
 1 Copyright © 2011 by ASME

Proceedings of the 2011 Pressure Vessels & Piping Division (PVPD) Conference
ASME 2011 PVP-MF20

July 17-22, 2011, Baltimore, Maryland, USA

PVP 2011-57382 (6.1)

PREDICTING MACROSCOPIC DYNAMICS IN LARGE DISTRIBUTED SYSTEMS

K. L. Mills & J. J. Filliben
NIST

Gaithersburg, MD, USA

D.-Y. Cho
NIH

Bethesda, MD, USA

E. J. Schwartz
Carnegie-Mellon University

Pittsburgh, PA, USA

ABSTRACT
Society increasingly depends on large distributed systems,

such as the Internet and Web-based service-oriented
architectures deployed over the Internet. Such systems
constantly evolve as new software components are injected to
provide increased functionality, better performance and
enhanced security. Unfortunately, designers lack effective
methods to predict how new components might influence
macroscopic behavior. Lacking effective methods, designers
rely on engineering techniques, such as: analysis of critical
algorithms at small scale and under limiting assumptions;
factor-at-a-time simulations conducted at modest scale; and
empirical measurements in small test beds. Such engineering
techniques enable designers to characterize selected properties
of new components but reveal little about likely dynamics at
global scale.

In this paper, we outline an approach that can be used to
predict macroscopic dynamics when new components are
deployed in a large distributed system. Our approach combines
two main methods: scale reduction and multidimensional data
analysis techniques. Combining these methods, we can search a
wide parameter space to identify factors likely to drive global
system response and we can predict the resulting macroscopic
dynamics of key system behaviors.

We demonstrate our approach in the context of the
Internet, where researchers, motivated by a desire to increase
user performance, have proposed new algorithms to replace the
standard congestion control mechanism. Previously, the
proposed algorithms were studied in three ways: using
analytical models of single data flows, using empirical
measurements in test beds where a few data flows compete for
bandwidth, and using simulations at modest scale with a few
sequentially varied parameters. In contrast, by applying our
approach, we simulated configurations covering four-tier
network topologies, spanning continental and global distances,
comprising routers operating at state-of-the-art speeds and

transporting more than 105 simultaneous data flows with
varying traffic patterns and temporary spatiotemporal
congestion. Our findings identify the main factors influencing
macroscopic dynamics of Internet congestion control, and
define the specific combination of factors that must hold for
users to realize improved performance. We also uncover
potential for one proposed algorithm to cause widespread
performance degradation. Previous engineering studies of the
proposed congestion control algorithms were unable to reveal
such essential information.

1 INTRODUCTION

Every month millions of users update their computers with
new software components, designed to add new functionality
or to address security flaws. Could one of these updates lead to
widespread performance degradation? If so, could such
performance degradation be predicted a priori? As we show in
this paper, loading new congestion control algorithms into user
computers could potentially degrade Internet performance, and,
using methods we outline here, it should be possible to predict
such degradations prior to their occurrence.

The focus of our investigation concerns network
congestion control procedures embedded in the transmission
control protocol (TCP), which is used by all computers on the
Internet. TCP congestion control procedures increase and
decrease transfer rate on data flows, based on feedback
measurements, such as losses and delays. The rate adjustments
made on individual data flows influence the measurements seen
by other flows, which adjust their own rates, and so on, leading
to complex interactions that drive a global pattern of network
congestion. To effectively understand and predict macroscopic
behavior in such systems requires one to model large, diverse,
configurations, covering many users, data flows, network
routes and traffic types. Heretofore, simulating such systems
has proven infeasible. By combing scale-reduction methods

 2 Copyright © 2011 by ASME

with multidimensional data analysis techniques, we
successfully simulated a large, diverse network, allowing us to
understand key properties influencing the operation of Internet
congestion control procedures. We were also able to compare
and contrast various proposed replacements for standard TCP,
and to identify a cautionary note with regard to widespread
deployment of one of the proposed replacements. The
information in this paper is abstracted from our study of
Internet congestion control algorithms [1].

The paper is organized in six main sections. In Sec. 2, we
briefly introduce the domain of Internet congestion control. The
purpose of this short introduction is to provide sufficient
grounding to follow Sec. 3, where we use some domain
concepts to outline the main scale-reduction methods and
multidimensional data analysis techniques we adopted for our
study. In Sec. 4, we explain several replacements for standard
TCP. These replacements have been proposed by various
researchers in an effort to provide users with higher
transmission rates as the speed of the Internet increases. We
close Sec. 4 with a synopsis of previous methods used to
compare and evaluate proposed TCP replacements. In Sec. 5
we describe MesoNet, a 20-parameter model for simulating
Internet congestion control procedures. Sec. 5 also summarizes
a MesoNet sensitivity analysis, revealing significant behavioral
dimensions and identifying influential parameters that drive
those behaviors. In Sec. 6, we present key results from five
simulation experiments we conducted to compare proposed
TCP replacements. In Sec. 7 we discuss the implications of our
experiment results. We conclude in Sec. 8.

2 INTERNET CONGESTION CONTROL

Computers attached to the Internet rely on the transmission
control protocol (TCP) to send each flow of related data
reliably as a sequence of segments. For example, a TCP flow
may contain the data objects to be displayed by a Web browser
when a user clicks on a Web link. In addition to ensuring
reliability and sequencing of data segments on a flow, TCP also
contains congestion control procedures that adapt the rate of
data transfer to the conditions experienced on the flow. TCP
reduces the transmission rate when congestion is detected, and
increases rate when congestion is absent.

A typical TCP flow evolves through three phases:
connection, transfer and close. For purposes of congestion
control, we limit our discussion to the connection and transfer
phases. Fig. 1 gives a high-level view of these two phases.
During the connection phase, a source attempts to establish
contact with an intended receiver; inability to establish contact
results in connection failure, which prevents data from flowing
between source and receiver, so connection establishment
provides one form of congestion control implemented by TCP.
During the transfer phase, a source sends data segments on the
flow until the required number has been received successfully.
A receiver signals receipt of data segments by sending
acknowledgments (ACKs) to the source. By sending duplicate
ACKs, a receiver may also indicate failure to receive specific

segments, which the source must then retransmit. Further, a
sender may fail to receive ACKs, which requires the sender to
raise a timeout and to retransmit unacknowledged data.

Figure 1: Main phases and congestion control procedures in the
life of a TCP flow

During the transfer phase, congestion control procedures
determine when a source may send data segments to a receiver.
At any given time, a source may send a prescribed number of
segments (known as the congestion window, or cwnd) prior to
receiving an ACK. Thus, the size of the cwnd controls the rate
of transmission on a flow. Using TCP slow start procedures, a
source increases a flow’s cwnd exponentially from a small
initial value until either a loss is detected or until the cwnd
reaches a threshold, known as the initial slow start threshold, or
sst. If the sst is reached, the source enters congestion
avoidance, subsequently increasing the cwnd more slowly, at a
linear rate. If a segment is lost, then the cwnd is reduced in half
and then increased linearly until another segment is lost, after
which the cwnd is reduced in half again, and so on. This
algorithm is known as additive increase, multiplicative decrease
(AIMD) [14]. The resulting saw-tooth pattern (illustrated in
Fig. 2) in the cwnd induces a corresponding variation in the
rate of transmission on a flow.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 1 .104
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Time

C
on

ge
st

io
n

W
in

do
w

avg. cwnd = 2745 avg. cwnd = 3042

avg. red cwnd = 1844

avg. blue cwnd = 1198

Figure 2: Change in cwnd (y axis in segments) vs. Time (x axis
in 0.1 s units) for two TCP flows sharing a bottleneck path with
162 ms round-trip time (rtt) – total average cwnd reported at
top and average cwnd for the red and blue flows reported at
bottom

Fig. 2 shows the temporal evolution of cwnd for two
competing TCP flows, each sourced from a separate computer,
transiting a shared bottleneck path in a network. The path is a

 3 Copyright © 2011 by ASME

bottleneck because it can support only 21 segments per ms
(about 252 Mbps – Megabits per second – assuming 1500 byte
segments, which we do throughput the paper), while each
computer is capable of transmitting 80 segments per ms (about
960 Mbps). The round-trip time (rtt) on the bottleneck path is
162 ms, so the path can hold 3402 segments, while 680
additional segments can be held in buffers contained within
routers on the path. Thus, the total number of outstanding
segments can be 4082, after which segments are lost. TCP
congestion avoidance procedures are designed so that flows
sharing a bottleneck path use local decision procedures to
adjust transmission rates so that each flow will achieve an
equal share of available path capacity. Notice in Fig. 2 that the
blue and red flows are moving toward such equilibrium.

Fig. 2 shows that one (red) flow, operating on the path
before time 2500, has average cwnd of about 2745, which
implies a throughput of only 80 % of the path capacity. When a
second flow shares the path, aggregate throughput increases to
89 %. Lost capacity stems from the fact that TCP congestion
avoidance procedures reduce the cwnd in half following a loss
and then increase transmission rate linearly until the next loss is
generated, and so on.

Lost throughput on a single TCP flow can become quite
large as the product of the path capacity and round-trip time
increases. For example, researchers made empirical measures
[15] on a 1 Gbps (Gigabits per second) path between Chicago
and Dublin, finding that the average throughput was only 218
Mbps, about 20 % of capacity. This finding, that average
throughput on TCP flows is likely to decrease significantly as
the capacity of the Internet backbone increases, motivated
researchers to propose replacements for the standard TCP
congestion avoidance procedures, so that users might
experience increased throughput as Internet capacity increases.
In this paper, we compare standard TCP with six proposed TCP
replacements, as listed in Table 1. We explain the proposed
TCP replacements in Sec. 4.

Table 1: Identifiers, acronyms and names of congestion
avoidance algorithms compared in this paper

Identifier Acronym Name of Algorithm

1 BIC Binary Increase Congestion
Control

2 CTCP Compound TCP

3 FAST Fast Active Queue
Management Scalable TCP

4 HSTCP High Speed TCP
5 HTCP Hamilton TCP
6 STCP Scalable TCP

7 TCP Transmission Control
Protocol

An entire Internet of individually adapting TCP flows
makes a complex system, where individual flows adapt their
transmission rate based on perceived congestion, which
changes the pattern of congestion, which causes flows to
readapt their transmission rates, and so on. This is why serious
studies of Internet congestion control procedures must consider
the macroscopic dynamics emerging from interactions among a
large number of varying flows transiting across a large
network.

Predicting macroscopic behavior in a large network
requires mathematical models exhibiting a substantial number
of input parameters and output variables. Such models can be
considered abstractly in functional form, as shown in Fig. 3,
where a set of parameters (e.g., x1…xp), each assigned a value
from within a range (e.g., 1…l), is input to a function (e.g., f)
to yield a set of response variables (e.g., y1…yz). Varying the
values assigned to each parameter results in different response
values, which may be analyzed and plotted. The p parameters
and associated range (1…l) of valid input values compose a
model’s stimulus state-space, while the z output variables
compose a model’s response state-space.

Figure 3: Functional model of a large network

To be more concrete, in Table 2 we introduce the 20 input
parameters for a network model called MesoNet [33]. We
describe MesoNet parameters more fully in Sec. 5. As shown in
Table 2, MesoNet parameters can be classified into five
categories: network configuration, user behavior, sources and
receivers, protocols, and simulation control and measurement.
The four network configuration parameters define a topology
(X4) of network routers and communication links, spanning a
geography that defines propagation delay (X2) for segments
flowing over network links. The network routers transmit
segments at a specific rate (X1). When awaiting transmission,
segments may be queued in buffers of specific size (X3).

Attached to the topology are some number (X12) of
sources and receivers, which can be distributed with different
densities (X13 and X14) throughout the topology. Sources
inject segments into the network at a specified maximum rate
(X11). The behavior of sources is controlled by users who
transfer Web objects of specific size (X5), while occasionally
transferring files of larger size (X6). Between transfers, users
think for some period of time (X7). During transfers, users may
exhibit limited patience (X8), aborting transfers that take too
long or progress too slowly. During specified time periods (X9)
the size of user file transfers can be increased to create
localized spatiotemporal congestion within a topology. In
addition, specific long-lived transfers (X10) can be initiated.

y1, …, yz = f(x1|[1,…,l] …, xp|[1,…,l])

Response State‐Space Stimulus State‐Space

 4 Copyright © 2011 by ASME

Long-lived flows entail users transferring as much information
as possible during a specific simulation.

Three protocol parameters influence MesoNet’s congestion
control procedures. One parameter (X16) sets the initial cwnd,
while another (X17) sets the initial sst. The remaining
parameter (X15) gives the probability that a source uses any of
the congestion avoidance algorithms identified in Table 1.

The remaining MesoNet parameters control selected
aspects of simulation and measurement, including how long a
simulation executes (X19) and the probability and duration
(X20) with which sources think prior to making an initial file
transfer. The remaing parameter defines the interval (X18) at
which MesoNet output variables are sampled.

While MesoNet can report hundreds of output variables,
here we introduce a sample subset1 in two categories: (1) 16
responses (Table 3) characterizing macroscopic network
behavior and (2) six responses (Table 4) characterizing
throughput of various flow classes. We arbitrarily label the
responses y1 through y22, which we use below in Sec. 3, when
discussing our method to reduce the response state-space.

The 16 macroscopic responses measure the temporal
evolution of various network wide properties, such as number
sources transmitting (y1), data segments entering (y3) and
leaving (y4) the network, connection failures (y9), average
fraction of segments retansmitting (y10), average cwnd (y11)

1 Elsewhere in the paper we introduce other response subsets with

different arbitrarily assigned labels, beginning from y1 for each subset.

and average rtt (y15). The remaining six responses report the
average number of segments per second on flows transiting
between pairs of routers of various speeds: D-class (very fast),
F-class (fast) and N-class (typical). In general, DD flows,
transiting two very fast routers, should achieve highest
throughput and NN flows, transiting two typical speed routers,
should achieve lowest throughput. Throughput on other flow
classes (i.e., DF, DN, FF and FN) should fall between the
extremes of the DD and NN flows.

Table 3: Sample Macroscopic Response Variables

Response Definition
y1 Number of sources transmitting
y2 Proportion transmitting [y1 / all sources]
y3 Number segments entering network
y4 Number of segments leaving network
y5 Loss Rate [y4/ (y3 + y4)]
y6 Flows completing per interval
y7 Flow-completion rate [y6/(y6+y1)]
y8 Connection failures per interval
y9 Connection-failure rate [y8/(y8+y1)]
y10 Retransmission rate
y11 Congestion window (cwnd)
y12 cwnd increases per interval
y13 Duplicate ACKs per interval
y14 Timeouts per interval
y15 Round-trip time (rtt)
y16 Queuing delay

Table 4: Sample Throughput Response Variables

Response Definition
y17 Average Segments/Second on DD flows
y18 Average Segments/Second on DF flows
y19 Average Segments/Second on DN flows
y20 Average Segments/Second on FF flows
y21 Average Segments/Second on FN flows
y22 Average Segments/Second on NN flows

3 METHODS

We adopt rigorous methods in two-main classes: scale
reduction and multidimensional data analysis. Scale reduction
methods guide us in limiting the number of parameter
combinations that must be simulated, which can reduce
significantly the time and expense required to conduct
experiments. More importantly, our methods for reducing
parameter combinations ensure that we vary those parameters
that most significantly influence model behavior, allowing us to

Table 2: MesoNet Parameters

Category Identifier Name

Network
Configuration

X1 Network Speed
X2 Propagation Delay
X3 Buffer Provisioning
X4 Topology

User
Behavior

X5 Web Object Size for Browsing
X6 Proportion & Size of Larger Files
X7 Think Time
X8 Patience
X9 Selected Spatiotemporal Congestion

X10 Long-lived Flows

Sources &
Receivers

X11 Source & Receiver Interface Speeds

X12 Number of Sources & Receivers

X13 Distribution of Sources
X14 Distribution of Receivers

Protocols
X15 Congestion Control Procedures
X16 Initial Congestion Window
X17 Initial Slow Start Threshold

Simulation
Control &
Measurement

X18 Measurement Interval Size
X19 Simulation Duration
X20 Startup Pattern

 5 Copyright © 2011 by ASME

compare candidate algorithms under the most informative
conditions. We also adopt scale reduction methods to limit the
number of output variables we examine, while identifying
essential system behaviors. Experimenters that use ad hoc
selection techniques when choosing a subset of outputs
variables may omit responses that characterize important model
behaviors. Ad hoc selection methods may also overweight
particular model behaviors, creating a skewed view of system
dynamics.

