestion control procedures. 

5   MESONET SIMULATION MODEL 
We implemented a model for each of the proposed 

congestion control algorithms explained above in Sec. 4. To 
investigate global behavior, we embedded the algorithm models 
within MesoNet [33], our simulation of a TCP network, which 
was introduced briefly in Sec. 2, where Table 2 identified the 
20 parameters composing MesoNet. Here, we give more 
detailed information about those parameters. 

A network configuration requires a topology (parameter 
X4) of routers and links, as shown for example in Fig. 22, 
adapted from the Abilene backbone network [34]. MesoNet 
supports topologies with up to three hierarchical router tiers: 
backbone routers (A-K in Fig. 22), point of presence (PoP) 
routers (A1-K2) and access routers (A1a-K2d). To model 
heterogeneity in network access, MesoNet allows three 
different types of access routers: D-class (e.g., six red nodes in 
Fig. 22, which connect directly to backbone routers), F-class 
(e.g., 28 green nodes) and N-class (e.g., 105 small gray nodes). 

Classifying access routers enables different speeds to be 
assigned to each class. Sources and receivers compose a fourth 
tier distributed below access routers. Data segments flowing 
between a source-receiver pair follow a single ingress/egress 
path between an access router and a top-tier backbone router. In 
MesoNet ingress/egress paths are not subject to propagation 
delays. Propagation delays on backbone links are an intrinsic 
property of all MesoNet topologies, as are the paths taken by 
data segments flowing among backbone routers. 

Given a cost metric for each backbone link, one can use 
Dijkstra’s shortest-path first (or equivalent) algorithm to 
generate least-cost paths. Assuming a link cost equal to 
propagation delay, the topology in Fig. 22 generates 110 paths 
between backbone routers, with an average path length of 3.51 
router hops. Adding in the hops for sources and receivers to 
reach the backbone routers increases the average path length to 
9.43 hops. To scale propagation delays in a topology, parameter 
X2 multiplies the delays assigned to each backbone link. 
Unlike real networks, where links have transmission speeds 
and associated buffers, MesoNet assigns speeds to routers. 
Each router multiplexes segment forwarding from a single 
buffer shared among all attached links. Because MesoNet 
segments have no size, router speeds are assigned in units of 
segments/millisecond. Parameter X1 defines the base speed of 
backbone routers and all other router classes operate at a 
proportion of that speed: PoP routers 25 %, N-class 2.5 %, F-
class 5 % and D-class 25 %. To provision router buffers, 
MesoNet allows buffer size (in segments) to be selected using 
an algorithm, specified by parameter X3. 

Given a three-tier topology of routers and links, the model 
constructs a fourth tier, where sources and receivers are 
distributed under (and attached to) access routers. The model 
includes a target number of sources and receivers which should 
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be set to a value appropriate for the network speed. Model 
parameter X12 serves as a multiplier to scale the target number 
of sources and receivers. Parameter X13 specifies probabilities 
(e.g., see Tables 11 and 13) that bias the distribution of sources 
so that a higher or lower proportion of the target number 
attaches under various classes (D/F/N) of access routers. 
Similarly, parameter X14 specifies probabilities that bias the 
distribution of receivers. Altering the distributions of sources 
and receivers adjusts the probability of flows transiting access 
routers of specific classes, where the slowest access router 
crossed by a flow determines the flow’s path class: very fast 
(VF) for D-class routers, fast (F) for F-class or typical (T) for 
N-class. The final property of sources and receivers concerns 
the maximum speed at which they can transfer segments to the 
network. The model allows two speeds: normal (8000 
segments/second, i.e., 96 Mbps) and fast (80,000 
segments/second, i.e., 960 Mbps). Parameter X11 specifies the 
probability that a source or receiver connects at the fast speed. 
When a flow’s receiver and source are both connected at the 
fast speed, a flow’s maximum rate is fast (F); otherwise a 
flow’s maximum rate is normal (N). 

User behavior is modeled through periodic activity by 
sources, which cycle between thinking, connecting and 
sending. Prior to entering the thinking state, a source selects a 

random residence time from an exponential distribution with a 
mean given by parameter X7. Upon expiration of residence, the 
source enters the connecting state, where a connection is 
attempted to a randomly selected receiver. If a connection 
attempt succeeds, the source enters the sending state, where a 
flow of segments is transmitted. Once all segments in a flow 
are acknowledged, the source reenters the thinking state. If a 
connection attempt fails, the source reenters the thinking state 
without sending. Sources may have finite or infinite patience. 
Parameter X8 specifies the probability that a source has finite 
patience, where short flows must be completed within a 
reasonable time and long flows must progress at a reasonable 
rate or else a source aborts the flow and reenters the thinking 
state. 

Prior to sending, a source selects a Web object size (in 
segments) from a Pareto distribution with a mean defined by 
parameter X5. Through parameter X6 the model allows sources 
to transmit larger files in three categories: documents, software 
updates and movies, with corresponding multipliers (Fx, Sx and 
Mx) that scale the selected Web object size to a larger value 
with a corresponding probability (Fp, Sp and Mp) for each 
category. The model also allows simulation of spatiotemporal 
congestion by specifying (parameter X9) a time period during 
which every flow transiting a VF path will have the randomly 

Figure 22: Three-Tier Topology with 11 Backbone Routers (A-K), 22 Point of Presence Routers (A1-K2) and 139 Access Routers 
(A1a-K2d) – 6 red and 28 green Access Routers may operate at different speeds from the 105 others 
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selected file size multiplied by 10, becoming jumbo files that 
create spatiotemporal congestion. The model also permits 
simulation of long-lived flows that, once activated, send as 
many segments as possible in the course of a simulation. 
Parameter X10 specifies the number, location and starting time 
for any long-lived flows included in an experiment. 

The transmission rate of each flow is regulated by 
protocols. Upon connecting to a receiver, a source first sends a 
number of segments, known as the initial cwnd, specified by 
parameter X16. As ACKs arrive from the receiver, the source 
increases cwnd exponentially. Upon the first lost segment, the 
source adopts procedures specified by a designated congestion 
avoidance algorithm. Model parameter X15 defines the 
probabilities that a given source uses each of the congestion 
avoidance algorithms simulated by MesoNet. If there are no 
losses, a source switches to its congestion avoidance algorithm 
once the cwnd reaches an initial slow sst, defined by parameter 
X17.  

MesoNet measures numerous aspects of model behavior 
during each simulation run. Most measurements are made as 
time series, which sample system states at periodic intervals 
defined by parameter X18. Model parameter X19 controls the 
duration of a simulation run. Model parameter X20 determines 
the rate at which sources initially enter the sending state. 

 
5.1 MesoNet Sensitivity Analysis – Design 

To understand the characteristics of MesoNet, we 
employed a 2-level OFF experiment design to conduct a 
sensitivity analysis, which allowed us to identify parameters 
that significantly influence model behavior. We used these 
findings to guide the design of subsequent experiments (see 
Sec. 6) to compare the proposed TCP replacements explained 
above in Sec. 4. 

