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Abstract

Measuring the dissimilarity between non-rigid objects is
a challenging problem in 3D shape retrieval. One poten-
tial solution is to construct the models’ 3D canonical forms
(i.e., isometry-invariant representations in 3D Euclidean
space) on which any rigid shape matching algorithm can
be applied. However, existing methods, which are typically
based on embedding procedures, result in greatly distorted
canonical forms, and thus could not provide satisfactory
performance to distinguish non-rigid models.

In this paper, we present a feature-preserved canonical
form for non-rigid 3D meshes. The basic idea is to natu-
rally deform original models against corresponding initial
canonical forms calculated by Multidimensional Scaling
(MDS). Specifically, objects are first segmented into near-
rigid subparts, and then, through properly-designed rota-
tions and translations, original subparts are transformed
into poses that correspond well with their positions and di-
rections on MDS canonical forms. Final results are ob-
tained by solving some nonlinear minimization problems
for optimal alignments and smoothing boundaries between
subparts. Experiments on a widely utilized non-rigid 3D
shape benchmark not only verify the advantages of our al-
gorithm against existing approaches, but also demonstrate
that, with the help of the proposed canonical form, we can
obtain significantly better retrieval accuracy compared to
the state-of-the-art.

1. Introduction
With the ever increasing accumulation of 3D models,

how to accurately and efficiently search these data has be-
come an important problem in computer graphics, mechan-
ical CAD, computer vision, pattern recognition and many
other fields [26] [31]. One of most challenging issues in
this problem is the calculation of dissimilarity between non-
rigid objects that are commonly seen in our surroundings
(e.g., Fig. 1(a)). In order to compare these non-rigid 3D
models quickly and effectively, it is often desired that the
shapes can be represented by some discriminative signa-

Figure 1. Non-rigid models (a) and their canonical forms obtained
using Least Square MDS (b) and our method (c), respectively.

tures which are invariant or approximately invariant under
various isometric transformations (i.e., rigid-body transfor-
mations, non-rigid bending and articulation).

While a large number of retrieval methods for rigid 3D
shapes have been proposed in the last few years, there
has been considerably less work for non-rigid models. In
general, existing non-rigid 3D shape retrieval methods can
be roughly classified into algorithms using local features,
isometry-invariant global geometric properties, topological
structures, direct shape matching, or canonical forms. Al-
though these algorithms are all guaranteed to be isometry-
invariant, they are still not well suited for practical appli-
cations in non-rigid 3D shape retrieval. This is mainly due
to the fact that they are either computationally expensive or
poor in discrimination. Further discussions are provided in
section 2. Perhaps, the utilization of canonical forms (un-
less otherwise specified, canonical form mentioned in this
paper means the canonical form in 3D Euclidean Space) is
potentially the most effective way to address the problem
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of non-rigid shape matching. As we know, through the cal-
culation of canonical forms, deformable models can be nor-
malized into particular 3D representations which are unique
and isometry-invariant. Then, any shape retrieval approach,
even methods specifically designed for rigid objects, can be
applied to measure the similarity between non-rigid mod-
els. For instance, the visual similarity based method [3][13],
which has been widely acknowledged as the most powerful
and practical approach for rigid 3D shape retrieval [26], is
essentially unsuitable for the shape matching of non-rigid
objects. This is because, when a 3D model is articulated
or bent, serious occlusions may occur and numerous noises
could be generated in the views captured around the ob-
ject. Owing to the introduction of canonical forms, the
tough problem of non-rigid shape matching is converted
into a simpler and well-studied rigid shape matching prob-
lem. Ideally, state-of-the-art approaches including many
view-based methods can be utilized to achieve excellent
performance for non-rigid 3D shape retrieval.

However, existing methods that are typically based on
embedding procedures could inevitably result in canonical
forms with serious distortions. To the best of our knowl-
edge, since the concept of canonical forms was first pro-
posed by Elad and Kimmel in 2003 [5], no further progress
has been made for the improvement of their quality. Up to
now, the Least Square MDS employed in their paper [5] is
still considered to be the best way to construct 3D canonical
forms with least distortions. Examples of such embedding
are demonstrated in Fig. 1(b). As we can see, compared to
original models (Fig. 1(a)), important features like hands,
feet, and heads are significantly distorted on their embedded
surfaces. It is reasonable to infer that, based on these kinds
of canonical forms, objects with similar topology but var-
ied details could not be well distinguished. That is the ma-
jor reason why previous methods using 3D canonical forms
could not obtain satisfactory retrieval performance.