Multidimensional data analysis methods enable us to
identify pervasive patterns of system behavior, while also
helping to find underlying causes. In many cases, the
multidimensional analysis techniques we employ leverage key
characteristics of the scale reduction methods we use. When
combined together, our rigorous methods for scale reduction
and multidimensional data analysis yield powerful insights into
the behavior of large models.

3.1 Scale Reduction

For large distributed systems, mathematical models, such
as the one shown in Fig. 3, present two difficult challenges.
First, the stimulus state-space can take on a large size (e.g., l p),
which can be infeasible to search. Second, the response state-
space may be too large to examine effectively, or the response
state-space may include parameters that redundantly represent
similar behaviors, which will overweight the significance of
those behaviors in subsequent analyses. To address these
challenges, we adopt methods aimed at reducing both the
stimulus state-space and the response state-space. To provide a
realistic, concrete example, we consider modeling a
communication network for purposes of comparing various
congestion control procedures, as introduced above in Sec. 2.
We begin by describing methods to reduce the stimulus state-
space of a model. Then we discuss reducing the response state-
space.

3.1.a Stimulus State-Space Reduction. Detailed
simulation models for communication networks based on TCP
and the Internet protocol (IP), or so-called TCP/IP networks
[2], can require an experimenter to specify numerous
parameters. Hundreds or thousands of parameters might be
necessary, depending on the particulars of the simulator [e.g.,
3-6] and the size of the simulated network. If we assume such a
model requires us to specify 103 parameters and that each
parameter can be specified by a 32-bit integer (i.e., has 232
possible levels), then, as shown in Fig. 4, the resulting stimulus
state-space would encompass about 109633 parameter
combinations, compared to 1080 estimated atoms in the visible
universe. Clearly, this stimulus state-space is impossible to
search fully given any present day computational capability, or
even any foreseen computational capability. For practical
experiments, we must somehow reduce the model to a lower
dimensional stimulus state-space. We adopted a combination of
techniques, as illustrated in Fig. 4. The techniques include:
parameter reduction, level reduction and orthogonal fractional
factorial (OFF) experiment design.

Parameter Reduction. One technique we adopt is to reduce
the number of parameters (p) needed to model a network. This
involves two main activities: (1) discarding parameters not
germane to the focus of a particular study and (2) grouping
retained parameters that can be discerned to represent aspects
of the same model attribute. Conducting these activities
requires significant domain expertise, and may also entail
substantial trial and error. For the example discussed in this
paper, we were able to construct MesoNet by first identifying
56 parameters germane to our study and then finding that 36 of
those parameters could be grouped together with other
parameters. See our full study for details [1]. The resulting
model reduced our stimulus state-space substantially to about
10192, a number of parameter combinations that is still larger
than atoms in the visible universe and, thus, still infeasible to
search completely with modern computers.

Use experiment design theory to reduce
parameter combinations to 256

Use sensitivity analysis
to identity six most
significant parameters

(232)1000

220

220‐12

Discard parameters not germane to study – reduce by 944 parameters

O(109633) [1080 = atoms in visible universe]

(232)56 O(10539)

(232)20 O(10192)

O(106)

256

Parameter
Reduction

Orthogonal
Fractional‐Factorial
(OFF) Experiment
Design 26‐1 32

Group related remaining parameters– reduce by 36 parameters

Select only 2 values for each parameter

Use experiment design theory again to reduce
parameter combinations to 32

Level
Reduction

Sensitivity
Analysis

OFF
Experiment
Design

Figure 4: A sequence of techniques applied to reduce the
stimulus state-space of a network model

Level Reduction. To further reduce the search space, we
adopt 2-level experiment designs [7], where each parameter is
assigned only two of its possible values, providing an
immediate reduction in the search space to 2p parameter
combinations. Restricting parameters to only two levels has
obvious limitations: only a small number of parameter values
are explored and extrapolating from the results assumes a
model behaves monotonically in the range between chosen
levels. On the other hand, 2-level designs provide some
advantages [7]: (1) requiring few runs per parameter, (2)
facilitating interpretation of response data, (3) identifying
promising directions for future experiments (which may be
augmented with thorough local explorations), (4) fitting
naturally into a sequential strategy, which supports the
scientific method and (5) forming the basis for further
reduction in parameter combinations through use of fractional
factorial designs.

While 2-level designs reduce the number of parameter
combinations to simulate, a full search of 2p parameter
combinations may still be infeasible. For example, a full

 6 Copyright © 2011 by ASME

factorial experiment design with MesoNet (p = 20) would
require (220 =) 1,048,576 simulations. Assuming that an
average MesoNet simulation requires 28 processor hours, and
assuming that 48 processors are available, a full search of
parameter combinations would take (220 simulations x 28
processor hours/simulation over 48 processors =) about
611,670 hours, which is around 70 years. Adding processors
could reduce the latency, e.g., to 3.4 years for 1000 processors
or to 4 months for 10,000 processors, but the expense would
remain constant, e.g., just under $3M assuming processors cost
$0.10/hour. Thus the expense of a full search would prove
infeasible for most researchers, which means the number of
parameter combinations must be reduced further to fit within
time and budget constraints.

Orthogonal Fractional Factorial (OFF) Experiment
Design. Reducing the time and cost of an experiment requires
adopting a fractional factorial design [7], which simulates only
a 2p-r subset of parameter combinations. While many
experimenters adopt ad hoc techniques, such as factor-at-a-time
(FAT) design [8], to select subsets of parameter combinations,
orthogonal fractional factorial (OFF) theory [7] provides a
principled approach to create designs, where the choice of 2p-r

parameter combinations is made to achieve balance and
orthogonality.

In constructing an OFF design, an experimenter must
ensure exploration of a sufficient number of parameter
combinations to prevent confusion about the specific
parameters responsible for variations in model responses. As a
rule of thumb, experimenters should strive for at least a
“Resolution IV” [7] design. Resolution IV designs ensure no
confusion about effects2 attributable to individual parameters
and also prevent confusion about whether effects are caused by
individual parameters or by interactions among parameter
pairs. Further, Resolution IV designs specify precisely which
parameter pairs may be confused with which other parameter
pairs. Typically, confusion involving specific parameter pairs
can be resolved by a domain expert. A Resolution IV design
must provide a sufficient number of simulations (n) to estimate
a leading constant, each parameter (p) and each pair of
parameters (p choose 2), or

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++=

2
1

p
pn . (1)

For example, MesoNet (p = 20) requires at least 211 (n = 1 +
20 + 190) simulations to construct a Resolution IV design. For
a 2-level design, choose the next higher power of 2 above n,
i.e., 256 runs, which identifies the need for a 220-12 design. Box,
Hunter and Hunter [7] give an algorithm for choosing specific
combinations of parameters for various 2-level designs, where
the levels are encoded as a -1 and a +1. The resulting
experiment design exhibits balance, i.e., each parameter has

2 In a 2-level experiment, an effect is the mean model response when a
parameter is set to one level minus the mean response when the parameter is set
to the other level.

128 -1 levels and 128 +1 levels, and orthogonality, i.e., each
pair of parameters has 64 settings at each of (-1, -1), (-1, +1),
(+1, -1) and (+1, +1). Balance minimizes variance in estimated
effects.

Searching the MesoNet stimulus state-space with only 256
parameter combinations requires (256 runs x 28 processor
hours per run/ 48 processors =) just over 149 hours, which can
be completed in one week instead of the 70 years required for a
full search of parameter combinations. Further, the fixed
computational cost will be reduced from nearly $3M to just
under $725. And, as we discuss below (Sec. 5), using these 256
simulations to conduct a sensitivity analysis allowed us to
identify six key parameters that influence MesoNet behavior,
which implies that subsequent experiments would require
simulating only 64 parameter combinations for each congestion
control algorithm compared. In fact, applying OFF experiment
design a second time, we could reduce the number of parameter
combinations further, for example to (26-1 =) 32. Next, we
consider methods to reduce the response state-space of a
model.

3.1.b Response State-Space Reduction. Typical network
simulation models [e.g., 3-6] can measure system response
through hundreds to thousands of outputs, which might
represent aspects of fewer significant underlying model
behaviors. Usually, experimenters select a subset of model
outputs to analyze because considering all available responses
proves too time consuming or computationally infeasible.
When choosing a subset of simulation outputs, experimenters
using ad hoc selection techniques may omit responses that
characterize important model behaviors. Further, experimenters
may select outputs in a fashion that overemphasizes particular
behaviors. Overweighting or underweighting significant model
behaviors can yield invalid conclusions, thus some method is
required to identify precisely the model outputs that correspond
to each significant behavior.

Fodor [9] identifies principal components analysis (PCA)
as the best linear dimension-reduction technique in terms of
mean-square error, which is a typical technique to quantify
differences between values implied by an estimator and the true
values of the quantity being estimated. PCA transforms a set of
possibly correlated variables into a smaller set of uncorrelated
variables called principal components (PCs). While PCA might
be the best linear-dimension reduction technique, some
difficulties arise in application. Because PCs are uncorrelated
variables created from a set of possibly correlated variables,
PCA guarantees no obvious domain interpretation for even the
top 2 or 3 PCs. Even when a reasonable domain interpretation
is possible, PCs may take both positive and negative values for
which experimenters cannot determine any obvious
interpretation, even after establishing a meaning for a PC itself.
While one can avoid using the PCs by substituting response
variables in their place, selecting specific response variables to
use depends upon heuristics for which there exist no definitive
criteria [11]. Different heuristics can lead to different sets of
response variables. To overcome these limitations, we

 7 Copyright © 2011 by ASME

developed Correlation Analysis and Clustering (CAC), an
alternate approach to selecting response variables.

CAC begins with a preliminary step: computing correlation
coefficients (r) for each pair of responses, and summarizing the
results in a matrix, which gives pair-wise scatter plots in cells
above and to the right of the diagonal and corresponding
correlation coefficients (scaled x 100) below and to the left of
the diagonal. Fig. 5, for example, shows 231 pair-wise scatter
plots encompassing 22 responses (recall Tables 3 and 4)
measured under 64 parameter combinations. We color the
scaled correlations: above 80 red, below 30 green and
intermediate values blue. We order the matrix by decreasing
value of mean correlation for each response. For example,
consider the gray cell labeled 13 (response y13) in the middle
of Fig. 5. The column of cells moving upward gives scatter
plots for y13 and each of the 11 responses higher on the
diagonal (i.e., moving up from y9 to y7 in the top left corner).
The row moving leftward gives the corresponding correlation
coefficients. The row of cells moving rightward from 13 gives
scatter plots for y13 and each of the 10 responses lower on the
diagonal (i.e., moving down from y11 to y6 in the lower right

corner). The column moving downward gives the
corresponding correlation coefficients.

Given pair-wise correlations, an experimenter must decide
which pairs to include in further analyses and which pairs to
discard. To help with this decision, we plot a frequency
distribution (Fig. 6) of the absolute values, |r|, of correlation
coefficients for all response pairs. We use the frequency plot to
select a threshold for correlations to consider further. Here, we
chose |r| > 0.65 because the histogram shows a notable change
in pattern above that value, appearing as a separate (sub)
distribution of 42 pair-wise correlations centered on a different
mode.

Next, we construct an index-index plot, where both the x
and y axes indicate the index of corresponding responses (1 –
22). We plot a blue dot for each of the 42 yi,j pairs where |r| >
0.65. We identify the response that is correlated with the most
other responses and create a self-contained subset from those
responses. We then repeat the process for those responses
remaining outside the subset, forming a second self-contained
subset. We continue repeating the process until all responses
have been allocated to a subset. Subsequently, we reorder the

Figure 5: Pair-wise correlation matrix: scatter plots above diagonal, correlation coefficient (r x 100) below diagonal, response
number on the diagonal is ordered by decreasing value of mean correlation.

Red 80 > |r|x100 < 100 Blue 30 > |r|x100 < 80 Green |r|x100 < 30

 8 Copyright © 2011 by ASME

axes of the index plot so that response identifiers are arrayed in
increasing order of the cardinality of the subset of which they
are a member. Response identifiers within each subset are

ordered arbitrarily. Fig. 7 shows the resulting sorted index-
index plot generated from the 42 correlation pairs selected from
Fig. 6. Fig. 7 reveals seven behavioral dimensions: five subsets

2 responses uncorrelated
(1) throughput on DD flows
(2) flow completion rate

25 correlation
pairs reflecting
congestion

14 correlation
pairs reflecting
packet losses

3 pair-wise correlations:
(1) throughput on flows constrained by F-class routers
(2) network delay
(3) packets entering and leaving the network

Figure 7: Index-Index plot sorted by increasing count of correlation pairs to identify clusters of mutual correlations that
represent seven behavioral dimensions in the response state-space of MesoNet

Figure 6: Frequency distribution of |r| for pair-wise correlations – bins highlighted for |r| > 0.65

 9 Copyright © 2011 by ASME

(or clusters) of mutually correlated responses and two
responses that were not correlated with any others. The largest
cluster (25 correlation pairs) includes responses that reflect
network congestion. The second largest group (14 correlation
pairs) includes responses reflecting data losses. Three pair-wise
correlations reflect: (1) throughput on flows constrained by F-
class access routers, (2) network delay and (3) data entering
and leaving the network. One u ncorrelated response (y17)
measures average throughput on DD flows, while the other
(y6) measures flows completed per second. An experimenter
can use domain knowledge to select one variable to represent
each identified behavior.

3.2 Multidimensional Data Analysis

Even after reducing a response state-space, specific
experiments can produce multivariate datasets containing a
large number of elements. For example, a typical experiment
with MesoNet might compare eight congestion control
algorithms with respect to 48 responses under 32 conditions

over three time periods using two different protocols, yielding a
multivariate dataset containing approximately 60,000 elements.
Inferring meaning from such large datasets requires employing
a variety of multidimensional data analysis methods. Here, we
discuss those techniques we found to be most useful: (1) main
effects analysis, (2) cluster analysis, (3) primary principal
components plots and (4) condition-response summaries.

3.2.a Main Effects Analysis. Main effects analysis (MEA)
[12] compares the mean value for a response variable when
each model parameter is set to each level (-1 and +1) in a 2-
level experiment design. During a sensitivity analysis (e.g., as
discussed below in Sec. 5), MEA provides the basis for
identifying significant parameters influencing key responses.
Fig. 8 shows a sample MEA evaluating the influence of each of
the 20 MesoNet parameters (see Table 2) on the average
number of transmitting sources during a particular time period
in one simulation experiment. For each parameter the plot gives
two means: (1) when the parameter is set to the -1 level and (2)
when set to the +1 level.