We adopted a 220-12 OFF design, requiring 256 simulations, 
where each simulation has a specified combination of 

parameters that are set to one of two levels, which we refer to 
as the MINUS (-1) and PLUS (+1) levels. Table 5 gives the two 
level values we selected for each of MesoNet’s 20 parameters. 
Most of the parameter mappings from Table 5 are 
straightforward. Here, we discuss a few that merit more 
explanation. We also introduce the response variables used in 
the sensitivity analysis. 

Category Identifier MINUS (-1) Level PLUS (+1) Level

Network
Configuration

X1 800 segments/ms 1600 segments/ms
X2 1x 2x
X3 rtt x C/sqrt(n) rtt x C
X4 Abilene – delay ISP – costs

User
Behavior

X5 75 segments 150 segments

X6
Fp = 0.02
Sp = 0.002
Mp = 0.0002

Fp = 0.04
Sp = 0.004
Mp = 0.0004

X7 2 seconds 5 seconds
X8 Infinite Finite
X9 4th Time Period None

X10 3 begin 3rd Period None

Sources &
Receivers

X11 0.2 0.8
X12 2x 3x
X13 Web centric Peer-2-Peer Centric
X14 Web centric Peer-2-Peer Centric

Protocols
X15 TCP = 0.8

CTPC = 0.2
TCP = 0.2
CTPC = 0.8

X16 2 segments 8 segments
X17 43 segments > 109 segments

Simulation &
Measurement
Control

X18 200 milliseconds 1 second
X19 25 minutes 50 minutes
X20 Exp. (mean X7) 50% start early

Table 5: Level Settings Used in Sensitivity Analysis 

 

Figure 23: Possible traffic scenarios generated by various combinations of values for parameters X5, X6, X9, X10 and X19 
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The -1 level for parameter X4 entails using the Abilene 
topology shown in Fig. 22. For the +1 level of X4 we used a 
larger topology adapted from a commercial Internet Service 
Provider (ISP). The ISP topology has more routers (16 
backbone, 32 PoP, 8 D-class, 40 F-class and 122 N-class), 
more backbone links (24) and thus additional least-cost paths 
(240) in the backbone. The increased number (170) of access 
routers implies that the +1 topology will also have more 
sources and receivers than the -1 topology. Backbone paths in 
the +1 topology are determined based on costs assigned by the 
ISP in order to achieve specific traffic engineering objectives. 
Both the -1 and +1 topologies have propagation delays 
corresponding to the physical length of backbone links. Values 
for the X1 parameter scale all router speeds in the selected 
topology. Values for the X2 parameter scale propagation delays 
on all backbone links in the topology. Values for the X3 
parameter scale buffer sizes for all routers in the topology. The 
+1 value for X3 selects a buffer provisioning algorithm that 
corresponds to the recommended practice [35], i.e., a router’s 
buffer size in segments is the average rtt in a topology 
multiplied by the router’s speed (C). Following the suggestion 
of some researchers [36], the -1 value for X3 divides a router’s 

computed buffer size by the square root of the expected number 
(n) of flows transiting the router. 

Several parameters influence network traffic generated by 
sources, as illustrated in Fig. 23. Each simulation run can be 
viewed through a time line with length corresponding to the 
simulation duration assigned via parameter X19: 25 (-1 level) 
or 50 (+1 level) minutes. The simulation begins with sources 
sending files of various sizes, as determined by the values of 
parameters X5 and X6. The -1 level for X6 denotes transfer of 
fewer large files, i.e., documents, software service packs and 
movies, which implies the transfer of more Web objects. The 
+1 level for X6 increases the proportion of transfers of large 
files and decreases the proportion of Web objects. After a warm 
up period of either 10 (-1 for X19) or 20 (+1 for X19) minutes, 
the scenario unfolds over three additional time periods, each 
with a duration of either 5 (-1 for X19) or 10 (+1 for X19) 
minutes. At onset of the first time period three long-lived flows 
are started if X10 is -1. The long-lived flows are not started if 
X10 is +1. At onset of the second time period transfer of jumbo 
files may be started (-1) or not (+1) on VF paths, depending on 
the level of X9. At the onset of the third time period no further 
jumbo files will be initiated. 

Table 6: Responses measured during a sensitivity analysis of MesoNet 
 

Macroscopic Responses Flow Groups for Throughput Averages 

Category Identity Definition Number File Size Path 
Class 

Max. Rate 

Flow 
State 

Y1 Average # sources connecting 1 

Movie 

VF F 
Y2 Average # sources sending 2 VF N 
Y3 % sending flows in initial slow start 3 F F 
Y4 % sending flows in standard congestion avoidance 4 F N 
Y5 % sending flows in alternate congestion avoidance 5 T F 

 6 T N 

Congesti
on 

Y6 Retransmission rate 7 

Software 
Service 

Pack 

VF F 
Y7 Average congestion window size (segments) 8 VF N 
Y8 Aggregate # connection failures 9 F F 

 10 F N 

Delay Y9 Average round-trip time (ms) 11 T F 
Y10 Average queuing delay (ms) 12 T N 

 13 

Document 

VF F 

Work Y11 Average # flows completed per second 14 VF N 
Y12 Average # segments output per second 15 F F 

 16 F N 
Long-
Lived 
Flows 

Y13 Average throughput on long-lived flow #1 17 T F 
Y14 Average throughput on long-lived flow #2 18 T N 
Y15 Average throughput on long-lived flow #3 19 

Web 
Object 

VF F 
 20 VF N 
Flows by 

Path 
Class 

Y16 Average throughput on flows transiting VF paths 21 F F 
Y17 Average throughput on flows transiting F paths 22 F N 
Y18 Average throughput on flows transiting T paths 23 T F 

 24 T N 
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A few other parameters merit mention. Parameters X13 
and X14 vary the distribution of sources and receivers in a 
topology, which influences the proportion of flows transiting 
specific access router classes. The -1 level for these parameters 
creates Web-centric traffic, which means an increase in the 
proportion of flows transiting D-class and F-class access 
routers. The +1 level for these parameters increases the 
proportion of flows that transit N-class access routers, which is 
more consistent with peer-to-peer traffic. For this experiment, 
sources may regulate flow transmission rate using one of two 
congestion avoidance algorithms: standard TCP or compound 
TCP (CTCP). A -1 level for parameter X15 deploys more TCP 
sources in a topology, while a +1 level deploys more CTCP 
sources. Finally, a -1 level for parameter X20 causes sources to 
leave the initial thinking state after exponential delays with a 
mean determined by parameter X7. The +1 level for X20 
causes 25 % of sources to start in the connecting state and 25 % 
to leave the initial thinking state early, while the remaining 50 
% leave after a normal delay. 

As shown in Table 6, in this sensitivity analysis we 
characterized MesoNet behavior by measuring 18 macroscopic 
responses, summarizing network state in six categories, and by 
averaging throughput (in segments/second) for each of 24 flow 
groups, where a flow group is defined by three dimensions: (1) 
file size, (2) path class and (3) maximum transfer rate. We 
averaged each macroscopic response separately in the three 
time periods identified in Fig. 23, yielding a total of (3 x 18 =) 
54 macroscopic responses. We computed throughput per flow 
group separately for sources using TCP and for those using 

CTCP, yielding a total of (2 x 24 =) 48 flow-group throughput 
measurements. Thus the number of computed responses totaled 
(54 + 48 =) 102. 