In this paper, a feature-preserved canonical form is pro-
posed for non-rigid 3D meshes. The basic idea is to con-
sider 3D MDS embedding results as references and then
naturally deform the original meshes against them. In this
manner, our new canonical forms not only have isometry-
invariant property but also preserve important details on the
original surfaces (see Fig. 1(c) for some examples). To
achieve this goal, 3D meshes are first automatically seg-
mented into near-rigid subparts using a new approach. Af-
terwards, we translate and rotate these segmented subparts
into new positions and directions which are matched well
with their corresponding subparts on MDS canonical forms.
Finally, we obtain our feature-preserved results by solving
several energy minimization problems for optimal assem-
bling and smoothing boundaries between subparts.

The main contribution of this paper is the novel idea
of creating feature-preserved canonical forms from MDS

embedding results in 3D Euclidean space. We provide an
intuitive framework to achieve this goal and demonstrate
the effectiveness of our method against existing canonical
forms by retrieval experiments conducted on the widely
used McGill Articulated 3D Shape Benchmark [27]. We
also find that, via the utilization of our canonical forms,
some rigid shape matching algorithms can obtain markedly
better performance, in term of searching accuracy, than
other non-rigid 3D shape retrieval methods in the literature.

2. Related Work
Shape-based 3D object retrieval, concentrating on the

representation and comparison of 3D models based on their
intrinsic shapes, has been extensively studied in recent
years. Until today, a large amount of 3D shape retrieval
methods have been proposed, including D2 [22], SHD [9],
LFD [3], etc. However, most of these methods were specif-
ically designed for rigid shapes, and measuring the dissim-
ilarity between non-rigid models is still considered to be a
challenging problem. For more details, we refer the reader
to some good surveys [31] [26].

One popular approach for non-rigid 3D shape retrieval
is to compare models based on their local features, which
are robust against isometric transformations. For example,
Liu et al. [14] made use of the well-known Spin Images [8],
and represented a 3D object as a word histogram by vec-
tor quantizing all local features extracted from the model.
Ovsjanikov et al. [23] employed the Heat Kernel Signature
(HKS) [28], which is based on the properties of the heat
diffusion process on a 3D shape, and designed a spatially-
sensitive bags of features approach to search non-rigid mod-
els in large databases. Ohbuchi et al. [21] presented a view-
based method using salient local features (SIFT [15]). They
represented a 3D model by using bag-of-features for salient
local descriptors extracted on the depth-buffer views cap-
tured uniformly around the object. More recently, Wang
et al. [32] proposed Intrinsic Spin Images (ISIs) general-
izing the traditional spin images [8] from 3D space to N-
dimensional intrinsic shape space, in which ISIs shape de-
scriptors are computed from MDS embedding representa-
tions of original 3D shapes.

Another intuitive solution is to employ topological struc-
tures to quantify the similarity between deformable 3D ob-
jects. Hilaga et al. [6] proposed the Topology Matching
technique to establish the similarity estimation by com-
paring their Multiresolutional Reeb Graphs (MRGs), while
Sundar et al. [29] compared 3D objects by applying graph
matching techniques to match their skeletons. Recently,
Tam and Lau [30] achieved better retrieval performance
against [6] by using topological and geometric features si-
multaneously.

Global geometric information (e.g., geodesic distance)
that is isometric-invariant has also been explored for the



retrieval of non-rigid 3D shapes. For instance, Jain and
Zhang [7] proposed to apply the eigenvalues of geodesic
distance matrix, while Reuter et al. [24] suggested using
the Laplace-Beltrami spectra to generate isometric-invariant
shape descriptors. Also, Mahmoudi and Sapiro [16] de-
signed six such signatures based on the distributions of in-
trinsic distances including diffusion distance, geodesic dis-
tance, a curvature weighted distance, etc.