Figure 5: Frequency distribution of |r| for pair-wise correlations – bins highlighted for |r| > 0.65

Figure 8: Main effects plot showing absolute and relative influence of each MesoNet parameter (x axis) from Table 2 on mean
(y axis) number of sources transmitting (y1 from Table 3) and identifying six statistically significant parameters – network speed
(X1), topology (X4), file size (X5), think time (X7) and number (X12) and distribution (X13) of sources

 10 Copyright © 2011 by ASME

Fig. 8 shows that the mean number of sending sources was
just under 13,000 when network speed (X1) was low (-) and
was about 8500 under the higher network speed (+). For each
parameter, a line connects the two means to indicate direction
and magnitude of the effect when changing the parameter from
its -1 level to +1 level. Two numbers are reported just above
each parameter label. The top number gives the effect in raw
terms (e.g., 4145 fewer sending sources under the higher
network speed) and the bottom number gives the percentage
change (e.g., 39 % fewer sending sources under higher network
speed), which is called the relative effect.

We used a t-test to determine the likelihood of a true
difference in effect for each parameter, inserting two asterisks
(**) for parameters, such as network speed, where the
estimated effect had a probability of statistical error p < 0.01.
We inserted one asterisk (*) for effect estimates with p < 0.05.
Interpreting Fig. 8, we find that shorter think time (X7 -)
coupled with more sources (X12 +) distributed in a peer-to-
peer pattern (X13 +) induce the largest of the six statistically
significant effects on the number of sending sources. The effect
of these parameters is followed by larger file size (X5 +) and
larger topology (X4 +). The indicated values for these five
parameters increase demand on the network. The remaining
significant increase in sending sources arises from lower
network speed (X1 -). In short, greater demand offered to a
slower network increases congestion, which causes longer file
transfer times for sources, leading more sources to be in the
sending state. Similar analyses are possible for each MesoNet
response in a specific experiment.

3.2.b Cluster Analysis. While MEA enables an
experimenter to discern the influence of specific parameters on
individual responses, cluster analysis can be used to discern
similarities and differences in behavior when considering all
responses as a multidimensional space. Cluster analysis can be
accomplished using commonly available software, such as the
hierarchical clustering tools from the MATLAB™ Statistics
Toolbox™ [13]. Hierarchical clustering requires selection of a
function to compute distances between points in the vector
space composed by the response data. We used the
standardized Euclidean distance function.

 (2)

We measure the linkage between clusters of algorithms as
the average distance between responses associated with each
algorithm in each cluster. In this example, we use a subset of 45
responses, not listed here. The linkage function, shown in (3),
uses the Euclidean-distance function from (2).

(3)

Equation (3) computes the linkage between any two clusters r
and s, containing nr and ns congestion control algorithms,
respectively. Yk,r represents the response vector for the kth
congestion control algorithm in cluster r; similarly, Yl,s
represents the response vector for the lth congestion control
algorithm in cluster s. The linkage function is used to place
binary clusters into larger clusters, forming a hierarchical tree.

The final step in hierarchical clustering is to decide which
congestion control algorithms should be included within the
same cluster. For this purpose, we use the MATLAB™
dendrogram () function to color the lines on the hierarchical
tree whenever the linkage value between two clusters falls
below 70 % of the maximum linkage value. The net result from
clustering is a diagram, such as Fig. 9, suggesting relationships
among congestion control algorithms. Integer identifiers for the
seven congestion control algorithms (see Table 1) are plotted
on the x axis and the y axis displays standardized distances
between algorithms in the subordinate cluster(s). Here, the
clustering suggests algorithms 4 and 6 give similar results and
algorithms 1 and 2 give similar results. The remaining
algorithms are less similar, with algorithm 3 being most
dissimilar from the others.

Figure 9: Dendrogram illustrating clustering based on 45
responses for one particular combination of parameters (i.e.,
condition 4) – x axis gives an identifier assigned to each of
seven congestion control algorithms and y axis gives the
standardized Euclidean distance between algorithms or clusters
of algorithms.

Clustering must be performed individually on each
parameter combinations because differing conditions can yield
results that are quite dissimilar. One may obtain an overall
picture of clustering across conditions by plotting together 32
dendrograms, one per parameter combination. Fig. 10 shows
such a plot for seven congestion control algorithms and related
responses. Review of the plot reveals that algorithm 3 appears
distinctive under about 23 of the 32 conditions. Further, the
responses generated by the different algorithms are
indistinguishable in six conditions – in fact, are identical for
condition 12, where the corresponding dendrogram shows zero
distance between the algorithms. The remaining three
conditions (2, 27 and 32) find small distinctions among the

 11 Copyright © 2011 by ASME

algorithms. As Fig. 10 illustrates, clustering analysis can reveal
significant overall patterns in multidimensional data.

3.2.c Primary Principal Components Plots. PCA can be

used to explore relationships among responses, usually by
plotting the primary component, PC1, which accounts for most
variance in the dataset, against PC2, which accounts for second
most variance in the dataset. For example, consider a
multivariate dataset that contains the average throughput
achieved on network connections using seven different
congestion control algorithms under 32 different parameter
combinations for 48 different flow types. We generate subsets
of the data, where each subset, selected by congestion control
algorithm and parameter combination, contains average
throughput achieved on each flow type. We conduct PCA on
each of the (7 x 32 =) 336 subsets, and then in Fig. 11 we plot
PC1 (x axis) vs. PC2 (y axis) for each subset.

Fig. 11 shows three clear groupings of (circled) points,
which can be considered with respect to the parameter
combinations in common. Points within the blue circle
represent cases where network speeds were lower (i.e., X1 set
to level -1). The remaining points include only conditions with
higher network speeds (X1 set to level +1): the red circle

contains points with longer propagation delays (X2 set to +1)
and the green circle contains points with shorter propagation
delays (X2 set to -1). Points within the red circle can be further
subdivided such that points above the dashed line represent
small file sizes (X5 set to -1) and points below represent larger
file sizes. Points within the green circle can also be subdivided
based on relative file size. The main inference from Fig. 10 is
that, under the specific parameter combinations simulated,
throughput is influenced primarily by network speed,
propagation delay and file size; choice of congestion control
algorithm played no significant role here.

3.2.d Condition-Response Summaries. In many cases,
statistical techniques can reveal not only overall behavioral
patterns but can also provide evidence suggesting causality. In
our case, we conducted detailed statistical comparisons for
measured responses to identify conditions under which
congestion control algorithms varied. Comparing the parameter
combinations composing each condition allowed us to discern
underlying causes. Subsequently, we extracted information
from each detailed analysis to produce condition-response
summaries that revealed explicit overall patterns showing under
what conditions and for what responses algorithm 3 produced
different behavior.

Figure 10: Cluster analysis comparing seven congestion control algorithms with respect to 45 responses under 32 parameter
combinations (i.e., conditions)

 12 Copyright © 2011 by ASME

Fig. 12 shows a plot comparing retransmission rates for
seven congestion control algorithms under 32 different
parameter combinations. The x axis in Fig. 12 shows the 32
conditions. Here, conditions are sorted by increasing magnitude
of the largest difference in the response variable produced by
congestion control algorithm. The upper left corner of the plot
gives the minimum and maximum values for the raw responses
when considering the data across all algorithms and conditions.
The y axis gives the spreads of residuals about the mean.

Here, each residual is computed by subtracting the mean
response for all algorithms for a given condition from the
response for a given algorithm and the same condition. For
each condition, we plot a box within which we place algorithm
identifiers (1-7). The location of each identifier indicates the
distance of the response generated by that algorithm (i.e., the
residual) from the mean response over all algorithms for the
same condition. Here, the residuals range from zero (all
algorithms in condition 12, 8, 20 and 2) to about 0.55 (for
algorithm 3 and condition 29). Below each box we display
vertically the level settings (+/-) for each input factor
(X1…X6) that generated the relevant condition. Here we used
a subset of six input parameters identified by a sensitivity
analysis (Sec. 5) to have significant influence on system
behavior, which we measured with 45 responses in this
particular experiment.

The remainder of the plot consists of four 32-column rows
of quantitative information, where each column gives four
statistics applicable to the algorithms and responses for the

related condition. The first statistic identifies the extreme
algorithm – that is the algorithm with the largest residual. The
identifier is listed as -1 when the algorithms cannot be
distinguished numerically. Explicitly listing the extreme
algorithm is helpful when the residuals are too close together to
be visible in the box – for example in conditions 12 to 11. The
second statistic reports the absolute magnitude (log 10)
associated with the maximum residual. The exponent of the
absolute magnitude can be reported concisely on the plot at the
cost of some numerical precision. The third statistic reports the
relative effect as a % of the mean response. A domain analyst
can consider both absolute and relative differences when
judging whether an effect is significant from an engineering
view. The fourth statistic reports G, which results from a
Grubbs’ test for outlying observations [12] associated with the
extreme residual for each condition. The Grubbs’ test computes
G by dividing the largest residual by the sample standard
deviation (s).

 (4)

Assuming no significant differences among congestion

control algorithms, we would expect measured residuals to be
normally distributed. For this reason, residuals that deviate too
far from the mean could be characterized as statistically
significant outliers. For our plots we declare an outlier
significant (p < 0.05) when G > 2.08. The entire column

Figure 11: PC1 (x axis) vs. PC2 (y axis) from a multivariate dataset containing average throughput achieved on network
connections using seven different congestion control algorithms under 32 different parameter combinations. Circles identify
groupings of points and lines within circles distinguish additional subgroups.

 13 Copyright © 2011 by ASME

(factors and statistics) is highlighted for conditions where the
Grubbs’ test identifies an outlier. Green identifies positive
outliers (e.g., 23 conditions in Fig. 12) and red identifies
negative outliers (no such conditions in Fig. 12). Columns are
printed in black when no numerical difference could be
detected among the responses (e.g., conditions 12, 8, 20 and 2
in Fig. 12). The remaining columns are printed in blue.

We can produce plots such as Fig. 12 for any response, and
such plots can be quite revealing, but we use condition-
response summaries, as shown in Fig. 13, to allow us to discern
overall patterns associated with all responses under all
conditions. To construct a condition-response summary, we
extract information from analyzing individual plots similar to
Fig. 12.

Fig. 13 shows a condition-response summary identifying
any congestion control algorithms that were statistically
significant outliers for 45 responses under 32 conditions. Each
row in Fig. 13 corresponds to a specific condition (identified on
the left). The first six columns report level settings (+/-) for the

six input parameters defining the condition. The remaining
columns represent individual responses. (Note the response
variable number 6 in Fig. 13 corresponds to the information
extracted from Fig. 12.) Vertical blue lines group related
responses. For example, in this particular experiment,
responses 1 through 8 relate to macroscopic behavior,
responses 9 through 12 relate to throughput on DD flows,
responses 42 through 45 relate to distribution of flow states and
so on. Cells, formed by condition-response intersections,
contain an algorithm identifier (1 to 7) when there is a
statistically significant outlier – red denotes low outliers and
green denotes high outliers.

A scan of Fig. 13 shows that algorithm 3 arises as a
statistically significant outlier in many cells. The highest
concentration of outliers appears for congested conditions
(measured by retransmission rate); fewer outliers appear for
less congested conditions. No algorithm appears as an outlier
for condition (i.e., row) 12. These results agree with the cluster
analysis (recall Fig. 10) for the same dataset. Both analyses

Figure 12: Sample plot analyzing the influence of condition and congestion control algorithm on the segment retransmission rate (in
this experiment retransmission rate was designated as y6) – y axis gives residuals around the mean value for each condition and x
axis gives conditions ordered by increasing range of residuals

 14 Copyright © 2011 by ASME

identify algorithm 3 as distinctive under congested conditions.
Fig. 13 has the advantage of identifying precisely the particular
responses for which algorithm 3 exhibits different behavior.

To focus analysis on the most significant behavioral
differences, we can apply various filters when generating a
condition-response summary plot. For example, Fig. 14 shows
a summary plot reporting statistically significant outliers from
Fig. 13 that also achieve a relative effect greater than 10 %.
The pattern of outliers is now sparser, so we can focus our
analysis on responses y2 (congestion window increase rate, in
this experiment), y6 (retransmission rate in this experiment),
y42 (average number of connecting flows), y44 (average
number of transmitting sources using standard TCP congestion
avoidance) and y45 (average number of transmitting sources
using an alternate congestion avoidance algorithm). The
responses measuring buffer usage (y36 – y41) exhibit outliers
but there is no evident pattern.

We also gleaned significant information from a wide range
of other multidimensional analysis techniques, such as Y-Y
scatter plots, condition-by-condition relative bar graphs, and
rank matrices. For an explanation and application of these and
other techniques, refer to our complete study [1] comparing
selected Internet congestion control algorithms.

4 PROPOSED TCP REPLACEMENTS

Recall from our discussion of Internet congestion control
(Sec. 2) that standard TCP achieved throughputs of about 20 %
of link capacity for large files transmitted over long-distance,
high-speed network paths. This implies that individual TCP
users with access to such paths may not realize high
throughputs and that such expensive links may be
underutilized. For this reason, many researchers [16-21] have
proposed improved congestion control algorithms to replace
standard TCP on the Internet. The general aim of the proposed

Figure 13: Condition-response summary identifying any statistically significant outliers among congestion control algorithms for
each of 45 responses measured over 32 different conditions in this particular experiment

 15 Copyright © 2011 by ASME

TCP replacements is to allow users improved throughputs when
transferring large files over high-speed network paths that
cover long distances. Internet users and operators may also
reasonably expect that proposed TCP replacements achieve
some other desirable goals: providing high link utilizations,
sharing bandwidth equally under high congestion and
converging quickly to equal bandwidth usage as flows come
and go on network links. Most of these topics have been
studied in the context of limited numbers of flows sharing
bottleneck links, as we showed in Sec. 2 for standard TCP.
Prior to our work, these topics have not been studied in the
context of large networks, under the arrival and departure of
hundreds of thousands of flows with varying characteristics.
We used the methods described in Sec. 3 to conduct such a
study [1] for proposed TCP replacements, as enumerated in
Table 1.

While different in many significant details, most of the
proposed TCP replacements share some common features. All

of the proposals retain standard TCP procedures for connection
establishment and initial slow start, changing only congestion
avoidance. All but two of the proposals define a threshold, such
that normal TCP congestion avoidance procedures are used
when the cwnd is below the threshold. Of the remaining two,
one adopts normal TCP congestion avoidance procedures for a
period of time following a lost segment and the other never
uses TCP congestion avoidance procedures. In general, the
proposals adopt one (or both) of two main principals: (1)
decrease transmission rate by less than half following a lost
segment and (2) increase transmission rate more than linearly
following a rate reduction. Next, we explain each proposed
TCP replacement that we studied.

BIC. Binary Increase Congestion Control (BIC) [16] aims
to make aggressive increases in cwnd when the current cwnd is
far from a target and smaller increases as the current cwnd
nears the target. BIC determines the target by conducting a
binary search within some range around the current cwnd.

Figure 14: Filtered condition-response summary identifying any congestion control algorithms that are statistically significant
outliers and that exhibit at least a 10 % relative effect for each of 45 responses measures over 32 different conditions

 16 Copyright © 2011 by ASME

When the target falls beyond the search range, BIC adjusts the
cwnd by a fixed increment and then reinitiates the binary search
within the new range. Implementing this behavior requires
rather complex logic. The resulting cwnd evolution for BIC
reflects its complexity – reproducing a function that appears to
change in a pattern resembling a human heartbeat.