A few responses from Table 6 require brief explanation. 
Recall that sources cycle through three states: thinking, 
connecting and sending. We measured the average number of 
connecting (Y1) and sending (Y2) sources; other sources are 
thinking. Sending flows begin operating under initial slow start 
rules and may then move to congestion avoidance, where 
sources implementing CTCP may cycle between standard and 
alternate rules. We used responses Y3, Y4 and Y5 to measure 
the proportion of sending flows operating under each rule set. 
Since lost segments must be resent, we computed 
retransmission rate (Y6) as a ratio: file size to data segments 
sent on a flow before receiving the last acknowledgment. We 
measured the average work/second accomplished in flows 
(Y11) and segments (Y12) for each time period. With 
responses Y13, Y14 and Y15 we estimated instantaneous 
throughput in each time period for individual long-lived flows 
transiting specified paths in the network. Similarly, we used 
responses Y16, Y17 and Y18 to estimate instantaneous 
throughput on each path class in each time period regardless of 
differences in file size and maximum transfer rate. To estimate 
instantaneous throughput we divided the number of ACKs sent 
in a measurement interval by the interval size. For flow groups, 
we computed throughput measures by dividing file size (in 
segments) by the time interval between sending the first 
segment and receiving an ACK for the last segment. 

 

 

Metric 
Class  Y# 

Network  User Behavior  Source/Receiver  Protocol 
Sim. Control & 

Meas. 

X1  X2  X3  X4  X5  X6 X7 X8 X9 X10 X11 X12 X13 X14  X15  X16  X17 X18 X19 X20

Flows 

Y1  ‐**    +**  +*      ‐** +** +**   +** 
Y2  ‐**      +**  +**    ‐** +** +**    
Y3  +**  +**  +**    ‐**    +** ‐** ‐**     +**
Y4  ‐**  ‐**  ‐**    +**    ‐** +** +** ‐*   
Y5  +**    +**        +** ‐** ‐** +**  +*  ‐**

Congestion 
Y6  ‐**  ‐**  ‐**    +**    ‐** +** +**   +** 
Y7  +*                                       
Y8  ‐**  ‐**  ‐**    +**    +** +**   +** 

Delay 
Y9  ‐**  +**  +**        +* +*    
Y10  ‐**  +**  +**        ‐* +** +**    

Aggregate 
TP 

Y11  +**  ‐*    +**  ‐**    ‐** +** +**    
Y12  +**    +**  +**  +**    ‐** ‐** +**    

Long‐Lived 
Flow TP 

Y13  +**    +*  +*      +** ‐**    
Y14  +*      +**      +** ‐**    
Y15  +**            +** ‐* ‐*     

Other Flow 
TP 

Y16  +**  ‐**    ‐**      +* +** ‐** ‐*      +** ‐*
Y17  +**  ‐**    +*      +** +** ‐** +** ‐**    +**  ‐*
Y18  +**  ‐**    ‐**      +** ‐** ‐**   +** 

Table 7: Significance of influence of 20 MesoNet parameters (columns) on 18 macroscopic responses (rows) during 2nd time period: 
blue cells indicate significance p < 0.01 and orange cells indicate significance p < 0.05, where a – or + in highlighted cells indicates 
the parameter setting that causes an increase in the corresponding response 
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5.2 MesoNet Sensitivity Analysis – Results 
We analyzed the main effects of each MesoNet parameter 

on all 102 measured responses. We conveyed these analyses 
through main effects plots, such as Fig. 8, which plots response 
y2 (average number of sending sources) in time period 2. We 
created five (only one shown here) summary tables: three tables 
(one per time period) report statistically significant effects of 
parameters on the 18 macroscopic responses and two tables 
(one for TCP and one for CTCP) report statistically significant 
effects of parameters on throughput for each of the 24 flow 
groups. For example, Table 7 provides a summary for the 18 
macroscopic responses in the 2nd time period – the row for y2 
was created from the main effects plot in Fig. 8. Cells in Table 
7 highlighted in blue and annotated with ** denote effects 
significant at the p < 0.01 level and those highlighted in orange 
and annotated with * denote effects significant at the p < 0.05 
level. Each highlighted cell also includes either a + or – to 
indicate which level for the corresponding parameter (column) 
led to a higher value in the response (row). For y2 for example, 
we find slower (-) network speed (X1), larger (+) topology 
(X4), bigger (+) file sizes (X5), shorter (-) think times (X7) and 
more (+) sources (x12) distributed in a peer-to-peer (+) pattern 
(X13) led to a larger number of sending sources. This 
corresponds to the information given in Fig. 8. A quick scan of 
Table 7 shows that network speed had significant influence on 
all 18 responses during the 2nd time period. Other significant 
parameters can be identified, as well as those that had little or 
no significant influence on the responses. Other patterns can 
also be discerned, such as the influence of particular sets of 
parameters on responses associated with network congestion. 

Table 8 condenses our five tables summarizing main 
effects for macroscopic responses (in each of three time 
periods) and for throughput per flow group (under each of two 
congestion avoidance algorithms). For each parameter (X1 to 
X11), we computed the fraction of responses influenced (Ψ), 
weighting p < 0.05 at ½ and p < 0.01 at 1, as shown with the 
following equation.  

 
        Ψ = (|{y | p < 0.01}| + ½ |{y | p < 0.05}| / |{y}|              (5) 

In Table 8 we multiply these fractions by 100 to generate the 

percent of responses influenced. All percentages are rounded. 
Table 8 displays the resulting Ψ x 100 for each parameter from 
each of the five response sets. The bottom row gives a 
weighted average Ψ x 100 for each parameter. We weighted 
each time period at 1/6 and each congestion avoidance 
algorithm at 1/4, which amounts to weighting the macroscopic 
and flow throughput responses equally. 

The main influences on model behavior included physical 
network parameters: speed (X1), propagation delay (X2), 
buffer provisioning (X3) and topology (X4), with network 
speed being most influential. The number (X12) and 
distribution (X13) of sources, along with file size (X5) and user 
think time (X7) also showed significant influence on model 
behavior. Lesser influence arose from the initial cwnd size 
(X16) and sst (X17). Other parameters exhibited little or no 
influence on MesoNet behavior. 

To confirm these findings, we conducted additional 
sensitivity analyses [1] using different level settings, extending 
the range between the chosen values. The findings reported 
here were robust across the sensitivity analyses we conducted. 
The information obtained from the sensitivity analyses 
confirmed the understanding of domain experts regarding key 
factors influencing behavior in real networks. This boosted 
confidence in our MesoNet model. Further, our sensitivity 
analyses identified the seven most significant parameters to 
vary in subsequent experiments to compare congestion control 
procedures proposed for the Internet. We address these 
experiments next. 