Above-mentioned three kinds of methods typically have
poor discrimination power due to their inaccurate repre-
sentations for 3D shapes. Thereby, some researchers also
tried to address the problem of exact dissimilarity com-
putation for non-rigid models. In [19], the authors pre-
sented a theoretical framework to directly compare non-
rigid 3D shapes based on the Gromov-Hausdorff (GH) dis-
tance. Then, Mémoli [18] approximated the GH distance
by solving a mass transportation problem that is basically
a quadratic optimization problem with linear constraints.
Bronstein et al. [1] formulated the GH distance as a MDS-
like continuous optimization problem, leading to a numeri-
cally exact calculation of the GH distance between surfaces.
Essentially, matching non-rigid shapes directly is an ideal
and complete solution for the calculation of their similar-
ity. However, because of its high computational complexity,
direct shape matching is impractical for real searching en-
gines that require instant responds for shape comparisons.

As described in Section 1, the utilization of canonical
forms is considered to be the most potential solution for
non-rigid 3D shape retrieval. This is because, with the help
of canonical forms, we can apply any shape searching al-
gorithm in the retrieval of non-rigid models. As we know,
excellent performance, in term of both accuracy and effi-
ciency, has been achieved for rigid 3D shape retrieval. Con-
sequently, the problem of non-rigid 3D shape retrieval could
be well resolved, as soon as it is possible to construct canon-
ical forms with well-preserved features. The idea of gener-
ating canonical forms in 3D domain was initially proposed
in [5], where the authors presented an invariant represen-
tation for isometric surfaces using MDS embedding of the
surface in a small dimensional Euclidean space in which
geodesic distances are approximated by Euclidean ones.
They investigated three MDS techniques to construct such
3D canonical forms. Other approaches, like Locally Linear
Embedding (LLE) [17], Global Point Signatures (GPS) em-
bedding (based on the Laplace-Beltrami operator) [25], etc.,
can also be utilized. To examine the effectiveness of their
canonical forms, Elad and Kimmel [5] extracted a moment-
based signature from embedded surfaces and tested it via
a simple experiment for object classification, while Lian et
al. [12] developed a non-rigid 3D shape matching frame-
work using the combination of Least Square MDS embed-
ding and a visual similarity based methods. However, ex-
isting methods, which are typically based on embedding

procedures, often obtain greatly distorted canonical forms,
and thus could not provide satisfactory performance to dis-
tinguish many non-rigid models. This paper addresses this
problem by proposing a feature-preserved canonical form.

3. A Feature-preserved Canonical Form

In this section, we first briefly describe the framework of
our method, and then elaborate on the details of each step
in corresponding subsections.

The strategy of our method is to construct canonical
forms by naturally deforming original models to the poses
that correspond well with their MDS embedding results. As
depicted in Fig. 2, given a 3D mesh, its feature-preserved
canonical form can be obtained by using our algorithm
which consists of the following three steps:

1. Initialization: Reduce the number of vertices on the
original surface, and then calculate the initial canonical
form by applying Least Square MDS embedding on
the simplified mesh.

2. Segmentation: Decompose the original mesh into a set
of near-rigid subparts, and then map the segmentation
result to the simplified mesh and its embedded surface.

3. Assembling: Register subparts of the original mesh to
corresponding components on the embedded surface,
and then smooth the segmentation boundaries between
subparts on the final canonical form.

3.1. Initialization

Due to the fact that geodesic distances on a surface are
insensitive to isometric transformations, a bending invari-
ant representation can be calculated by applying MDS to
map the geometric structure of the original surface to a new
3D Euclidean space, in which geodesic distances are ap-
proximated by Euclidean ones. This idea was originally
presented in [5], where three MDS techniques were also
compared. To calculate the initial canonical form, here,
we choose the Least Square technique implemented by the
SAMCOF algorithm, which results in the least distortion
among those three methods [5]. A Matlab source code for
the Least Square MDS method, which is publicly available
on the web site of the book [2], is adopted in this paper.

Since the calculation of geodesic distances and the
implementation of Least Square MDS are both time-
consuming, the 3D mesh should be simplified to some ex-
tent before further processing. A Matlab function called
“reducepatch()” is utilized in our implementation to reduce
the number of vertices on the mesh to about 2000. To sum
up, the aim of this step is to generate the simplified mesh
and the initial canonical form for a given 3D model.