Fig. 15 shows the temporal evolution of cwnd for two
competing BIC flows, under conditions identical to those used
in comparing competing TCP flows in Fig. 2. Here, BIC
provides flows with much higher average cwnd than TCP, and
BIC allows the flows to converge to equal sharing much more
quickly than TCP does. In fact, the average cwnd exceeds the
path capacity of 3402 segments, which means that the flows
use 100 % of path capacity, carrying between 200 and 345
segments in buffers within routers on the path. These
properties, high utilization and quick adaptation in sharing
capacity with newly arriving flows, are exactly those that
researchers hoped to achieve by proposing improvements to
standard TCP.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 1 .104
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Time

C
on

ge
st

io
n

W
in

do
w

avg. cwnd = 3607 avg. cwnd = 3747

avg. red cwnd = 2243

avg. blue cwnd = 1504

Figure 15: Change in cwnd (y axis in segments) vs. Time (x
axis in 0.1 s units) for two BIC flows sharing a bottleneck path
with 162 ms rtt – total average cwnd reported at top and
average cwnd for the red and blue flows reported at bottom

CTCP. Compound TCP (CTCP) [17] augments cwnd with

a second component, called the delay window (dwnd). CTCP
procedures update the dwnd periodically, typically once per rtt.
The dwnd is added to the cwnd to establish the transmission
rate used on CTCP flows. CTCP defines rules for increasing
dwnd aggressively when a flow is underutilizing available
transmission capacity and also defines rules for reducing dwnd
as a flow’s transmission rate nears available capacity. Upon
detection of congestion, either through explicit segment losses
or timeouts, CTCP reduces dwnd toward zero. As a flow’s
transmission rate nears equilibrium around some estimated
available capacity, CTCP tends to cause the transmission rate to
oscillate slightly by exponentially increasing the dwnd when
the estimated number of segments queued for a flow falls
below a threshold and then linearly decreasing dwnd when the
estimated number of queued segments exceeds the threshold.

On the other hand, when the transmission rate is increasing on
a flow, CTCP exponentially increases the dwnd without
exerting a countervailing linear decrease. Consequently, the
CTCP transmission rate can become large relatively quickly
when a transmission path exhibits no congestion.

Fig. 16 shows the temporal evolution of cwnd for two
competing CTCP flows under the identical conditions used in
Fig. 2. When only the red flow uses the path, CTCP achieves
throughput comparable to TCP. On the other hand, when two
flows share the path, CTCP converges to cwnd values that use
the entire path capacity with only a few segments held in
network buffers.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 1 .104
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Time

C
on

ge
st

io
n

W
in

do
w

avg. cwnd = 2745 avg. cwnd = 3406

avg. red cwnd = 1853
avg. blue cwnd = 1553

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 1 .104
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Time

C
on

ge
st

io
n

W
in

do
w

avg. cwnd = 2745 avg. cwnd = 3406

avg. red cwnd = 1853
avg. blue cwnd = 1553

Figure 16: Change in cwnd (y axis in segments) vs. Time (x
axis in 0.1 s units) for two CTCP flows sharing a bottleneck
path with 162 ms rtt – total average cwnd reported at top and
average cwnd for the red and blue flows reported at bottom

FAST. Fast Active Queue Management Scalable TCP (i.e.,
FAST) [18] adopts a fundamentally different approach from the
other congestion control procedures considered in this study.
First, FAST aims to achieve an equilibrium cwnd that remains
stable, while other congestion control mechanisms lead to an
oscillating cwnd. Second, FAST updates the cwnd based mainly
on measured changes in queuing delay, using loss signals only
when congestion prevents reaching a lossless equilibrium.
Third, FAST does not resort to standard TCP congestion
avoidance procedures; instead, FAST uses its own procedures
at all times during congestion avoidance. FAST adopts these
approaches based on the idea that queuing delay can be
measured quite frequently and thus accurately, while segment
losses are rare events that provide insufficient information to
estimate loss probability on a given flow.

The FAST congestion control procedures include –tuning
as an option. The –tuning variant of FAST, monitors flow
throughput and adjusts up and down as various thresholds are
crossed. The term is added to the cwnd computation by
FAST, so adjusting can push the cwnd up and down with

 17 Copyright © 2011 by ASME

variable thrust, compared with when is fixed. The designers
of FAST indicate [18] that –tuning is no longer used routinely
within FAST implementations. Instead, the designers suggest
fixing to a value suitable for expected network conditions. Of
course, the designers recognize that fixing is not a general
solution and list –tuning as an open issue. We studied FAST
both with and without –tuning. We call the latter alternative
FAST-AT.

Fig. 17 shows the temporal evolution of cwnd for two
competing FAST flows under the identical conditions used in
Fig. 2. Here, FAST achieves its aim of a fixed cwnd when a
single (red) flow uses the path and also adapts quickly to lower
fixed cwnd when the blue flow arrives to share the path. The
resulting average cwnd exceeds path capacity, so segments will
be queued in network routers and the path will be utilized at
100 % capacity. Also note that both the red and blue flows
achieve nearly equal shares of the path capacity. This
demonstrates FAST achieving the aims of its designers.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 1 .104
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Time

C
on

ge
st

io
n

W
in

do
w

avg. cwnd = 3156 avg. cwnd = 3547

avg. red cwnd = 1767
avg. blue cwnd = 1780

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 1 .104
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Time

C
on

ge
st

io
n

W
in

do
w

avg. cwnd = 3156 avg. cwnd = 3547

avg. red cwnd = 1767
avg. blue cwnd = 1780

Figure 17: Change in cwnd (y axis in segments) vs. Time (x
axis in 0.1 s units) for two FAST flows (with fixed at 80)
sharing a bottleneck path with 162 ms rtt – total average cwnd
reported at top and average cwnd for the red and blue flows
reported at bottom

Fig. 18, showing the temporal evolution of cwnd for two

competing FAST-AT flows under the identical conditions used
in Fig. 17, illustrates an artifact that –tuning can cause when
flows share a network path. Notice that the two flows quickly
reach equilibrium at similar cwnd values after the blue flow
arrives. Subsequently, the cwnd values diverge, with the blue
flow achieving significantly higher transmission rate than the
red flow. Such divergence, also seen in empirical studies [15],
arises because the red flow adjusts downward as decreasing
throughput crosses a threshold. The blue flow, under increasing
throughput, crosses a threshold and adjusts up. As an
additional threshold is crossed, the values are adjusted yet
again. As a result, while FAST-AT achieves full utilization of
link capacity, the competing flows achieve 30 % (red) and 70

% (blue) shares. This deviates significantly from the desired
goal of 50 % capacity share for each of the two flows.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 1 .104
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Time

C
on

ge
st

io
n

W
in

do
w

avg. cwnd = 3467 avg. cwnd = 3703

avg. red cwnd = 1164
avg. blue cwnd = 2539

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 1 .104
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Time

C
on

ge
st

io
n

W
in

do
w

avg. cwnd = 3467 avg. cwnd = 3703

avg. red cwnd = 1164
avg. blue cwnd = 2539

Figure 18: Change in cwnd (y axis in segments) vs. Time (x
axis in 0.1 s units) for two FAST-AT flows sharing a
bottleneck path with 162 ms rtt – total average cwnd reported
at top and average cwnd for the red and blue flows reported at
bottom

HSTCP. High Speed TCP (HSTCP) [19] retains the

fundamental additive-increase and multiplicative-decrease
(AIMD) strategy adopted by standard TCP, but HSTCP alters
the AIMD parameters to become a function of congestion
window size. The altered AIMD functions result in more
aggressive increases and less aggressive decreases at larger
window sizes.

Fig. 19 demonstrates that, under the conditions here,
HSTCP bounds the cwnd within a smaller range than standard
TCP and oscillates up and down more quickly. The path is fully
utilized (with some segments buffered in network routers) and
the two flows converge reasonably quickly to an equal share of
the available link capacity.

HTCP. Hamilton TCP (HTCP) [20] differs from the other
TCP replacements in two main aspects. First, HTCP determines
cwnd increases as a function of elapsed time since the most
recent segment loss. The increase is scaled by the rtt
experienced on the network path in order to compensate for
differences in feedback delay. The motive is to give larger
increases in cwnd during periods of low network congestion, so
a flow could reach higher transmission rates more quickly on
uncongested, high-capacity, long-delay paths. HTCP adopts
standard TCP cwnd increase procedures for a specified time
after each loss. Second, HTCP implements an adaptive back-
off procedure to determine the multiplicative decrease in cwnd
after a loss. The back-off factor is varied based on estimating
the queuing delay on a path. The motive is to prevent senders
from backing off too much after packet losses. HTCP adopts
standard TCP decrease procedures when flow throughput has

 18 Copyright © 2011 by ASME

changed by more than a specified amount since the most recent
loss.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 1 .104
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Time

C
on

ge
st

io
n

W
in

do
w

avg. cwnd = 3485 avg. cwnd = 3518

avg. red cwnd = 2170
avg. blue cwnd = 1348

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 1 .104
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Time

C
on

ge
st

io
n

W
in

do
w

avg. cwnd = 3485 avg. cwnd = 3518

avg. red cwnd = 2170
avg. blue cwnd = 1348

Figure 19: Change in cwnd (y axis in segments) vs. Time (x
axis in 0.1 s units) for two HSTCP flows sharing a bottleneck
path with 162 ms rtt – total average cwnd reported at top and
average cwnd for the red and blue flows reported at bottom

Fig. 20 shows that HTCP achieves full path utilization and
that the cwnd sizes converge quickly to equilibrium when the
second (blue) flow arrives. The flows achieve an equal share of
the available capacity.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 1 .104
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Time

C
on

ge
st

io
n

W
in

do
w

avg. cwnd = 3385 avg. cwnd = 3545

avg. red cwnd = 1869
avg. blue cwnd = 1676

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 1 .104
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Time

C
on

ge
st

io
n

W
in

do
w

avg. cwnd = 3385 avg. cwnd = 3545

avg. red cwnd = 1869
avg. blue cwnd = 1676

Figure 20: Change in cwnd (y axis in segments) vs. Time (x
axis in 0.1 s units) for two HTCP flows sharing a bottleneck
path with 162 ms rtt – total average cwnd reported at top and
average cwnd for the red and blue flows reported at bottom

STCP. Scalable TCP (STCP) [21] adopts a simple, fixed-

increase rule aimed at allowing a flow to increase its
congestion window more quickly than would be the case with
standard TCP. In addition, Scalable TCP defines a decrease
rule that limits a flow to a fixed multiplicative decrease that is

recommended to be much less than the 50 % decrease used by
standard TCP. The STCP rules are defined in an additive-
increase, multiplicative-decrease (AIMD) form, but the rules
actually amount to a multiplicative-increase, multiplicative-
decrease (MIMD) regime. Researchers have shown [14] that
MIMD algorithms are not guaranteed to converge to fair
capacity sharing in networks, such as the Internet, which drop
arriving segments when a queue is filled.

Fig. 21 illustrates the SCTP convergence problem. The
first (red) flow achieves full utilization of the path, with 340
segments buffered in routers in the network. The second (blue)
arriving flow experiences great difficulty gaining much of the
path capacity, achieving an average share of only 2 % of the
available capacity. Thus, SCTP achieves full utilization, while
providing greatly unequal sharing of the available capacity.
This behavior has been produced in empirical measurements
[15], as well as in the simulations shown here.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 1 .104
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Time

C
on

ge
st

io
n

W
in

do
w

avg. cwnd = 3742 avg. cwnd = 3852

avg. red cwnd = 3758
avg. blue cwnd = 94

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 1 .104
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Time

C
on

ge
st

io
n

W
in

do
w

avg. cwnd = 3742 avg. cwnd = 3852

avg. red cwnd = 3758
avg. blue cwnd = 94

Figure 21: Change in cwnd (y axis in segments) vs. Time (x
axis in 0.1 s units) for two STCP flows sharing a bottleneck
path with 162 ms rtt – total average cwnd reported at top and
average cwnd for the red and blue flows reported at bottom

4.1 Previous State of the Art

These, and other, proposed congestion control procedures
have been studied using a variety of techniques, which
constitute the state of the art in network modeling, analysis and
measurement. The designers of the proposed protocols
construct analytical models to study likely behavior under
various situations [16-21]. In addition, some researchers [22]
construct and compare analytical models of several proposals
operating within the context of single, long-lived flows. Other
researchers [23-24] construct analytical models of some
proposals to consider the average behavior of a large number of
flows sharing a single path. Such analytical studies provide
insights related only to the specific, typically quite constrained,
situations modeled. Modeling a single, or pair, of long-lived
flows does not illuminate the more typical situation where
many flows with differing characteristics come and go over

 19 Copyright © 2011 by ASME

time. Even analyses with many flows idealize the situation so
that all flows have the same characteristics.

Another technique entails simulation studies [25]
comparing proposed congestion control procedures in small
topologies. While insightful, simulations of small topologies do
not exhibit the same spatiotemporal dynamics that would be
experienced in a large network with varying user demands
arriving and departing and spreading throughout the topology
[32]. Most simulation studies use small topologies because
configuring, executing and analyzing such simulations can be
completed within reasonably available resources.

Another valuable technique compares proposed congestion
control procedures empirically within small topologies. In fact,
the graphs shown in Figs. 15-21 were simulations of scenarios
that had been measured empirically by other researchers [15].
The simulations were produced with our model (MesoNet),
explained below in Sec. 5. The existence of such empirical
measurements on a single bottleneck path helped us to verify
that we had correctly modeled the proposed TCP replacements
prior to simulating them in a large topology. Researchers [15,
26] also measured the performance of small numbers of long-
lived flows under each proposed TCP replacement when
perturbed by cross traffic consisting of Web flows regulated by
standard TCP. A few researchers [27-28] have configured
topologies of a few hundred flows to measure the performance
of FAST. Similar experiments should be feasible using other
configurable test beds [29-31].

We can sum up some of the shortcomings of state-of-the-
art modeling, analysis and measurement techniques with
respect to comparing proposed TCP replacements. First, most
existing techniques focus on long-lived, i.e., infinite length or
very large, flows, while Internet traffic consists of a wide
variety of flow sizes, where flows come and go dynamically.
Second, most existing techniques focus on congestion
avoidance behavior, omitting other key congestion control
phases, including connection establishment and initial slow
start, which might influence significantly congestion behavior
in a large network. Third, most existing techniques consider
from several to 100 flows, which transit a shared path, or a few
shared paths, in a small topology. We will show how our
methods can address these shortcomings, and advance the state
of the art in modeling and analysis of large networks.

4.2 Advancing the State of the Art

Below, we demonstrate how to combine reduced-
parameter modeling, 2-level OFF experiment design and
multidimensional data analysis techniques to simulate more
than 105 simultaneous flows operating at high network speeds
and in realistic topologies under a wide range of congestion
conditions, while measuring and analyzing high dimensional
response spaces that provide new insights about proposed TCP
replacements. We begin in the next section by explaining
MesoNet, our 20-parameter model of a TCP network, and we
show how a sensitivity analysis of the model can be used to
identify key response dimensions, and the model parameters

that significantly influence those dimensions. We move on in
Sec. 6 to describe experiments, which leverage our methods to
provide insights about Internet congestion control procedures.