6   CONGESTION CONTROL EXPERIMENTS 
To compare proposed TCP replacements, we conducted 

five experiments, in two categories, as identified and described 
in Table 9. While we present these experiments as an integral 
whole, in reality we adopted an incremental experiment design 
process, where results from one experiment guided design of 
the next experiment and so on. In this way, interesting or 
significant behaviors arising in one experiment could be more 
fully explored in subsequent experiments. 

We began comparing proposed TCP replacements with an 
experiment designed to investigate how the algorithms react to 

Table 8: Summary of significance of influence (Ψ x 100) of 20 MesoNet parameters (columns) on 18 macroscopic responses 
for the three time periods (first three rows) identified in Fig. 24 and average throughput for the 24 flow groups identified in 
Table 5 under TCP and CTCP congestion avoidance procedures (rows four and five), and the weighted average Ψ x 100, with 
each time period weighted 1/6 and each congestion avoidance algorithm weighted 1/4 
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and recover from spatiotemporal congestion. We decided to 
model a large fast network. This decision proved expensive, as 
it required over 16,500 processor hours (> 2 years on a single 
computer) to simulate each of the seven proposed TCP 
replacements. By using 48 processors in parallel, we completed 
the required simulations in only about 2 weeks. 
 
Table 9: Summary description of five experiments grouped into 
two categories that each focused on one particular question 
 
How do the proposed TCP replacements react to and 
recover from spatiotemporal congestion? 

Experiment #1a 

Compared seven proposed TCP 
replacements (excluded FAST-AT) in a large 
(up to 278,000 sources), fast (up to 192 
Gbps backbone) network; Web browsing 
users; 25 minutes simulated; three 5-minute 
time periods; large (> 1 billion segments) 
initial sst; all sources use the same 
congestion control algorithm 

Experiment #1b 

Same as #1a, except; smaller (up to 27,800 
sources) and slower (up to 28.8 Gpbs 
backbone) network and low (100 segments) 
initial sst. (Added FAST-AT) 

 
How do the proposed TCP replacements improve flow 
throughputs and affect competing TCP flows? 

Experiment #2a 

Compared eight proposed TCP 
replacements in a small (up to 26,085 
sources), slow (up to 38.4 Gpbs backbone) 
network; Web browsing users and 
interspersed users who download software 
and movies; 60 minutes simulated; large (> 
1 billion segments) initial sst; some sources 
use standard TCP congestion control 
procedures and some sources use one of the 
proposed congestion control procedures 

Experiment #2b Same as #2a except for low (100 segments) 
initial sst. 

Experiment #2c 
Same as #2a except for a larger (up to 
261,792 sources) and faster (up to 384 Gbps 
backbone) network. 

 
Guided by the results from our sensitivity analysis, we 

selected six parameters to vary in experiment #1a. Table 10 
shows the chosen parameters and the two level settings for 
each. We fixed the remaining parameters, as shown in Table 11. 
All of our experiments used the topology (X4) shown in Fig. 
22. In experiment #1a we chose to omit FAST-AT because the 
designers of FAST indicated that the α-tuning variant was not 
used generally. Among the seven most significant parameters 
identified in our sensitivity analyses, we decided to exclude the 
multiplier (X12) on the number of sources because varying the 
source distribution pattern also varied (from 174,600 to 
278,000) the number of sources. We selected 1000 as the target 

number of sources under each access router, and we fixed the 
multiplier for number of sources (X12) to 2, which boosted the 
target number of sources under each access router to 2000, 
which was appropriate for the network speeds simulated. 

 
Table 10: Parameters varied in experiment #1a and the values 
selected for the PLUS and MINUS levels 
 
 Parameter Definition PLUS (+1) MINUS (-1) 
X1 Network Speed 8000 s/ms 4000 s/ms 
X2 Prop. Delay 

Multiplier 
2 1 

X3 Buffer Provisioning rtt x C rtt x C/sqrt(n) 
X5 Avg. File Size 100 segs. 50 segs. 
X7 Avg. Think Time 5 s 2.5 s 
X13 Source Distribution .33/.33/.33 .1/.6/.3 

 
Table 11: Fixed parameters and values for experiment #1a 

 
 Parameter Fixed Value 
X4 Topology Abilene – SPF Delay 
X6 Large Files Fp = 0.1 & Fx = 10 
X8 Patience infinite 

X9 
Selected 
Spatiotemporal 
Congestion 

4th Time Period 

X10 Long-lived flows 3 begin in 3rd Time Period 
X11 Prob. Fast Source 0.4 
X12 Number Sources 2 x 1000 
X14 Dist. of Receivers 0.6/0.2/0.2 
X15 Congestion Control Algorithm Under Test 
X16 Initial cwnd size 2 segments 
X17 Initial sst 2**32/2 segments 
X18 Meas. Interval size 200 ms 
X19 Duration 25 minutes 
X20 Startup Pattern 50 % start early 
 

We set the probability of large file sizes to reflect a 10 % 
chance that Web browsing users would download a document 
of interest. Somewhat unrealistically, we assigned users infinite 
patience, which factored out user behavior as a means of 
congestion control, allowing us to focus directly on the 
congestion avoidance algorithms we were investigating. We set 
up spatiotemporal congestion to occur in the 4th of five 
simulated time periods because we were investigating the 
ability of congestion control procedures to react to and recover 
from congestion. 

In MesoNet, the state of long-lived flows is recorded in 
quite some detail. In order to access those details, we started 
three long-lived flows, transiting different portions of the 
topology, in the third time period. We selected a rather high 
probability (0.4) of sources and receivers connecting to the 
network at high speed because the motivation of the proposed 
TCP replacements was to enable corresponding users with fast 
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connections to realize better throughput than standard TCP. The 
choice of congestion control algorithm (X15) was not fixed; 
instead, we simulated each of the 7 proposed congestion 
control algorithms against all of the parameter combinations 
created from Table 10.  

For the variable parameters in Table 10, we used a 26-1 OFF 
design, which reduced the number of simulated parameter 
combinations from 64 to 32. The 32 simulated conditions 
created: network backbone speeds of either 192 or 96 Gbps, 
average propagation delays of 41 or 81 ms (200 ms maximum) 
and a wide range of buffer size combinations, influenced by 
both network speed and propagation delay. These parameter 
combinations generated varying levels of network congestion, 
ranging from no segment loss to 50 % segment loss. The 
balance and orthogonality of the experiment design ensured 
that half the combinations led to a congested network and half 
did not. 

While simulating the parameter combinations, we 
measured 45 responses, many of which we described above. Of 
particular note, we added some aggregate measures to record 
the total number of segments flowing into and out of the 
network and the total number of flows competed. We also 
measured buffer utilization in selected access routers and 
average throughput on the three long-lived flows. 

Applying cluster analysis to the 45-dimensional response 
space for each of the 32 conditions identified algorithm 3 
(FAST) as an outlier in many conditions (e.g., see Fig. 10). The 
condition-response summary shown in Fig. 13 also shows 
algorithm 3 was an outlier for many responses under many 
conditions. Further, as shown in Fig. 14, response y6 
(retransmission rate from Table 6) was particularly high for 
FAST under many conditions, and the retransmission rate 
disparity for FAST increased with increasing network 
congestion. Examination of cwnd traces on long-lived flows 
revealed that the FAST congestion avoidance algorithm 
oscillates cwnd size under spatiotemporal congestion, with the 
oscillations increasing with increasing congestion. 