Figure 2. Overview of our method that consists of the following three steps: Initialization, Segmentation, and Assembling.

Figure 3. A demonstration of our mesh segmentation procedure
that employs the initial coarse segmentation (a) and the voxelized
model (b) to generate the final segmentation (c).

3.2. Segmentation

Automatic segmentation of 3D models is a fundamental
problem in computer graphics [4]. Until recently, a large
amount of methods have been developed to segment 3D
meshes into a set of disjoint pieces, which should be either
meaningful subparts or ones that satisfy some specifically
desired criteria. For more details, we refer the reader to
the paper [4], in which a survey and comparisons of several
mesh segmentation algorithms are presented.

For our purpose of constructing feature-preserved canon-
ical form, we need to decompose the deformable 3D mesh
into a number of near-rigid subparts that are convex or ap-
proximately convex. To address this problem, we first seg-
ment the surface into large amounts (e.g., 200) of patches
(see Fig. 3(a)). And then, we merge two conjunctive patches
in case the convexity of the combined one is above a given
threshold (e.g., 0.85). Iterating this procedure until stable,
small patches are clustered into several large pieces (see
Fig. 3(c)), which can be considered as near-rigid compo-
nents of the mesh.

A random walk based mesh segmentation method pro-
posed by Lai et al. [10] is utilized in our algorithm to gener-
ate the initial segmentation for the mesh. Here, the original
implementation developed by the authors [10] with default
parameters is directly used without modification. As de-
scribed in [33], the convexity of a shape S is defined to be
the probability that for randomly chosen points E and F

from S all points from the line segment [EF ] also belong
to S. However, directly determining whether all points on
the line [EF ] are inside the model is unacceptably time-
consuming. Therefore, we voxelize the object to accelerate
the computation of convexity. More specifically, given two
points on the surface, the line between them is first vox-
elized in the same manner as the voxelization of the mesh.
And then, by judging whether all voxels on the line segment
coincide with some voxels of the mesh, we can determine
whether the line segment belong to the mesh or not. Exam-
ples are given in Fig. 3, where all points on the line segment
[BC] belong to the mesh while [AB] is not completely in-
side the object. It should be pointed out that the voxelization
of the closed mesh is accomplished using a reliable source
code download from the web site [20] and the long-axis res-
olution is experimentally selected as 150.

Owing to the discretization error introduced by voxeliza-
tion, there may exist a few small pieces that can not be
merged properly. Thereby, we also set a threshold regard-
ing area to merge those small pieces into large subparts that
share boundaries with them. Fig. 3(c) shows the final seg-
mentation result, which, as we can see, corresponds reason-
ably well with intuition. At the end of this step, the seg-
mentations of the simplified mesh and the initial canonical
form are also obtained by simply classifying triangle faces
into their nearest neighbors (i.e., considering the distance
between centers of two triangles) on the original model.

3.3. Assembling

The last step of our method is to assemble segmented
subparts to create a new 3D model under the pose that
matches well with the initial canonical form (i.e., the em-
bedded surface calculated in the first step).

An overview of the assembling procedure is illustrated
in Fig. 4. After mesh segmentation, a part tree {Pi, Bj |1 ≤
i ≤ NP , 1 ≤ j ≤ NB} is built, where Pi denotes the sub-
part i, the boundary j is denoted as Bj , and all subparts
are connected through boundaries. We define the subpart
with maximum number of boundaries as core part from



Figure 4. Overview of the assembling procedure.

which our assembling starts. Given core parts of the sim-
plified mesh Ms and the embedded surface Me, which are
denoted as CPs and CPe, respectively, we first translate
the mass center of CPs to that of CPe, and then rotate
CPs around its center to find the optimal alignment with
CPe. An intuitive explanation for the registration of sub-
parts is given in Fig. 4(c), where the simplified mesh is col-
ored in green, the embedded surface in red, and blue for
boundaries. More specifically, after translation, let the ver-
tices of boundaries on the core part CPs and CPe be de-
noted by V si and V ei, i = 1, 2, · · · , Nvcp, respectively.
By successively rotating CPs around x, y, z coordinate axes
with angles α, β, γ, we get new coordinates, represented as
V s