5 MESONET SIMULATION MODEL
We implemented a model for each of the proposed

congestion control algorithms explained above in Sec. 4. To
investigate global behavior, we embedded the algorithm models
within MesoNet [33], our simulation of a TCP network, which
was introduced briefly in Sec. 2, where Table 2 identified the
20 parameters composing MesoNet. Here, we give more
detailed information about those parameters.

A network configuration requires a topology (parameter
X4) of routers and links, as shown for example in Fig. 22,
adapted from the Abilene backbone network [34]. MesoNet
supports topologies with up to three hierarchical router tiers:
backbone routers (A-K in Fig. 22), point of presence (PoP)
routers (A1-K2) and access routers (A1a-K2d). To model
heterogeneity in network access, MesoNet allows three
different types of access routers: D-class (e.g., six red nodes in
Fig. 22, which connect directly to backbone routers), F-class
(e.g., 28 green nodes) and N-class (e.g., 105 small gray nodes).

Classifying access routers enables different speeds to be
assigned to each class. Sources and receivers compose a fourth
tier distributed below access routers. Data segments flowing
between a source-receiver pair follow a single ingress/egress
path between an access router and a top-tier backbone router. In
MesoNet ingress/egress paths are not subject to propagation
delays. Propagation delays on backbone links are an intrinsic
property of all MesoNet topologies, as are the paths taken by
data segments flowing among backbone routers.

Given a cost metric for each backbone link, one can use
Dijkstra’s shortest-path first (or equivalent) algorithm to
generate least-cost paths. Assuming a link cost equal to
propagation delay, the topology in Fig. 22 generates 110 paths
between backbone routers, with an average path length of 3.51
router hops. Adding in the hops for sources and receivers to
reach the backbone routers increases the average path length to
9.43 hops. To scale propagation delays in a topology, parameter
X2 multiplies the delays assigned to each backbone link.
Unlike real networks, where links have transmission speeds
and associated buffers, MesoNet assigns speeds to routers.
Each router multiplexes segment forwarding from a single
buffer shared among all attached links. Because MesoNet
segments have no size, router speeds are assigned in units of
segments/millisecond. Parameter X1 defines the base speed of
backbone routers and all other router classes operate at a
proportion of that speed: PoP routers 25 %, N-class 2.5 %, F-
class 5 % and D-class 25 %. To provision router buffers,
MesoNet allows buffer size (in segments) to be selected using
an algorithm, specified by parameter X3.

Given a three-tier topology of routers and links, the model
constructs a fourth tier, where sources and receivers are
distributed under (and attached to) access routers. The model
includes a target number of sources and receivers which should

 20 Copyright © 2011 by ASME

be set to a value appropriate for the network speed. Model
parameter X12 serves as a multiplier to scale the target number
of sources and receivers. Parameter X13 specifies probabilities
(e.g., see Tables 11 and 13) that bias the distribution of sources
so that a higher or lower proportion of the target number
attaches under various classes (D/F/N) of access routers.
Similarly, parameter X14 specifies probabilities that bias the
distribution of receivers. Altering the distributions of sources
and receivers adjusts the probability of flows transiting access
routers of specific classes, where the slowest access router
crossed by a flow determines the flow’s path class: very fast
(VF) for D-class routers, fast (F) for F-class or typical (T) for
N-class. The final property of sources and receivers concerns
the maximum speed at which they can transfer segments to the
network. The model allows two speeds: normal (8000
segments/second, i.e., 96 Mbps) and fast (80,000
segments/second, i.e., 960 Mbps). Parameter X11 specifies the
probability that a source or receiver connects at the fast speed.
When a flow’s receiver and source are both connected at the
fast speed, a flow’s maximum rate is fast (F); otherwise a
flow’s maximum rate is normal (N).

User behavior is modeled through periodic activity by
sources, which cycle between thinking, connecting and
sending. Prior to entering the thinking state, a source selects a

random residence time from an exponential distribution with a
mean given by parameter X7. Upon expiration of residence, the
source enters the connecting state, where a connection is
attempted to a randomly selected receiver. If a connection
attempt succeeds, the source enters the sending state, where a
flow of segments is transmitted. Once all segments in a flow
are acknowledged, the source reenters the thinking state. If a
connection attempt fails, the source reenters the thinking state
without sending. Sources may have finite or infinite patience.
Parameter X8 specifies the probability that a source has finite
patience, where short flows must be completed within a
reasonable time and long flows must progress at a reasonable
rate or else a source aborts the flow and reenters the thinking
state.

Prior to sending, a source selects a Web object size (in
segments) from a Pareto distribution with a mean defined by
parameter X5. Through parameter X6 the model allows sources
to transmit larger files in three categories: documents, software
updates and movies, with corresponding multipliers (Fx, Sx and
Mx) that scale the selected Web object size to a larger value
with a corresponding probability (Fp, Sp and Mp) for each
category. The model also allows simulation of spatiotemporal
congestion by specifying (parameter X9) a time period during
which every flow transiting a VF path will have the randomly

Figure 22: Three-Tier Topology with 11 Backbone Routers (A-K), 22 Point of Presence Routers (A1-K2) and 139 Access Routers
(A1a-K2d) – 6 red and 28 green Access Routers may operate at different speeds from the 105 others

 21 Copyright © 2011 by ASME

selected file size multiplied by 10, becoming jumbo files that
create spatiotemporal congestion. The model also permits
simulation of long-lived flows that, once activated, send as
many segments as possible in the course of a simulation.
Parameter X10 specifies the number, location and starting time
for any long-lived flows included in an experiment.

The transmission rate of each flow is regulated by
protocols. Upon connecting to a receiver, a source first sends a
number of segments, known as the initial cwnd, specified by
parameter X16. As ACKs arrive from the receiver, the source
increases cwnd exponentially. Upon the first lost segment, the
source adopts procedures specified by a designated congestion
avoidance algorithm. Model parameter X15 defines the
probabilities that a given source uses each of the congestion
avoidance algorithms simulated by MesoNet. If there are no
losses, a source switches to its congestion avoidance algorithm
once the cwnd reaches an initial slow sst, defined by parameter
X17.

MesoNet measures numerous aspects of model behavior
during each simulation run. Most measurements are made as
time series, which sample system states at periodic intervals
defined by parameter X18. Model parameter X19 controls the
duration of a simulation run. Model parameter X20 determines
the rate at which sources initially enter the sending state.

5.1 MesoNet Sensitivity Analysis – Design

To understand the characteristics of MesoNet, we
employed a 2-level OFF experiment design to conduct a
sensitivity analysis, which allowed us to identify parameters
that significantly influence model behavior. We used these
findings to guide the design of subsequent experiments (see
Sec. 6) to compare the proposed TCP replacements explained
above in Sec. 4.

We adopted a 220-12 OFF design, requiring 256 simulations,
where each simulation has a specified combination of

parameters that are set to one of two levels, which we refer to
as the MINUS (-1) and PLUS (+1) levels. Table 5 gives the two
level values we selected for each of MesoNet’s 20 parameters.
Most of the parameter mappings from Table 5 are
straightforward. Here, we discuss a few that merit more
explanation. We also introduce the response variables used in
the sensitivity analysis.

Category Identifier MINUS (-1) Level PLUS (+1) Level

Network
Configuration

X1 800 segments/ms 1600 segments/ms
X2 1x 2x
X3 rtt x C/sqrt(n) rtt x C
X4 Abilene – delay ISP – costs

User
Behavior

X5 75 segments 150 segments

X6
Fp = 0.02
Sp = 0.002
Mp = 0.0002

Fp = 0.04
Sp = 0.004
Mp = 0.0004

X7 2 seconds 5 seconds
X8 Infinite Finite
X9 4th Time Period None

X10 3 begin 3rd Period None

Sources &
Receivers

X11 0.2 0.8
X12 2x 3x
X13 Web centric Peer-2-Peer Centric
X14 Web centric Peer-2-Peer Centric

Protocols
X15 TCP = 0.8

CTPC = 0.2
TCP = 0.2
CTPC = 0.8

X16 2 segments 8 segments
X17 43 segments > 109 segments

Simulation &
Measurement
Control

X18 200 milliseconds 1 second
X19 25 minutes 50 minutes
X20 Exp. (mean X7) 50% start early

Table 5: Level Settings Used in Sensitivity Analysis

Figure 23: Possible traffic scenarios generated by various combinations of values for parameters X5, X6, X9, X10 and X19

 22 Copyright © 2011 by ASME

The -1 level for parameter X4 entails using the Abilene
topology shown in Fig. 22. For the +1 level of X4 we used a
larger topology adapted from a commercial Internet Service
Provider (ISP). The ISP topology has more routers (16
backbone, 32 PoP, 8 D-class, 40 F-class and 122 N-class),
more backbone links (24) and thus additional least-cost paths
(240) in the backbone. The increased number (170) of access
routers implies that the +1 topology will also have more
sources and receivers than the -1 topology. Backbone paths in
the +1 topology are determined based on costs assigned by the
ISP in order to achieve specific traffic engineering objectives.
Both the -1 and +1 topologies have propagation delays
corresponding to the physical length of backbone links. Values
for the X1 parameter scale all router speeds in the selected
topology. Values for the X2 parameter scale propagation delays
on all backbone links in the topology. Values for the X3
parameter scale buffer sizes for all routers in the topology. The
+1 value for X3 selects a buffer provisioning algorithm that
corresponds to the recommended practice [35], i.e., a router’s
buffer size in segments is the average rtt in a topology
multiplied by the router’s speed (C). Following the suggestion
of some researchers [36], the -1 value for X3 divides a router’s

computed buffer size by the square root of the expected number
(n) of flows transiting the router.

Several parameters influence network traffic generated by
sources, as illustrated in Fig. 23. Each simulation run can be
viewed through a time line with length corresponding to the
simulation duration assigned via parameter X19: 25 (-1 level)
or 50 (+1 level) minutes. The simulation begins with sources
sending files of various sizes, as determined by the values of
parameters X5 and X6. The -1 level for X6 denotes transfer of
fewer large files, i.e., documents, software service packs and
movies, which implies the transfer of more Web objects. The
+1 level for X6 increases the proportion of transfers of large
files and decreases the proportion of Web objects. After a warm
up period of either 10 (-1 for X19) or 20 (+1 for X19) minutes,
the scenario unfolds over three additional time periods, each
with a duration of either 5 (-1 for X19) or 10 (+1 for X19)
minutes. At onset of the first time period three long-lived flows
are started if X10 is -1. The long-lived flows are not started if
X10 is +1. At onset of the second time period transfer of jumbo
files may be started (-1) or not (+1) on VF paths, depending on
the level of X9. At the onset of the third time period no further
jumbo files will be initiated.

Table 6: Responses measured during a sensitivity analysis of MesoNet

Macroscopic Responses Flow Groups for Throughput Averages

Category Identity Definition Number File Size Path
Class

Max. Rate

Flow
State

Y1 Average # sources connecting 1

Movie

VF F
Y2 Average # sources sending 2 VF N
Y3 % sending flows in initial slow start 3 F F
Y4 % sending flows in standard congestion avoidance 4 F N
Y5 % sending flows in alternate congestion avoidance 5 T F

 6 T N

Congesti
on

Y6 Retransmission rate 7

Software
Service

Pack

VF F
Y7 Average congestion window size (segments) 8 VF N
Y8 Aggregate # connection failures 9 F F

 10 F N

Delay Y9 Average round-trip time (ms) 11 T F
Y10 Average queuing delay (ms) 12 T N

 13

Document

VF F

Work Y11 Average # flows completed per second 14 VF N
Y12 Average # segments output per second 15 F F

 16 F N
Long-
Lived
Flows

Y13 Average throughput on long-lived flow #1 17 T F
Y14 Average throughput on long-lived flow #2 18 T N
Y15 Average throughput on long-lived flow #3 19

Web
Object

VF F
 20 VF N
Flows by

Path
Class

Y16 Average throughput on flows transiting VF paths 21 F F
Y17 Average throughput on flows transiting F paths 22 F N
Y18 Average throughput on flows transiting T paths 23 T F

 24 T N

 23 Copyright © 2011 by ASME

A few other parameters merit mention. Parameters X13
and X14 vary the distribution of sources and receivers in a
topology, which influences the proportion of flows transiting
specific access router classes. The -1 level for these parameters
creates Web-centric traffic, which means an increase in the
proportion of flows transiting D-class and F-class access
routers. The +1 level for these parameters increases the
proportion of flows that transit N-class access routers, which is
more consistent with peer-to-peer traffic. For this experiment,
sources may regulate flow transmission rate using one of two
congestion avoidance algorithms: standard TCP or compound
TCP (CTCP). A -1 level for parameter X15 deploys more TCP
sources in a topology, while a +1 level deploys more CTCP
sources. Finally, a -1 level for parameter X20 causes sources to
leave the initial thinking state after exponential delays with a
mean determined by parameter X7. The +1 level for X20
causes 25 % of sources to start in the connecting state and 25 %
to leave the initial thinking state early, while the remaining 50
% leave after a normal delay.

As shown in Table 6, in this sensitivity analysis we
characterized MesoNet behavior by measuring 18 macroscopic
responses, summarizing network state in six categories, and by
averaging throughput (in segments/second) for each of 24 flow
groups, where a flow group is defined by three dimensions: (1)
file size, (2) path class and (3) maximum transfer rate. We
averaged each macroscopic response separately in the three
time periods identified in Fig. 23, yielding a total of (3 x 18 =)
54 macroscopic responses. We computed throughput per flow
group separately for sources using TCP and for those using

CTCP, yielding a total of (2 x 24 =) 48 flow-group throughput
measurements. Thus the number of computed responses totaled
(54 + 48 =) 102.

A few responses from Table 6 require brief explanation.
Recall that sources cycle through three states: thinking,
connecting and sending. We measured the average number of
connecting (Y1) and sending (Y2) sources; other sources are
thinking. Sending flows begin operating under initial slow start
rules and may then move to congestion avoidance, where
sources implementing CTCP may cycle between standard and
alternate rules. We used responses Y3, Y4 and Y5 to measure
the proportion of sending flows operating under each rule set.
Since lost segments must be resent, we computed
retransmission rate (Y6) as a ratio: file size to data segments
sent on a flow before receiving the last acknowledgment. We
measured the average work/second accomplished in flows
(Y11) and segments (Y12) for each time period. With
responses Y13, Y14 and Y15 we estimated instantaneous
throughput in each time period for individual long-lived flows
transiting specified paths in the network. Similarly, we used
responses Y16, Y17 and Y18 to estimate instantaneous
throughput on each path class in each time period regardless of
differences in file size and maximum transfer rate. To estimate
instantaneous throughput we divided the number of ACKs sent
in a measurement interval by the interval size. For flow groups,
we computed throughput measures by dividing file size (in
segments) by the time interval between sending the first
segment and receiving an ACK for the last segment.

Metric
Class Y#

Network User Behavior Source/Receiver Protocol
Sim. Control &

Meas.