Results from this experiment also revealed other valuable 
information. Under low or no congestion, all congestion 
control procedures, including standard TCP, provided identical 
throughputs. This result occurred because in the absence of 
segment losses flows can complete transfer of all segments 
during the initial slow start phase, provided the initial sst is 
large enough, as was certainly the case in experiment #1a. 
Further, under high congestion, most of the proposed TCP 
replacements (excepting FAST) exhibited similar rates of 
segment loss. This result occurred because these proposed 
procedures contained a mode switch that triggers the use of 
standard TCP congestion avoidance procedures under periods 
of heavy congestion, which tend to drive the cwnd size below 
the mode switching thresholds. 

With this information in hand, we designed experiment 
#1b, which entailed three main changes from experiment #1a: 
(1) we reduced the initial sst to 100 segments, (2) we reduced 
the network size and speed by an order of magnitude, and (3) 

we included FAST-AT. We took the first step to confirm 
whether the setting of the initial sst was important under low 
network congestion. We took the second step to confirm that 
we could generate useful information with fewer computation 
resources (because slower, smaller networks could be simulated 
more quickly).  We took the third step because we wanted to 
determine if FAST-AT produced the same macroscopic 
behavior as FAST. We made no other changes to the 
experiment parameters adopted in experiment #1a. 

Results for experiment #1b showed that FAST-AT exhibits 
indistinguishable behavior from FAST, and quite distinct from 
the other proposed TCP replacements we investigated. Results 
from experiment #1b also found that the behavior of the other 
proposed TCP replacements were largely indistinguishable 
from each other, even when the initial sst was reduced to 100 
segments. This, perhaps unexpected, result can be attributed to 
the fact that average file sizes on most flows were at or below 
100 segments, and so could still be transferred within the initial 
slow start phase, where changes to congestion avoidance 
procedures would make no difference. This attribution was 
verified by comparing performance on long-lived flows, which 
have unlimited length. On these flows, during time period 3, 
before the onset of spatiotemporal congestion, all the proposed 
TCP replacements provided much greater throughput than 
standard TCP. This occurs because once the cwnd reaches 100, 
TCP moves from the exponential increase of slow start to the 
linear increase of congestion avoidance, while all the proposed 
TCP replacements increase transmission rate much faster than 
linear. Among the proposed procedures, FAST reaches high 
throughput most quickly. On the other hand, when the 4th time 
period arrives and spatiotemporal congestion begins, the 
throughput for all congestion control procedures is driven to a 
very low level. However, upon cessation of spatiotemporal 
congestion, our results showed that some of the proposed 
congestion control procedures recovered high transmission rate 
more quickly than others, and all of them recovered more 
quickly than standard TCP. 

Results from experiments #1a and #1b led us to investigate 
two other questions. What benefit can users expect from 
adopting each of the proposed TCP replacements, and what will 
be the cost to users who continue using standard TCP? To 
investigate these questions we used a 29-4 OFF design to 
construct 32 parameter combinations composing experiment 
#2a. We used the same design for experiment #2b, changing 
only the sst, as indicated in Table 13. In Table 12 we specify the 
two levels for each of the nine variable parameters. 

Since experiments #1a and #1b showed that users could 
achieve throughput improvements only on files larger than Web 
objects, we increased the variety of file sizes to include not 
only documents but also software service packs and movies. 
We fixed the multipliers for these larger files to Fx = 100, Sx = 
1000 and Mx = 10,000. Table 13 gives other fixed parameters 
for the experiment. 

In these experiments we did away with long-lived flows 
and with spatiotemporal congestion, and we considered only a 
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single time period, lasting 60 minutes. We adopt a small, slow 
network in order to ease the computation burden from 
simulating one hour of network operation. As in all 
experiments, we set the initial cwnd to 2 segments (a common 
value in the Internet [37]) and the measurement interval to 200 
ms (the maximum rtt). We also start half the sources early in 
order to limit the startup transient. We chose probabilities for 
the distribution of sources and receivers that gave interesting 
flow patterns, consistent with a Web-centric Internet. 
 
Table 12: Parameters varied in experiments #2a and #2c, along 
with the values selected for the PLUS and MINUS levels 
   
 Parameter PLUS (+1) MINUS (-1) 
X1 Network Speed 1600 s/ms 800 s/ms 
X2 Prop. Del. Multiplier 2 1 
X3 Buffer Provisioning rtt x C rtt x C/sqrt(n) 
X5 Avg. File Size 150 segs. 100 segs. 

X6 Large Files 

Fp = 0.04 
Sp = 0.004 

Mp = 
0.0004 

Fp = 0.02 
Sp = 0.002 

Mp = 0.0002 

X7 Think Time 7.5 s 5 s 
X11 Prob. Fast Interface 0.7 0.3 
X12 Num. Src./Rcv. Mul. 3 2 
X15 Prob. Not Std. TCP 0.7 0.3 

 
Table 13: Fixed parameters for experiments #2a and #2b 

 
 Parameter Value 
X4 Topology Abilene – SPF Delay 
X8 Patience infinite 

X9 Spatiotemporal 
Congestion none 

X10 Long-lived flows none 
X13 Dist. Srcs. 0.1/0.6/0.4 
X14 Dist. Rcvs. 0.6/0.2/0.2 
X16 Initial cwnd 2 segments 
X17 Initial sst 2**31/2 (#2a) or 100 (#2b) 
X18 Meas. Int. Size 200 ms 
X19 Sim. Dur. 60 minutes 
X20 Startup Pattern 50 % start early 

 
Experiments #2a and #2b considered a network with a 

mixture of flows using standard TCP competing with flows 
using each of the proposed TCP replacements, while 
transferring files of quite varying sizes. This allows us to 
investigate the conditions under which the proposed TCP 
replacements will give users better throughput and also to 
determine how the proposed TCP replacements will influence 
the throughput for users of standard TCP. For this reason, we 
measure the throughput obtained on each of 24 flow groups 
(see Table 6) when using standard TCP or a proposed TCP 
replacement. 

Experiment #2a revealed (see Fig. 11) that, under large 
initial sst, throughputs for the 24 flow groups were 
differentiated based on three main factors: (1) network speed, 
(2) propagation delay and (3) file size. These results agreed 
with results from experiment #1a, but expanded the results to 
larger file sizes, including download of software updates and 
movies. 

Experiment #2a did discern some throughput differences 
for the largest files, i.e., movies, flowing over the fastest (VF) 
paths with the fastest interface speeds (i.e., 1 Gbps). For 
example, Fig. 24 shows seven biplots comparing throughputs 
achieved with each proposed TCP replacement (x axis) against 
throughputs achieved on competing standard TCP flows (y 
axis). Each biplot includes a diagonal line representing equal 
throughput for flows using standard TCP and flows using the 
proposed TCP replacement. Four of the proposed TCP 
replacements (CTCP, FAST, FAST-AT and HTCP) achieved 
approximately equal throughput with standard TCP. On the 
other hand, under some conditions, three of the proposed TCP 
replacements (BIC, HSTCP and Scalable TCP) achieved higher 
throughputs than standard TCP. Detailed examination revealed 
that BIC, HSTCP and Scalable TCP achieved higher 
throughputs than standard TCP under congested conditions, 
with the throughput differential increasing with increasing 
congestion. 