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 X16 X17 X18 X19 X20

Flows

Y1 ‐** +** +* ‐** +** +** +**
Y2 ‐** +** +** ‐** +** +**
Y3 +** +** +** ‐** +** ‐** ‐** +**
Y4 ‐** ‐** ‐** +** ‐** +** +** ‐*
Y5 +** +** +** ‐** ‐** +** +* ‐**

Congestion
Y6 ‐** ‐** ‐** +** ‐** +** +** +**
Y7 +*
Y8 ‐** ‐** ‐** +** +** +** +**

Delay
Y9 ‐** +** +** +* +*
Y10 ‐** +** +** ‐* +** +**

Aggregate
TP

Y11 +** ‐* +** ‐** ‐** +** +**
Y12 +** +** +** +** ‐** ‐** +**

Long‐Lived
Flow TP

Y13 +** +* +* +** ‐**
Y14 +* +** +** ‐**
Y15 +** +** ‐* ‐*

Other Flow
TP

Y16 +** ‐** ‐** +* +** ‐** ‐* +** ‐*
Y17 +** ‐** +* +** +** ‐** +** ‐** +** ‐*
Y18 +** ‐** ‐** +** ‐** ‐** +**

Table 7: Significance of influence of 20 MesoNet parameters (columns) on 18 macroscopic responses (rows) during 2nd time period:
blue cells indicate significance p < 0.01 and orange cells indicate significance p < 0.05, where a – or + in highlighted cells indicates
the parameter setting that causes an increase in the corresponding response

 24 Copyright © 2011 by ASME

5.2 MesoNet Sensitivity Analysis – Results
We analyzed the main effects of each MesoNet parameter

on all 102 measured responses. We conveyed these analyses
through main effects plots, such as Fig. 8, which plots response
y2 (average number of sending sources) in time period 2. We
created five (only one shown here) summary tables: three tables
(one per time period) report statistically significant effects of
parameters on the 18 macroscopic responses and two tables
(one for TCP and one for CTCP) report statistically significant
effects of parameters on throughput for each of the 24 flow
groups. For example, Table 7 provides a summary for the 18
macroscopic responses in the 2nd time period – the row for y2
was created from the main effects plot in Fig. 8. Cells in Table
7 highlighted in blue and annotated with ** denote effects
significant at the p < 0.01 level and those highlighted in orange
and annotated with * denote effects significant at the p < 0.05
level. Each highlighted cell also includes either a + or – to
indicate which level for the corresponding parameter (column)
led to a higher value in the response (row). For y2 for example,
we find slower (-) network speed (X1), larger (+) topology
(X4), bigger (+) file sizes (X5), shorter (-) think times (X7) and
more (+) sources (x12) distributed in a peer-to-peer (+) pattern
(X13) led to a larger number of sending sources. This
corresponds to the information given in Fig. 8. A quick scan of
Table 7 shows that network speed had significant influence on
all 18 responses during the 2nd time period. Other significant
parameters can be identified, as well as those that had little or
no significant influence on the responses. Other patterns can
also be discerned, such as the influence of particular sets of
parameters on responses associated with network congestion.

Table 8 condenses our five tables summarizing main
effects for macroscopic responses (in each of three time
periods) and for throughput per flow group (under each of two
congestion avoidance algorithms). For each parameter (X1 to
X11), we computed the fraction of responses influenced (Ψ),
weighting p < 0.05 at ½ and p < 0.01 at 1, as shown with the
following equation.

 Ψ = (|{y | p < 0.01}| + ½ |{y | p < 0.05}| / |{y}| (5)

In Table 8 we multiply these fractions by 100 to generate the

percent of responses influenced. All percentages are rounded.
Table 8 displays the resulting Ψ x 100 for each parameter from
each of the five response sets. The bottom row gives a
weighted average Ψ x 100 for each parameter. We weighted
each time period at 1/6 and each congestion avoidance
algorithm at 1/4, which amounts to weighting the macroscopic
and flow throughput responses equally.

The main influences on model behavior included physical
network parameters: speed (X1), propagation delay (X2),
buffer provisioning (X3) and topology (X4), with network
speed being most influential. The number (X12) and
distribution (X13) of sources, along with file size (X5) and user
think time (X7) also showed significant influence on model
behavior. Lesser influence arose from the initial cwnd size
(X16) and sst (X17). Other parameters exhibited little or no
influence on MesoNet behavior.

To confirm these findings, we conducted additional
sensitivity analyses [1] using different level settings, extending
the range between the chosen values. The findings reported
here were robust across the sensitivity analyses we conducted.
The information obtained from the sensitivity analyses
confirmed the understanding of domain experts regarding key
factors influencing behavior in real networks. This boosted
confidence in our MesoNet model. Further, our sensitivity
analyses identified the seven most significant parameters to
vary in subsequent experiments to compare congestion control
procedures proposed for the Internet. We address these
experiments next.

6 CONGESTION CONTROL EXPERIMENTS
To compare proposed TCP replacements, we conducted

five experiments, in two categories, as identified and described
in Table 9. While we present these experiments as an integral
whole, in reality we adopted an incremental experiment design
process, where results from one experiment guided design of
the next experiment and so on. In this way, interesting or
significant behaviors arising in one experiment could be more
fully explored in subsequent experiments.

We began comparing proposed TCP replacements with an
experiment designed to investigate how the algorithms react to

Table 8: Summary of significance of influence (Ψ x 100) of 20 MesoNet parameters (columns) on 18 macroscopic responses
for the three time periods (first three rows) identified in Fig. 24 and average throughput for the 24 flow groups identified in
Table 5 under TCP and CTCP congestion avoidance procedures (rows four and five), and the weighted average Ψ x 100, with
each time period weighted 1/6 and each congestion avoidance algorithm weighted 1/4

 25 Copyright © 2011 by ASME

and recover from spatiotemporal congestion. We decided to
model a large fast network. This decision proved expensive, as
it required over 16,500 processor hours (> 2 years on a single
computer) to simulate each of the seven proposed TCP
replacements. By using 48 processors in parallel, we completed
the required simulations in only about 2 weeks.

Table 9: Summary description of five experiments grouped into
two categories that each focused on one particular question

How do the proposed TCP replacements react to and
recover from spatiotemporal congestion?

Experiment #1a

Compared seven proposed TCP
replacements (excluded FAST-AT) in a large
(up to 278,000 sources), fast (up to 192
Gbps backbone) network; Web browsing
users; 25 minutes simulated; three 5-minute
time periods; large (> 1 billion segments)
initial sst; all sources use the same
congestion control algorithm

Experiment #1b

Same as #1a, except; smaller (up to 27,800
sources) and slower (up to 28.8 Gpbs
backbone) network and low (100 segments)
initial sst. (Added FAST-AT)

How do the proposed TCP replacements improve flow
throughputs and affect competing TCP flows?

Experiment #2a

Compared eight proposed TCP
replacements in a small (up to 26,085
sources), slow (up to 38.4 Gpbs backbone)
network; Web browsing users and
interspersed users who download software
and movies; 60 minutes simulated; large (>
1 billion segments) initial sst; some sources
use standard TCP congestion control
procedures and some sources use one of the
proposed congestion control procedures

Experiment #2b Same as #2a except for low (100 segments)
initial sst.

Experiment #2c
Same as #2a except for a larger (up to
261,792 sources) and faster (up to 384 Gbps
backbone) network.

Guided by the results from our sensitivity analysis, we

selected six parameters to vary in experiment #1a. Table 10
shows the chosen parameters and the two level settings for
each. We fixed the remaining parameters, as shown in Table 11.
All of our experiments used the topology (X4) shown in Fig.
22. In experiment #1a we chose to omit FAST-AT because the
designers of FAST indicated that the α-tuning variant was not
used generally. Among the seven most significant parameters
identified in our sensitivity analyses, we decided to exclude the
multiplier (X12) on the number of sources because varying the
source distribution pattern also varied (from 174,600 to
278,000) the number of sources. We selected 1000 as the target

number of sources under each access router, and we fixed the
multiplier for number of sources (X12) to 2, which boosted the
target number of sources under each access router to 2000,
which was appropriate for the network speeds simulated.

Table 10: Parameters varied in experiment #1a and the values
selected for the PLUS and MINUS levels

 Parameter Definition PLUS (+1) MINUS (-1)
X1 Network Speed 8000 s/ms 4000 s/ms
X2 Prop. Delay

Multiplier
2 1

X3 Buffer Provisioning rtt x C rtt x C/sqrt(n)
X5 Avg. File Size 100 segs. 50 segs.
X7 Avg. Think Time 5 s 2.5 s
X13 Source Distribution .33/.33/.33 .1/.6/.3

Table 11: Fixed parameters and values for experiment #1a

 Parameter Fixed Value
X4 Topology Abilene – SPF Delay
X6 Large Files Fp = 0.1 & Fx = 10
X8 Patience infinite

X9
Selected
Spatiotemporal
Congestion

4th Time Period

X10 Long-lived flows 3 begin in 3rd Time Period
X11 Prob. Fast Source 0.4
X12 Number Sources 2 x 1000
X14 Dist. of Receivers 0.6/0.2/0.2
X15 Congestion Control Algorithm Under Test
X16 Initial cwnd size 2 segments
X17 Initial sst 2**32/2 segments
X18 Meas. Interval size 200 ms
X19 Duration 25 minutes
X20 Startup Pattern 50 % start early

We set the probability of large file sizes to reflect a 10 %
chance that Web browsing users would download a document
of interest. Somewhat unrealistically, we assigned users infinite
patience, which factored out user behavior as a means of
congestion control, allowing us to focus directly on the
congestion avoidance algorithms we were investigating. We set
up spatiotemporal congestion to occur in the 4th of five
simulated time periods because we were investigating the
ability of congestion control procedures to react to and recover
from congestion.

In MesoNet, the state of long-lived flows is recorded in
quite some detail. In order to access those details, we started
three long-lived flows, transiting different portions of the
topology, in the third time period. We selected a rather high
probability (0.4) of sources and receivers connecting to the
network at high speed because the motivation of the proposed
TCP replacements was to enable corresponding users with fast

 26 Copyright © 2011 by ASME

connections to realize better throughput than standard TCP. The
choice of congestion control algorithm (X15) was not fixed;
instead, we simulated each of the 7 proposed congestion
control algorithms against all of the parameter combinations
created from Table 10.

For the variable parameters in Table 10, we used a 26-1 OFF
design, which reduced the number of simulated parameter
combinations from 64 to 32. The 32 simulated conditions
created: network backbone speeds of either 192 or 96 Gbps,
average propagation delays of 41 or 81 ms (200 ms maximum)
and a wide range of buffer size combinations, influenced by
both network speed and propagation delay. These parameter
combinations generated varying levels of network congestion,
ranging from no segment loss to 50 % segment loss. The
balance and orthogonality of the experiment design ensured
that half the combinations led to a congested network and half
did not.

While simulating the parameter combinations, we
measured 45 responses, many of which we described above. Of
particular note, we added some aggregate measures to record
the total number of segments flowing into and out of the
network and the total number of flows competed. We also
measured buffer utilization in selected access routers and
average throughput on the three long-lived flows.

Applying cluster analysis to the 45-dimensional response
space for each of the 32 conditions identified algorithm 3
(FAST) as an outlier in many conditions (e.g., see Fig. 10). The
condition-response summary shown in Fig. 13 also shows
algorithm 3 was an outlier for many responses under many
conditions. Further, as shown in Fig. 14, response y6
(retransmission rate from Table 6) was particularly high for
FAST under many conditions, and the retransmission rate
disparity for FAST increased with increasing network
congestion. Examination of cwnd traces on long-lived flows
revealed that the FAST congestion avoidance algorithm
oscillates cwnd size under spatiotemporal congestion, with the
oscillations increasing with increasing congestion.

Results from this experiment also revealed other valuable
information. Under low or no congestion, all congestion
control procedures, including standard TCP, provided identical
throughputs. This result occurred because in the absence of
segment losses flows can complete transfer of all segments
during the initial slow start phase, provided the initial sst is
large enough, as was certainly the case in experiment #1a.
Further, under high congestion, most of the proposed TCP
replacements (excepting FAST) exhibited similar rates of
segment loss. This result occurred because these proposed
procedures contained a mode switch that triggers the use of
standard TCP congestion avoidance procedures under periods
of heavy congestion, which tend to drive the cwnd size below
the mode switching thresholds.

With this information in hand, we designed experiment
#1b, which entailed three main changes from experiment #1a:
(1) we reduced the initial sst to 100 segments, (2) we reduced
the network size and speed by an order of magnitude, and (3)

we included FAST-AT. We took the first step to confirm
whether the setting of the initial sst was important under low
network congestion. We took the second step to confirm that
we could generate useful information with fewer computation
resources (because slower, smaller networks could be simulated
more quickly). We took the third step because we wanted to
determine if FAST-AT produced the same macroscopic
behavior as FAST. We made no other changes to the
experiment parameters adopted in experiment #1a.

Results for experiment #1b showed that FAST-AT exhibits
indistinguishable behavior from FAST, and quite distinct from
the other proposed TCP replacements we investigated. Results
from experiment #1b also found that the behavior of the other
proposed TCP replacements were largely indistinguishable
from each other, even when the initial sst was reduced to 100
segments. This, perhaps unexpected, result can be attributed to
the fact that average file sizes on most flows were at or below
100 segments, and so could still be transferred within the initial
slow start phase, where changes to congestion avoidance
procedures would make no difference. This attribution was
verified by comparing performance on long-lived flows, which
have unlimited length. On these flows, during time period 3,
before the onset of spatiotemporal congestion, all the proposed
TCP replacements provided much greater throughput than
standard TCP. This occurs because once the cwnd reaches 100,
TCP moves from the exponential increase of slow start to the
linear increase of congestion avoidance, while all the proposed
TCP replacements increase transmission rate much faster than
linear. Among the proposed procedures, FAST reaches high
throughput most quickly. On the other hand, when the 4th time
period arrives and spatiotemporal congestion begins, the
throughput for all congestion control procedures is driven to a
very low level. However, upon cessation of spatiotemporal
congestion, our results showed that some of the proposed
congestion control procedures recovered high transmission rate
more quickly than others, and all of them recovered more
quickly than standard TCP.

Results from experiments #1a and #1b led us to investigate
two other questions. What benefit can users expect from
adopting each of the proposed TCP replacements, and what will
be the cost to users who continue using standard TCP? To
investigate these questions we used a 29-4 OFF design to
construct 32 parameter combinations composing experiment
#2a. We used the same design for experiment #2b, changing
only the sst, as indicated in Table 13. In Table 12 we specify the
two levels for each of the nine variable parameters.

Since experiments #1a and #1b showed that users could
achieve throughput improvements only on files larger than Web
objects, we increased the variety of file sizes to include not
only documents but also software service packs and movies.
We fixed the multipliers for these larger files to Fx = 100, Sx =
1000 and Mx = 10,000. Table 13 gives other fixed parameters
for the experiment.

In these experiments we did away with long-lived flows
and with spatiotemporal congestion, and we considered only a

 27 Copyright © 2011 by ASME

single time period, lasting 60 minutes. We adopt a small, slow
network in order to ease the computation burden from
simulating one hour of network operation. As in all
experiments, we set the initial cwnd to 2 segments (a common
value in the Internet [37]) and the measurement interval to 200
ms (the maximum rtt). We also start half the sources early in
order to limit the startup transient. We chose probabilities for
the distribution of sources and receivers that gave interesting
flow patterns, consistent with a Web-centric Internet.

Table 12: Parameters varied in experiments #2a and #2c, along
with the values selected for the PLUS and MINUS levels

 Parameter PLUS (+1) MINUS (-1)
X1 Network Speed 1600 s/ms 800 s/ms
X2 Prop. Del. Multiplier 2 1
X3 Buffer Provisioning rtt x C rtt x C/sqrt(n)
X5 Avg. File Size 150 segs. 100 segs.