Experiment #2b lowered the initial sst to 100 segments, 
which again revealed the significant influence of the sst on 
throughput for large files traversing very fast, uncongested 
network paths. Fig. 25 shows two sets of seven bars. The 
leftmost set, labeled y2(u), graphs throughputs achieved on 
flows using each of the proposed TCP replacements. The 
rightmost set, labeled y16(u), graphs throughputs achieved on 
competing flows using standard TCP. The legend to the right of 
the graph indicates each of the seven bars represents a specific 
TCP replacement. In Fig. 25 the flows being compared were 
transferring movies at potentially fast speed (up to 1 Gbps) 
over very fast, uncongested (VF) network paths. The y axis 
plots the throughput achieved divided by the maximum 
achievable throughput. Examining the rightmost set of bars 
shows that standard TCP flows provide only 20 % of the 
available throughput, the same empirical performance observed 
by researchers measuring TCP throughput on high speed, high 
delay network paths [15]. Examining the leftmost set of bars 
shows that all of the proposed TCP replacements provide 
significantly higher throughput for movies transferred on VF 
paths, with FAST and FAST-AT providing highest throughput, 
followed by CTCP. 

To construct a fuller picture comparing throughput for 
flows using proposed TCP replacements and competing flows 
using standard TCP, we conducted a rank analysis across all 24 
flow groups identified in Table 6 and all 32 parameter 
combinations. For each pair of flow group and condition, we 
ordered throughputs achieved by each proposed TCP 
replacement from high (7) to low (1). Similarly, we ordered 
throughputs achieved by standard TCP when competing against 
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each proposed TCP replacement. Then we averaged the rank 
related to each proposed TCP replacement, and we also 
computed the standard deviation in rank. We would then expect 
an ideal proposed TCP replacement to achieve high ranking 
(i.e., give good throughput for flows using the replacement and 
for standard TCP flows competing with the replacement) and 
low standard deviation (i.e., provide good throughputs across 
all flow groups and conditions). An ideal TCP replacement 
would be located in the lower right corner on a plot of average 
rank (x axis) vs. standard deviation in rank (y axis). 

We conducted the rank analysis separately for experiment 
#2a (high initial sst) and #2b (low initial sst). We then plotted 
the average rank (x axis) against the standard deviation (y axis) 
for each of the experiments. For experiment #2a, Fig. 26 plots 
the average and standard deviation in rank across all flow 
groups and conditions for each proposed TCP replacement. 
Here the news is mixed: HTCP and CTCP provided the highest 
ranking throughputs, but also exhibit relatively high variability 
in standard deviation. This indicates the HTCP and CTCP 
provided good throughputs for many flow groups under most 
conditions, but there are some flow groups or conditions for 

which they do not perform very well. A look at the detailed 
rankings indicates that HTCP and CTCP provided highly 
ranked throughputs for small file sizes and for competing TCP 
flows, but they do not rank as high as some of the other 
proposed TCP replacements on larger files. 

For experiment #2b Fig. 27 plots the average and standard 
deviation in rank for each proposed TCP replacement. Here, 
CTCP continued to rank quite highly, while also reducing the 
standard deviation in rank over the case of a high initial sst. 
FAST-AT, which was third highest ranked in Fig. 26, ranked 
nearly as high as CTCP, but incurred a higher standard 
deviation in rank. BIC, HSTCP and Scalable TCP exhibited 
low ranks in both Figs. 26 and 27. 

In experiment #2c, we repeated experiment #2a, but 
increased network speed and size by an order of magnitude. We 
took this step to ensure that the results would not change with 
increasing network size and speed. The results for experiment 
#2c generally matched those from experiment #2a. FAST-AT, 
CTCP and HTCP provided the three highest ranking 
throughputs, but in experiment #2c FAST-AT proved highest 

Figure 24: Seven biplots, where each biplot compares throughput (in units of 100 segments per second) for movie flows transferred 
over very fast paths with fast interface speeds using a proposed TCP replacement (x axis) with throughput on identical competing 
flows using standard TCP  
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ranking of the three and had the lowest standard deviation in 
rank. 
 

LegendLegendLegend

 
Figure 25: Fraction (y axis) of maximum available throughput 
achieved when transferring movies over uncongested paths 
with a maximum rate of 1 Gbps – each of the leftmost seven 
bars – y2(u) – represents flows using one of the proposed 
replacements for TCP (see legend), while each of the rightmost 
seven bars – y16(u) – represents flows using standard TCP and 
competing with flows using one of the proposed TCP 
replacements (see legend)  
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Figure 26: Average throughput rank (x axis) vs. standard 
deviation in throughput rank (y axis) for flows using each 
proposed TCP replacement and for competing flows using 
standard TCP – high initial sst 
 

Here, we presented only some key results from our 
congestion control experiments. For more details, especially 
with respect to questions of causality, we refer the reader to our 
full study [1]. In the discussion that follows we draw on 
information presented in that study, as well as the subset 
presented in this paper. 
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Figure 27:  Average throughput rank (x axis) vs. standard 
deviation in throughput rank (y axis) for flows using each 
proposed TCP replacement and for competing flows using 
standard TCP – low initial sst 

7   DISCUSSION 
As demonstrated above, our methods advanced the state of 

the art in evaluating Internet congestion control procedures, 
allowing exploration of proposed TCP replacements under a 
wide range of conditions for a network of substantial size. Our 
methods also yielded another significant advance over the 
previous state of the art, where researchers decided a priori on 
what basis proposed TCP replacements would be compared. 
Our investigation began with a single, somewhat vague, 
question: would it be safe to deploy various proposed TCP 
replacements on the Internet? Subsequently, the 
multidimensional data analysis methods we applied enabled us 
to identify key characteristics that differentiate proposed TCP 
replacements. We found these characteristics from analysis of 
experiment data, and without a priori intent. Thus, our analysis 
methods led us to uncover the measures on which proposed 
congestion control procedures should be compared. Our 
analysis methods also enabled us to identify a specific 
combination of conditions that must hold for users to realize 
improved throughput from proposed TCP replacements. We 
discuss these outcomes below. 
 
7.1 Key Differentiators 

Our results showed that proposed congestion control 
procedures for the Internet can be distinguished by three main 
characteristics: (1) increase rate, (2) loss/recovery processing 
and (3) fairness. We address each of these topics in turn. 

7.1.a Increase Rate. One of the key questions for any data 
transport protocol is: How fast can the maximum available 
transfer rate be achieved on a network path? Assuming no 
congestion protocols that can quickly attain the maximum rate 
will spend the largest portion of a file transfer at that rate. Each 
TCP flow begins without any knowledge of the maximum 
available transfer rate. For this reason, TCP specifies an initial 
slow start process where the source transmits slowly but then, 
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as feedback arrives from a receiver, quickly increases the 
transmission rate until reaching a specified (initial) sst or 
encountering a loss. This initial slow start process is not altered 
by any of the proposed TCP replacements that we studied. 