X6 Large Files

Fp = 0.04
Sp = 0.004

Mp =
0.0004

Fp = 0.02
Sp = 0.002

Mp = 0.0002

X7 Think Time 7.5 s 5 s
X11 Prob. Fast Interface 0.7 0.3
X12 Num. Src./Rcv. Mul. 3 2
X15 Prob. Not Std. TCP 0.7 0.3

Table 13: Fixed parameters for experiments #2a and #2b

 Parameter Value
X4 Topology Abilene – SPF Delay
X8 Patience infinite

X9 Spatiotemporal
Congestion none

X10 Long-lived flows none
X13 Dist. Srcs. 0.1/0.6/0.4
X14 Dist. Rcvs. 0.6/0.2/0.2
X16 Initial cwnd 2 segments
X17 Initial sst 2**31/2 (#2a) or 100 (#2b)
X18 Meas. Int. Size 200 ms
X19 Sim. Dur. 60 minutes
X20 Startup Pattern 50 % start early

Experiments #2a and #2b considered a network with a

mixture of flows using standard TCP competing with flows
using each of the proposed TCP replacements, while
transferring files of quite varying sizes. This allows us to
investigate the conditions under which the proposed TCP
replacements will give users better throughput and also to
determine how the proposed TCP replacements will influence
the throughput for users of standard TCP. For this reason, we
measure the throughput obtained on each of 24 flow groups
(see Table 6) when using standard TCP or a proposed TCP
replacement.

Experiment #2a revealed (see Fig. 11) that, under large
initial sst, throughputs for the 24 flow groups were
differentiated based on three main factors: (1) network speed,
(2) propagation delay and (3) file size. These results agreed
with results from experiment #1a, but expanded the results to
larger file sizes, including download of software updates and
movies.

Experiment #2a did discern some throughput differences
for the largest files, i.e., movies, flowing over the fastest (VF)
paths with the fastest interface speeds (i.e., 1 Gbps). For
example, Fig. 24 shows seven biplots comparing throughputs
achieved with each proposed TCP replacement (x axis) against
throughputs achieved on competing standard TCP flows (y
axis). Each biplot includes a diagonal line representing equal
throughput for flows using standard TCP and flows using the
proposed TCP replacement. Four of the proposed TCP
replacements (CTCP, FAST, FAST-AT and HTCP) achieved
approximately equal throughput with standard TCP. On the
other hand, under some conditions, three of the proposed TCP
replacements (BIC, HSTCP and Scalable TCP) achieved higher
throughputs than standard TCP. Detailed examination revealed
that BIC, HSTCP and Scalable TCP achieved higher
throughputs than standard TCP under congested conditions,
with the throughput differential increasing with increasing
congestion.

Experiment #2b lowered the initial sst to 100 segments,
which again revealed the significant influence of the sst on
throughput for large files traversing very fast, uncongested
network paths. Fig. 25 shows two sets of seven bars. The
leftmost set, labeled y2(u), graphs throughputs achieved on
flows using each of the proposed TCP replacements. The
rightmost set, labeled y16(u), graphs throughputs achieved on
competing flows using standard TCP. The legend to the right of
the graph indicates each of the seven bars represents a specific
TCP replacement. In Fig. 25 the flows being compared were
transferring movies at potentially fast speed (up to 1 Gbps)
over very fast, uncongested (VF) network paths. The y axis
plots the throughput achieved divided by the maximum
achievable throughput. Examining the rightmost set of bars
shows that standard TCP flows provide only 20 % of the
available throughput, the same empirical performance observed
by researchers measuring TCP throughput on high speed, high
delay network paths [15]. Examining the leftmost set of bars
shows that all of the proposed TCP replacements provide
significantly higher throughput for movies transferred on VF
paths, with FAST and FAST-AT providing highest throughput,
followed by CTCP.

To construct a fuller picture comparing throughput for
flows using proposed TCP replacements and competing flows
using standard TCP, we conducted a rank analysis across all 24
flow groups identified in Table 6 and all 32 parameter
combinations. For each pair of flow group and condition, we
ordered throughputs achieved by each proposed TCP
replacement from high (7) to low (1). Similarly, we ordered
throughputs achieved by standard TCP when competing against

 28 Copyright © 2011 by ASME

each proposed TCP replacement. Then we averaged the rank
related to each proposed TCP replacement, and we also
computed the standard deviation in rank. We would then expect
an ideal proposed TCP replacement to achieve high ranking
(i.e., give good throughput for flows using the replacement and
for standard TCP flows competing with the replacement) and
low standard deviation (i.e., provide good throughputs across
all flow groups and conditions). An ideal TCP replacement
would be located in the lower right corner on a plot of average
rank (x axis) vs. standard deviation in rank (y axis).

We conducted the rank analysis separately for experiment
#2a (high initial sst) and #2b (low initial sst). We then plotted
the average rank (x axis) against the standard deviation (y axis)
for each of the experiments. For experiment #2a, Fig. 26 plots
the average and standard deviation in rank across all flow
groups and conditions for each proposed TCP replacement.
Here the news is mixed: HTCP and CTCP provided the highest
ranking throughputs, but also exhibit relatively high variability
in standard deviation. This indicates the HTCP and CTCP
provided good throughputs for many flow groups under most
conditions, but there are some flow groups or conditions for

which they do not perform very well. A look at the detailed
rankings indicates that HTCP and CTCP provided highly
ranked throughputs for small file sizes and for competing TCP
flows, but they do not rank as high as some of the other
proposed TCP replacements on larger files.

For experiment #2b Fig. 27 plots the average and standard
deviation in rank for each proposed TCP replacement. Here,
CTCP continued to rank quite highly, while also reducing the
standard deviation in rank over the case of a high initial sst.
FAST-AT, which was third highest ranked in Fig. 26, ranked
nearly as high as CTCP, but incurred a higher standard
deviation in rank. BIC, HSTCP and Scalable TCP exhibited
low ranks in both Figs. 26 and 27.

In experiment #2c, we repeated experiment #2a, but
increased network speed and size by an order of magnitude. We
took this step to ensure that the results would not change with
increasing network size and speed. The results for experiment
#2c generally matched those from experiment #2a. FAST-AT,
CTCP and HTCP provided the three highest ranking
throughputs, but in experiment #2c FAST-AT proved highest

Figure 24: Seven biplots, where each biplot compares throughput (in units of 100 segments per second) for movie flows transferred
over very fast paths with fast interface speeds using a proposed TCP replacement (x axis) with throughput on identical competing
flows using standard TCP

 29 Copyright © 2011 by ASME

ranking of the three and had the lowest standard deviation in
rank.

LegendLegendLegend

Figure 25: Fraction (y axis) of maximum available throughput
achieved when transferring movies over uncongested paths
with a maximum rate of 1 Gbps – each of the leftmost seven
bars – y2(u) – represents flows using one of the proposed
replacements for TCP (see legend), while each of the rightmost
seven bars – y16(u) – represents flows using standard TCP and
competing with flows using one of the proposed TCP
replacements (see legend)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

3 3.5 4 4.5 5

HTCP

CTCP

FAST-AT

Average Throughput Rank for All Flows

St
an

da
rd

 D
ev

ia
tio

n
in

 T
hr

ou
gh

pu
t

R
an

k
fo

r
A

ll
Fl

ow
s

FAST

HSTCP

BIC

SCALABLE

Figure 26: Average throughput rank (x axis) vs. standard
deviation in throughput rank (y axis) for flows using each
proposed TCP replacement and for competing flows using
standard TCP – high initial sst

Here, we presented only some key results from our
congestion control experiments. For more details, especially
with respect to questions of causality, we refer the reader to our
full study [1]. In the discussion that follows we draw on
information presented in that study, as well as the subset
presented in this paper.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

3 3.5 4 4.5 5

HTCP

CTCP

FAST-AT

Average Throughput Rank for All Flows

S
ta

nd
ar

d
De

vi
at

io
n

in
 T

hr
ou

gh
pu

t
R

an
k

fo
r

A
ll

Fl
ow

s

FAST

HSTCP

BIC

SCALABLE

Figure 27: Average throughput rank (x axis) vs. standard
deviation in throughput rank (y axis) for flows using each
proposed TCP replacement and for competing flows using
standard TCP – low initial sst

7 DISCUSSION
As demonstrated above, our methods advanced the state of

the art in evaluating Internet congestion control procedures,
allowing exploration of proposed TCP replacements under a
wide range of conditions for a network of substantial size. Our
methods also yielded another significant advance over the
previous state of the art, where researchers decided a priori on
what basis proposed TCP replacements would be compared.
Our investigation began with a single, somewhat vague,
question: would it be safe to deploy various proposed TCP
replacements on the Internet? Subsequently, the
multidimensional data analysis methods we applied enabled us
to identify key characteristics that differentiate proposed TCP
replacements. We found these characteristics from analysis of
experiment data, and without a priori intent. Thus, our analysis
methods led us to uncover the measures on which proposed
congestion control procedures should be compared. Our
analysis methods also enabled us to identify a specific
combination of conditions that must hold for users to realize
improved throughput from proposed TCP replacements. We
discuss these outcomes below.

7.1 Key Differentiators

Our results showed that proposed congestion control
procedures for the Internet can be distinguished by three main
characteristics: (1) increase rate, (2) loss/recovery processing
and (3) fairness. We address each of these topics in turn.

7.1.a Increase Rate. One of the key questions for any data
transport protocol is: How fast can the maximum available
transfer rate be achieved on a network path? Assuming no
congestion protocols that can quickly attain the maximum rate
will spend the largest portion of a file transfer at that rate. Each
TCP flow begins without any knowledge of the maximum
available transfer rate. For this reason, TCP specifies an initial
slow start process where the source transmits slowly but then,

 30 Copyright © 2011 by ASME

as feedback arrives from a receiver, quickly increases the
transmission rate until reaching a specified (initial) sst or
encountering a loss. This initial slow start process is not altered
by any of the proposed TCP replacements that we studied.

Assuming no (or low) congestion, the setting of the initial
sst can be quite important when comparing throughputs
experienced by users on TCP flows with throughputs for users
on flows operating under other congestion control procedures.3
When initial sst is set arbitrarily high, on average all flows
achieve maximum transfer rate with the same quickness. Under
such situations, the throughput seen on TCP flows and flows
running alternate procedures appears quite comparable. Flows
transporting short files (e.g., Web objects and document
downloads) tend to complete while in the initial slow start
phase, which means that alternate congestion control
procedures (restricted to the congestion avoidance phase) do
not operate. Even flows conveying long files can operate for
extended periods under initial slow start because such flows do
not enter congestion avoidance until encountering a segment
loss.

When initial sst is set low (e.g., 43 segments) all of the
proposed TCP replacements that we studied increase
transmission rate more quickly than the linear increase
provided by standard TCP. Thus, under low congestion, when
sst is set low compared to the size of files transferred users on
TCP flows will see much lower throughput than users on flows
operating under the proposed TCP replacements. The larger the
file sizes being transferred the larger the throughput advantage
of the proposed TCP replacements, which each provide varying
degrees of improvement over standard TCP. These throughput
variations can be tied directly to the speed with which each of
the proposed procedures reaches maximum transmission rate.

Under conditions of heavy congestion the setting of initial
sst matters less because initial slow start terminates upon the
first segment loss and then a flow enters congestion avoidance,
which is where the proposed TCP replacements differ from
standard TCP. In such situations, the main difference in
throughput experienced by users relates to the loss/recovery
procedures defined for each of the proposed TCP replacements.
We turn to this topic next.

7.1.b Loss/Recovery Processing. Two key questions arise
when a data transport protocol experiences congestion. (1)
How much should the protocol reduce transmission rate? (2)
How quickly should the protocol increase transmission rate
after a reduction? Standard TCP congestion avoidance
procedures reduce transmission rate by one-half on each
segment loss. Subsequently, TCP congestion avoidance

3 Note that on real TCP flows receivers may convey a receiver window

(rwnd) that can restrict throughput quite severely because sources pace
transmission based on the minimum of the congestion window (cwnd) and
rwnd. The following may hold: rwnd < cwnd. In our studies, we assume an
infinite rwnd in order to compare the effects of congestion control procedures
adjusting the cwnd. The throughput on many TCP flows in a real network might
well be constrained by rwnd. In such cases, the proposed TCP replacements we
studied would provide little advantage over standard TCP.

procedures linearly increase transmission rate. The proposed
TCP replacements that we studied specify various algorithms
for transmission rate reduction and for subsequent rate
increase.

One group of proposed procedures (Scalable TCP, BIC4
and HSTCP) reduce transmission rate less than standard TCP
after a segment loss. As a result, these procedures tend to retain
a higher transmission rate and associated buffers than standard
TCP. Smaller rate reduction can allow these procedures to
provide established flows with higher throughputs following
segment losses. We found this effect to increase with increasing
loss rate and also file size. In addition, Scalable TCP, BIC and
HSTCP can be somewhat unfair (as explained below) to
algorithms (such as TCP) that exhibit a more reduced
transmission rate following a loss, as well as to flows that have
had insufficient time to attain a high transmission rate prior to a
loss.

A second group of proposed procedures (CTCP, FAST and
FAST-AT) reduce transmission rate in half following a loss.
HTCP reduces transmission rate variably, between 20 and 50
%, depending on conditions. To obtain higher throughput, these
algorithms increase transmission rate more quickly than
standard TCP following a rate reduction. The rate of increase
varies among the procedures. Typically, HTCP and CTCP are
less aggressive than FAST and FAST-AT when increasing
transmission rate after a reduction. Though, FAST-AT will be
less aggressive than FAST when sufficient congestion exists to
force a reduction in the parameter. An aggressive rate
increase following a rate reduction can induce additional losses
on a path. Where such losses affect TCP flows, the TCP linear
recovery procedures lead to lower throughputs. Under severe
congestion, CTCP and HTCP can provide better throughput
than FAST and FAST-AT, which underperform standard TCP.

In areas and at times of extreme congestion, most of the
proposed TCP replacements we studied include rules to adopt
standard TCP congestion avoidance behavior. These rules
appear motivated by the theory that, when congestion is
sufficiently severe, existing TCP behavior provides the best
approach to fairly share limited available transmission capacity.
The most typical technique employed is to set a low-window
threshold. When the cwnd is below the threshold then standard
TCP congestion avoidance procedures are used. When cwnd is
above the threshold then replacement congestion avoidance
procedures are used. Specific values for the threshold vary
among the proposed TCP replacements. The combination of
different thresholds with different file sizes can lead to modest
variation in user throughputs among the proposed TCP
replacements.

HTCP handles adaptation to TCP procedures somewhat
differently than the other proposed TCP replacements we
investigated. After a loss, HTCP adopts linear rate increase for

4 Note that on repeated losses occurring close in time, BIC can reduce
cwnd substantially more than standard TCP; thus, on paths with very severe
congestion BIC can actually provide lower throughput than TCP and can also
occupy fewer buffers.

 31 Copyright © 2011 by ASME

a time. The time period is an HTCP parameter, set in these
experiments to one second. We found that HTCP then adapts to
TCP linear increase after every loss, regardless of file size or
cwnd value. For larger files, which tend to have higher cwnd
and to experience more losses during transmission, this
approach tends to lower throughput significantly relative to
other proposed TCP replacements, which do not adopt periods
of linear increase after every loss.

FAST and FAST-AT do not use standard TCP congestion
avoidance procedures under any circumstances. In times and
areas of heavy congestion, failure to adopt less aggressive rate
increase can lead to oscillatory behavior and to an associated
increase in loss rate. Increased losses lead to lower user
throughputs. FAST-AT does somewhat better under heavy
congestion because the parameter can be lowered, causing
less aggressive rate increases. Still, under many conditions,
FAST-AT exhibits a similar increased loss rate to FAST.

7.1.c TCP Fairness. TCP fairness denotes the effect where
competing flows transiting a shared bottleneck path in the
Internet all receive an equal share of available throughput.
Comparing proposed TCP replacements with respect to TCP
fairness can be somewhat difficult because the proposed
replacements are designed to give better throughput than
standard TCP for large file transfers on high-speed, long-delay
paths. Thus, for example, all of the proposed TCP replacements
can increase transmission rate more quickly than standard TCP
given low initial sst and large file sizes. Further, all proposed
TCP replacements take steps to provide loss/recovery
improvements over standard TCP congestion avoidance
procedures. On the other hand, most of the proposed TCP
replacements take steps to adopt TCP congestion avoidance
procedures when congestion is sufficiently high. Given these
factors, one would expect all the proposed TCP replacements to
provide better throughput than standard TCP under optimal
conditions, and to perform no worse than standard TCP under
suboptimal conditions. The usual measures of TCP fairness do
not apply in such circumstances because they would tend to
measure how much of a throughput advantage given proposed
replacements provide over standard TCP. Instead, we measured
relative TCP fairness by ranking the average throughput
achieved by standard TCP flows when they competed with
each proposed TCP replacement under the same conditions. We
considered the average rank across four file sizes: Web objects,
documents, software service packs and movies. In this way, we
could elicit the relative TCP fairness of the proposed TCP
replacements.

We found that CTCP and HTCP were most fair to TCP
flows. We found FAST-AT third fairest to TCP flows under
high initial sst. Under low initial sst, FAST-AT, because of its
quick increase in transmission rate after passing the initial sst,
proved more unfair to TCP flows. Injecting more FAST-AT
segments into the network induced more losses in TCP flows,
which could not recover as quickly.

We found Scalable TCP, BIC and FAST to be most unfair
to standard TCP flows. Established Scalable and BIC flows for

large files tended to maintain higher transmission rates after
losses, while competing TCP flows cut transmission rates in
half. By maintaining higher transmission rates and, thus, more
segment buffers, Scalable and BIC flows induced more losses
in TCP flows. FAST could recover more quickly from losses
than TCP flows and so FAST flows could occupy more buffers
and induce more losses in TCP flows. In addition, because of
its quick increase in transmission rate upon entering congestion
avoidance, FAST exhibited unfairness under low initial sst.

HSTCP appeared moderately fair to TCP flows, especially
under conditions of lower congestion and under low initial sst.
HSTCP showed TCP unfairness, similar to Scalable TCP, under
conditions of heavy congestion.

We believe that Scalable TCP, BIC and HSTCP could also
be unfair to flows that are newly arriving. Given that some
large flows operating under Scalable TCP, BIC and HSTCP
have established relatively high transmission rates and
associated large buffer states and given that newly arriving
flows induce losses, the established flows will not reduce
transmission rate very much and will maintain large buffer
states. The newly arriving flows will be forced into congestion
avoidance on the loss. Further, Scalable TCP and HSTCP do
not increase transmission rate very fast early in a flow’s life, so
newly arriving flows of these types can face difficulty
increasing transmission rate.

7.2 Utility Bounds of Proposed TCP Replacements

We showed that proposed TCP replacements could provide
increased throughput for users, but only under specific,
bounded circumstances. First, the rwnd must not be
constraining flow transmission rate. Second, a flow must be
using a relatively low initial sst. Third, a flow must be
transmitting a large file. Fourth, a flow’s segments must be
transiting a relatively uncongested path (i.e., experiencing only
sporadic losses) or else users must be willing to accept marked
unfairness (e.g., as seen with Scalable TCP) in trade for
increased throughput.

7.3 Safety

 Are there significant costs that might offset the modest
benefits associated with deploying proposed TCP
replacements? We can answer this question only in part
because we simulated networks where sources used either a
single congestion control regime or where some sources used a
selected TCP replacement while other sources used standard
TCP. There could be additional cautionary findings that arise
from a heterogeneous mixture of proposed TCP replacements.
We postpone such investigations to future work.

For most proposed TCP replacements, under most
conditions we found little significant change in macroscopic
network characteristics. One exception relates to FAST and
FAST-AT. In spatiotemporal regions with high congestion,
where there were insufficient buffers to support the flows
transiting specific routers, FAST and FAST-AT exhibited
oscillatory behavior where the flow cwnd increased and

 32 Copyright © 2011 by ASME

decreased rapidly with large amplitude. Under these conditions,
the network showed increased loss and retransmission rates, a
higher number of flows pending in the connecting state and a
lower number of flows completing over time. We recommend
additional study of FAST and FAST-AT prior to widespread
deployment and use on the Internet.

8 CONCLUSIONS
The Internet consists of millions (someday billions) of

interconnected components that may be changed independently.
For example, every time vendors of major operating systems
introduce software updates, millions of users download new
software modules into computers connected to the Internet. As
another example, users may download software to support new
functions, such as social networking or distributed gaming. At
the current state of the art, system designers lack techniques to
predict global behaviors that may arise in the Internet as a
result of interactions among existing and altered software
components. Similarly, hardware faults and unexpected usage
patterns may occur within the Internet. Engineers have
insufficient methods and tools available to forecast global
behaviors and resulting effects on individual users. The study
described here aimed to improve existing knowledge about a
combination of methods and tools that could be applied to
understand and predict behavior in such complex information
systems.

To give our study a concrete context, we selected a
challenging problem of current interest and relevance for the
Internet at large. Specifically, we studied likely consequences
for macroscopic behavior and for individual users should any
of several proposed mechanisms be introduced to augment or
replace congestion control procedures in standard TCP, which
is currently deployed to regulate the rate of information transfer
among computers connected to the Internet. Previously, such
proposed changes have been studied on individual long-lived
flows using analytical methods and also studied using
simulation and empirical measurements in small topologies
with limited types of data traffic. Though researchers and
engineers would like to predict the effects of such changes on
macroscopic behavior and on individual users, no techniques
were previously available to make such extrapolations to large,
fast topologies transporting hundreds of thousands of
simultaneous data transfers of various sizes under a wide range
of network conditions. The study discussed here applied
modeling and analysis techniques to make such extrapolations
for seven proposed replacements for standard TCP congestion
control procedures.

We applied techniques often used by scientists at NIST
when studying physical systems. First, we proposed an abstract
simulation model, in this case representing a data
communications network. Second, we adopted 2-level-per-
factor experiment designs, which considered each parameter at
only two values, as compared with the billion or so values that
each parameter could possibly take on. Third, we leveraged
orthogonal fractional factorial (OFF) experiment designs that

enabled us to model a sparse but balanced set of parameter
combinations spread widely throughout the space of possible
combinations. Reducing the number of parameters, parameter
levels and combinations enables feasible simulation of large
networks under a wide range of conditions. Third, we used a
variety of statistical analysis and visualization techniques
designed to explore multidimensional data sets. We
demonstrated that our combination of modeling and analysis
techniques allowed us to predict the influence of seven
proposed TCP replacements on macroscopic network behavior
and on individual user experience.

Future work remains to apply our methods to large
distributed systems in other domains, as we are doing currently
with respect to infrastructure Cloud computing systems. Early
returns suggest that the methods described here transfer quite
readily among various types of large distributed systems.

ACKNOWLEDGMENTS
The authors thank the Complex Systems program in the

NIST Information Technology Laboratory for funding this
work.

REFERENCES
[1] Mills, K, Filliben J., Cho D., Schwartz E.and Genin D., (2010)

Study of Proposed Internet Congestion Control Algorithms, NIST
Special Publication 500-282, May 2010, 534 pages.

[2] Stevens, W. R. (1994) TCP/IP Illustrated, Volume 1: the
Protocols, 1st edition, Addison-Wesley Professional, 600 pages.

[3] Cowie, J., Liu, H. Liu, J., Nicol, D. and Ogielski, A. (1999)
“Towards Realistic Million-Node Internet Simulations”,
Proceedings of the International Conference on Parallel and
Distributed Processing Techniques and Applications, June 28-
July 1, 1999, Las Vegas, Nevada.

[4] Zeng. X., Bagrodia, R. and Gerla, M. (1998) “GloMoSim: a
Library for Parallel Simulation of Large-scale Wireless
Networks”, Proceedings of the 12th Workshop on Parallel and
Distributed Simulations (PADS '98), pp. 154-161.

[5] Fall, K. and K. Varadhan, eds. (2009) The ns Manual. Available
via <http://www.isi.edu/nsnam/ns/doc/
ns_doc.pdf> [accessed December 2, 2009].

[6] Yaun, G., D. Bauer, H. Bhutada, C. Carothers, M. Yukel and S.
Kalyanaraman. (2003) Large-Scale Network Simulation
Techniques: Examples of TCP and OSFP Models. In SIGCOM
Computer Communications Review, 33:3, 27-41.

[7] Box, G., Hunter, J. and Hunter, W. (2005) Statistics for
Experimenters, 2nd edition, Wiley, 639 pages.

[8] Frey, D., Engelhardt, F. and Greitzer, E. (2003) “A role for ‘one-
factor-at-atime’ experimentation in parameter design”, Research
in Engineering Design, Volume 14, Number 2, 65-74, DOI:
10.1007/s00163-002-0026-9, pp. 65-74.

[9] Fodor, I.K. (2002) A Survey of Dimension Reduction
Techniques. Lawrence Livermore National Laboratory Technical
Report no. UCRL-ID-148494.

[10] Jolliffe, I. T. (2002). Principal Components Analysis. 2nd ed.
Springer Series in Statistics.

[11] Mardia, K.V., Kent, J.T., and Bibby J.M. (1995) Multivariate
Analysis. Probability and Mathematical Statistics. Academic
Press.

[12] Croarkin, C. Tobias, P., Filliben, J., Hembree, B. Guthurie W.,
Trutna, L., and Prins, J. (2006) “Grubbs’ Test for Outliners”,
NIST/SEMATECH e-Handbook of Statistical Methods,

 33 Copyright © 2011 by ASME

[13] The MathWorks. (2008) MATLAB® Statistics ToolboxTM 7
Users’ Guide, 1749 pages.

[14] Chiu, D.-M. and Jain, R. (1989) “Analysis of the increase and
decrease algorithms for congestion avoidance in computer
networks”, Computer Networks and ISDN Systems, 17:1, pp. 1-
14.

[15] Li, Y.-T., Leith, D. and Shorten, R.N. (2007) “Experimental
Evaluation of TCP Protocols for High-Speed Networks”,
IEEE/ACM Transactions on Networking, 15:5, pp. 1109-1122.

[16] Xu, L., Harfoush, K. and Rhee, I. (2004) “Binary Increase
Congestion Control for Fast, Long Distance Networks”,
Proceedings of the 23rd Annual Joint Conference of the IEEE
Computer and Communications Societies (INFOCOM 2004), vol.
4, pp. 2514- 2524.

[17] Tan, K., Song, J., Zhang, Q. and Sridharan, M. (2006) “A
Compound TCP Approach for High-Speed and Long Distance
Networks”, Proceedings of the 25th Annual Joint Conference of
the IEEE Computer and Communications Societies (INFOCOM
2006), pp. 1-12.

[18] Wei, D. X., Jin, C., Low, S. H. and Hegde, S. (2006) “FAST
TCP: Motivation, Architecture, Algorithms, Performance”,
IEEE/ACM Transactions on Networking, 14:6, pp. 1246-1259.

[19] Floyd, S. (2003) HighSpeed TCP for Large Congestion
Windows, RFC 3649, The Internet Society, 34 pages.

[20] Leith, D. and Shorten, R. (2004) “H-TCP: TCP for High-speed and
Long-distance Networks”, Proceedings of the 2nd International Workshop
on Protocols for Fast Long-Distance Networks, 16 pages.

[21] Kelly, T. (2003) “Scalable TCP: Improving Performance in
Highspeed Wide Area Networks”, ACM SIGCOMM Computer
Communication Review, vol. 33, pp. 83-91.

[22] Blanc, A., Avrachenkov, K. and Collange, D. (2009) Comparing
some high speed TCP versions under bernoulli losses. In
Proceedings of the International Workshop on Protocols for
Future, Large-Scale and Diverse Network Transports (PFLDNet
2009), 59-64.

[23] Genin, D. and V. Marbukh. (2009) Bursty fluid approximation of
TCP for modeling Internet congestion at the flow level. In
Proceedings of the 47th Annual Allerton Conference on
Communication, Control and Computing, Paper ThD4.3.

[24] Baccelli, F., McDonald, D. and Reynier, J. (2002) “A mean-field
model for multiple TCP connections through a buffer
implementing RED”, Performance Evaluation, 49(1/4):77–97.

[25] Jackson, T. and Smith, P. (2008) “Building a Network Simulation
Model of the TeraGrid Network”, Proceedings of TeraGrid’08.

[26] Leith, D., Andrew, L., Quetchenbach, T., Shorten, R., Lavi, K.
(2008) “Experimental Evaluation of Delay/Loss-based TCP
Congestion Control Algorithms”, Proceedings of the 6th
International Workshop on Protocols for Fast Long-Distance
Networks.

[27] Lee, G., Lachlan, A., Tang, A. and Low, S. (2007) “WAN-in-
Lab: Motivation, Deployment and Experiments”, Proceedings of
the 5th International Workshop on Protocols for Fast Long-
Distance Networks.

[28] Arora, P., Wang, Y. and Rhee, I. (2009) “Netset: Automating
Network Performance Evaluation”, Proceedings of the 7th
International Workshop on Protocols for Future, Large-Scale
and Diverse Network Transports, pages 25-30, Tokyo, Japan,
May 2009.

[29] Hibler, M., Ricci, R., Stoller, L., Duerig, J., Guruprasad, S.,
Stack, T., Webb, K. and Lepreau, J. (2008) “Large-scale
Virtualization in the Emulab Network Testbed”, Proceedings of
the 2008 USENIX Annual Technical Conference, pages 113–128,
Boston, MA, June 2008

[30] White, B., Lepreau, J. Stoller, L., Ricci, R., Guruprasad, S.,
Newbold, M., Hibler, M., Barb, C. and Joglekar, A. (2002) “An
Integrated Experimental Environment for Distributed Systems
and Networks”, Proceedings of the 5th Symposium on Operating
Systems Design and Implementation, pages 255-270, Boston,
MA, December 2002.

[31] GENI – Exploring Networks of the Future
http://www.geni.net/

[32] Yuan, J. and Mills, K. (2006) "Simulating Timescale Dynamics
of Network Traffic Using Homogeneous Modeling", The NIST
Journal of Research, Volume 111, No. 3, May-June 2006, pp.
227-242.

[33] Mills, K., E. Schwartz and J. Yuan. (2010) “How to model a
TCP/IP network using only 20 parameters”, Proceedings of the
41st Winter Simulation Conference, IEEE, pp. 849-860.

[34] Kratz, M., Ackerman, M., Hanss, T. and Corbato, S. (2001) “NGI
and Internet2: Accelerating the Creation of Tomorrow’s
Internet”, in MEDINFO 2001, IOS Press, Vol. 84, pp. 28-32.

[35] Bush R. and Meyer D. (2003) Some internet architectural
guidelines and philosophy, RFC 3439.

[36] Appenzeller G., Keslassy, I. and McKeown, N. (2004) “Sizing
Router Buffers”, Proceedings of ACM SIGCOMM.

[37] Microsoft® Help and Support. (2006) “TCP/IP and NBT
configuration parameters for Windows XP”, Article ID 314053,
Revision 3.2,
http://support.microsoft.com/kb/314053.