Assuming no (or low) congestion, the setting of the initial 
sst can be quite important when comparing throughputs 
experienced by users on TCP flows with throughputs for users 
on flows operating under other congestion control procedures.3 
When initial sst is set arbitrarily high, on average all flows 
achieve maximum transfer rate with the same quickness. Under 
such situations, the throughput seen on TCP flows and flows 
running alternate procedures appears quite comparable. Flows 
transporting short files (e.g., Web objects and document 
downloads) tend to complete while in the initial slow start 
phase, which means that alternate congestion control 
procedures (restricted to the congestion avoidance phase) do 
not operate. Even flows conveying long files can operate for 
extended periods under initial slow start because such flows do 
not enter congestion avoidance until encountering a segment 
loss. 

When initial sst is set low (e.g., 43 segments) all of the 
proposed TCP replacements that we studied increase 
transmission rate more quickly than the linear increase 
provided by standard TCP. Thus, under low congestion, when 
sst is set low compared to the size of files transferred users on 
TCP flows will see much lower throughput than users on flows 
operating under the proposed TCP replacements. The larger the 
file sizes being transferred the larger the throughput advantage 
of the proposed TCP replacements, which each provide varying 
degrees of improvement over standard TCP. These throughput 
variations can be tied directly to the speed with which each of 
the proposed procedures reaches maximum transmission rate. 

Under conditions of heavy congestion the setting of initial 
sst matters less because initial slow start terminates upon the 
first segment loss and then a flow enters congestion avoidance, 
which is where the proposed TCP replacements differ from 
standard TCP. In such situations, the main difference in 
throughput experienced by users relates to the loss/recovery 
procedures defined for each of the proposed TCP replacements. 
We turn to this topic next. 

7.1.b Loss/Recovery Processing. Two key questions arise 
when a data transport protocol experiences congestion. (1) 
How much should the protocol reduce transmission rate? (2) 
How quickly should the protocol increase transmission rate 
after a reduction? Standard TCP congestion avoidance 
procedures reduce transmission rate by one-half on each 
segment loss. Subsequently, TCP congestion avoidance 

                                                           
3 Note that on real TCP flows receivers may convey a receiver window 

(rwnd) that can restrict throughput quite severely because sources pace 
transmission based on the minimum of the congestion window (cwnd) and 
rwnd. The following may hold: rwnd < cwnd. In our studies, we assume an 
infinite rwnd in order to compare the effects of congestion control procedures 
adjusting the cwnd. The throughput on many TCP flows in a real network might 
well be constrained by rwnd. In such cases, the proposed TCP replacements we 
studied would provide little advantage over standard TCP. 

procedures linearly increase transmission rate. The proposed 
TCP replacements that we studied specify various algorithms 
for transmission rate reduction and for subsequent rate 
increase. 

One group of proposed procedures (Scalable TCP, BIC4 
and HSTCP) reduce transmission rate less than standard TCP 
after a segment loss. As a result, these procedures tend to retain 
a higher transmission rate and associated buffers than standard 
TCP. Smaller rate reduction can allow these procedures to 
provide established flows with higher throughputs following 
segment losses. We found this effect to increase with increasing 
loss rate and also file size. In addition, Scalable TCP, BIC and 
HSTCP can be somewhat unfair (as explained below) to 
algorithms (such as TCP) that exhibit a more reduced 
transmission rate following a loss, as well as to flows that have 
had insufficient time to attain a high transmission rate prior to a 
loss. 

A second group of proposed procedures (CTCP, FAST and 
FAST-AT) reduce transmission rate in half following a loss. 
HTCP reduces transmission rate variably, between 20 and 50 
%, depending on conditions. To obtain higher throughput, these 
algorithms increase transmission rate more quickly than 
standard TCP following a rate reduction. The rate of increase 
varies among the procedures. Typically, HTCP and CTCP are 
less aggressive than FAST and FAST-AT when increasing 
transmission rate after a reduction. Though, FAST-AT will be 
less aggressive than FAST when sufficient congestion exists to 
force a reduction in the  parameter. An aggressive rate 
increase following a rate reduction can induce additional losses 
on a path. Where such losses affect TCP flows, the TCP linear 
recovery procedures lead to lower throughputs. Under severe 
congestion, CTCP and HTCP can provide better throughput 
than FAST and FAST-AT, which underperform standard TCP. 

In areas and at times of extreme congestion, most of the 
proposed TCP replacements we studied include rules to adopt 
standard TCP congestion avoidance behavior. These rules 
appear motivated by the theory that, when congestion is 
sufficiently severe, existing TCP behavior provides the best 
approach to fairly share limited available transmission capacity. 
The most typical technique employed is to set a low-window 
threshold. When the cwnd is below the threshold then standard 
TCP congestion avoidance procedures are used. When cwnd is 
above the threshold then replacement congestion avoidance 
procedures are used. Specific values for the threshold vary 
among the proposed TCP replacements. The combination of 
different thresholds with different file sizes can lead to modest 
variation in user throughputs among the proposed TCP 
replacements. 

HTCP handles adaptation to TCP procedures somewhat 
differently than the other proposed TCP replacements we 
investigated. After a loss, HTCP adopts linear rate increase for 
                                                           

4 Note that on repeated losses occurring close in time, BIC can reduce 
cwnd substantially more than standard TCP; thus, on paths with very severe 
congestion BIC can actually provide lower throughput than TCP and can also 
occupy fewer buffers. 
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a time. The time period is an HTCP parameter, set in these 
experiments to one second. We found that HTCP then adapts to 
TCP linear increase after every loss, regardless of file size or 
cwnd value. For larger files, which tend to have higher cwnd 
and to experience more losses during transmission, this 
approach tends to lower throughput significantly relative to 
other proposed TCP replacements, which do not adopt periods 
of linear increase after every loss. 

FAST and FAST-AT do not use standard TCP congestion 
avoidance procedures under any circumstances. In times and 
areas of heavy congestion, failure to adopt less aggressive rate 
increase can lead to oscillatory behavior and to an associated 
increase in loss rate. Increased losses lead to lower user 
throughputs. FAST-AT does somewhat better under heavy 
congestion because the  parameter can be lowered, causing 
less aggressive rate increases. Still, under many conditions, 
FAST-AT exhibits a similar increased loss rate to FAST. 

7.1.c TCP Fairness. TCP fairness denotes the effect where 
competing flows transiting a shared bottleneck path in the 
Internet all receive an equal share of available throughput. 
Comparing proposed TCP replacements with respect to TCP 
fairness can be somewhat difficult because the proposed 
replacements are designed to give better throughput than 
standard TCP for large file transfers on high-speed, long-delay 
paths. Thus, for example, all of the proposed TCP replacements 
can increase transmission rate more quickly than standard TCP 
given low initial sst and large file sizes. Further, all proposed 
TCP replacements take steps to provide loss/recovery 
improvements over standard TCP congestion avoidance 
procedures. On the other hand, most of the proposed TCP 
replacements take steps to adopt TCP congestion avoidance 
procedures when congestion is sufficiently high. Given these 
factors, one would expect all the proposed TCP replacements to 
provide better throughput than standard TCP under optimal 
conditions, and to perform no worse than standard TCP under 
suboptimal conditions. The usual measures of TCP fairness do 
not apply in such circumstances because they would tend to 
measure how much of a throughput advantage given proposed 
replacements provide over standard TCP. Instead, we measured 
relative TCP fairness by ranking the average throughput 
achieved by standard TCP flows when they competed with 
each proposed TCP replacement under the same conditions. We 
considered the average rank across four file sizes: Web objects, 
documents, software service packs and movies. In this way, we 
could elicit the relative TCP fairness of the proposed TCP 
replacements. 

We found that CTCP and HTCP were most fair to TCP 
flows. We found FAST-AT third fairest to TCP flows under 
high initial sst. Under low initial sst, FAST-AT, because of its 
quick increase in transmission rate after passing the initial sst, 
proved more unfair to TCP flows. Injecting more FAST-AT 
segments into the network induced more losses in TCP flows, 
which could not recover as quickly. 

We found Scalable TCP, BIC and FAST to be most unfair 
to standard TCP flows. Established Scalable and BIC flows for 

large files tended to maintain higher transmission rates after 
losses, while competing TCP flows cut transmission rates in 
half. By maintaining higher transmission rates and, thus, more 
segment buffers, Scalable and BIC flows induced more losses 
in TCP flows. FAST could recover more quickly from losses 
than TCP flows and so FAST flows could occupy more buffers 
and induce more losses in TCP flows. In addition, because of 
its quick increase in transmission rate upon entering congestion 
avoidance, FAST exhibited unfairness under low initial sst. 

HSTCP appeared moderately fair to TCP flows, especially 
under conditions of lower congestion and under low initial sst. 
HSTCP showed TCP unfairness, similar to Scalable TCP, under 
conditions of heavy congestion. 

We believe that Scalable TCP, BIC and HSTCP could also 
be unfair to flows that are newly arriving. Given that some 
large flows operating under Scalable TCP, BIC and HSTCP 
have established relatively high transmission rates and 
associated large buffer states and given that newly arriving 
flows induce losses, the established flows will not reduce 
transmission rate very much and will maintain large buffer 
states. The newly arriving flows will be forced into congestion 
avoidance on the loss. Further, Scalable TCP and HSTCP do 
not increase transmission rate very fast early in a flow’s life, so 
newly arriving flows of these types can face difficulty 
increasing transmission rate. 
 
7.2 Utility Bounds of Proposed TCP Replacements 

We showed that proposed TCP replacements could provide 
increased throughput for users, but only under specific, 
bounded circumstances. First, the rwnd must not be 
constraining flow transmission rate. Second, a flow must be 
using a relatively low initial sst. Third, a flow must be 
transmitting a large file. Fourth, a flow’s segments must be 
transiting a relatively uncongested path (i.e., experiencing only 
sporadic losses) or else users must be willing to accept marked 
unfairness (e.g., as seen with Scalable TCP) in trade for 
increased throughput.  

 
7.3 Safety 

 Are there significant costs that might offset the modest 
benefits associated with deploying proposed TCP 
replacements? We can answer this question only in part 
because we simulated networks where sources used either a 
single congestion control regime or where some sources used a 
selected TCP replacement while other sources used standard 
TCP. There could be additional cautionary findings that arise 
from a heterogeneous mixture of proposed TCP replacements. 
We postpone such investigations to future work. 

For most proposed TCP replacements, under most 
conditions we found little significant change in macroscopic 
network characteristics. One exception relates to FAST and 
FAST-AT. In spatiotemporal regions with high congestion, 
where there were insufficient buffers to support the flows 
transiting specific routers, FAST and FAST-AT exhibited 
oscillatory behavior where the flow cwnd increased and 
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decreased rapidly with large amplitude. Under these conditions, 
the network showed increased loss and retransmission rates, a 
higher number of flows pending in the connecting state and a 
lower number of flows completing over time. We recommend 
additional study of FAST and FAST-AT prior to widespread 
deployment and use on the Internet. 

8   CONCLUSIONS 
The Internet consists of millions (someday billions) of 

interconnected components that may be changed independently. 
For example, every time vendors of major operating systems 
introduce software updates, millions of users download new 
software modules into computers connected to the Internet. As 
another example, users may download software to support new 
functions, such as social networking or distributed gaming. At 
the current state of the art, system designers lack techniques to 
predict global behaviors that may arise in the Internet as a 
result of interactions among existing and altered software 
components. Similarly, hardware faults and unexpected usage 
patterns may occur within the Internet. Engineers have 
insufficient methods and tools available to forecast global 
behaviors and resulting effects on individual users. The study 
described here aimed to improve existing knowledge about a 
combination of methods and tools that could be applied to 
understand and predict behavior in such complex information 
systems. 

To give our study a concrete context, we selected a 
challenging problem of current interest and relevance for the 
Internet at large. Specifically, we studied likely consequences 
for macroscopic behavior and for individual users should any 
of several proposed mechanisms be introduced to augment or 
replace congestion control procedures in standard TCP, which 
is currently deployed to regulate the rate of information transfer 
among computers connected to the Internet. Previously, such 
proposed changes have been studied on individual long-lived 
flows using analytical methods and also studied using 
simulation and empirical measurements in small topologies 
with limited types of data traffic. Though researchers and 
engineers would like to predict the effects of such changes on 
macroscopic behavior and on individual users, no techniques 
were previously available to make such extrapolations to large, 
fast topologies transporting hundreds of thousands of 
simultaneous data transfers of various sizes under a wide range 
of network conditions. The study discussed here applied 
modeling and analysis techniques to make such extrapolations 
for seven proposed replacements for standard TCP congestion 
control procedures. 

We applied techniques often used by scientists at NIST 
when studying physical systems. First, we proposed an abstract 
simulation model, in this case representing a data 
communications network. Second, we adopted 2-level-per-
factor experiment designs, which considered each parameter at 
only two values, as compared with the billion or so values that 
each parameter could possibly take on. Third, we leveraged 
orthogonal fractional factorial (OFF) experiment designs that 

enabled us to model a sparse but balanced set of parameter 
combinations spread widely throughout the space of possible 
combinations. Reducing the number of parameters, parameter 
levels and combinations enables feasible simulation of large 
networks under a wide range of conditions. Third, we used a 
variety of statistical analysis and visualization techniques 
designed to explore multidimensional data sets. We 
demonstrated that our combination of modeling and analysis 
techniques allowed us to predict the influence of seven 
proposed TCP replacements on macroscopic network behavior 
and on individual user experience. 

Future work remains to apply our methods to large 
distributed systems in other domains, as we are doing currently 
with respect to infrastructure Cloud computing systems. Early 
returns suggest that the methods described here transfer quite 
readily among various types of large distributed systems. 
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