′

i = R(α, β, γ)V si, i = 1, 2, · · · , Nvcp, for vertices on
its boundaries. To achieve the optimal registration between
two core parts, we apply the Gauss-Newton algorithm to
solve the following minimization problem:

min
α,β,γ

Nvcp∑
i=1

‖R(α, β, γ)V si − V ei‖2, (1)

where the norm ‖ • ‖ is the square root of the sum of the
squared matrix elements. In other words, the goal of this
non-linear least square problem is to minimize the sum of
squared distances between vertices on the boundaries of the
simplified mesh’s core part and their corresponding vertices
on the embedded surface.

Note that once the alignment of two core parts is fin-
ished, we no longer need the simplified mesh. The core part
of the original object is translated and rotated in the same
manner as its simplified version, other subparts (named
child parts) are then attached to the registered core part one
by one according to the structure of the part tree. Gener-
ally speaking, the assembling of a child part is comprised
of two steps: coarse alignment and precise alignment. In
the stage of coarse alignment, the child part of the origi-
nal model is first translated to move the center of vertices
on one of its boundary (named fixed boundary), which also
belongs to other registered subparts, to the center of cor-
responding boundary on the embedded surface. Next, we

rotate the original child part around the fixed boundary’s
center against the embedded child part, so that the direc-
tion of the line, which starts from the center of the fixed
boundary and ends at the original child part’s center, co-
incides with that of the embedded child part. For a more
intuitive demonstration, we refer the reader to the second
row in Fig. 4(c). During precise alignment, we aim to find
the optimal pose for the original child part such that the
boundary between two subparts could be as smooth as pos-
sible. Specifically, after coarse alignment, given the child
part Pc which is to be assembled and its parent subpart Pp

whose location has already been fixed, we denote the ver-
tices on the fixed boundary of Pc and these vertices on Pp

as V ci and V pi, i = 1, 2, · · · , Nvfb, respectively. In order
to obtain the optimal assembling, the child part Pc is first
rotated by angle δ around the line casting from the center
of the fixed boundary on Pc to the child part’s mass center,
and then translated by T = [tx, ty, tz]T . We represent the
transformed coordinates of V ci by,

V c
′

i = RL(δ)V ci + T, (2)

where RL(δ) stands for the rotation mentioned above, while
T means translating vertices along x, y, and z axes by tx, ty,
and tz , respectively. Then, the precise alignment can be
formulated as the following minimization problem:

min
tx,ty,tz,δ

Nvfb∑
i=1

‖RL(δ)V ci + T − V pi‖2, (3)

Calculating the mean values of vertices V c
′

i and V pi,
i = 1, 2, · · · , Nvfb, we obtain a new boundary between
the subpart Pc and Pp. However, simply doing so yields a
uneven region (see Fig. 5(a)). To smooth the boundary, we
first uniformly divide the vertices around the boundary into
Ng groups based on the distance value between each vertex
and its nearest neighbor on the boundary. More precisely,
group 1 contains vertices that are closest to the boundary,
group 2 are the second closest group around the boundary,
and so for every group k, k = 1, 2, · · · , Ng . Next, we move



Figure 5. An example of our results without (a) and with (b)
boundary smoothing.

vertices on the classified groups continuously towards their
nearest neighbors on the boundary. To be specific, given a
vertex V g∗ in group k and its closest vertex (V c

′

i∗ or V pi∗)
on the boundary, the new coordinate for V g∗ is defined as,

V g
′

∗ =

{
V g∗ + V c

′
i∗−V pi∗

2k , if V g∗ ∈ Pc

V g∗ − V c
′
i∗−V pi∗

2k , if V g∗ ∈ Pp

(4)

We show an example of our results with boundary
smoothing in Fig. 5(b), which clearly corresponds better
with intuition than the unprocessed result (Fig. 5(a)).

4. Results
In order to validate the effectiveness of our method,

feature-preserved canonical forms were calculated for
all 255 models in the McGill articulated 3D shape
database [27], which is classified into 10 categories. We
implemented the algorithm in Matlab R2009 and carried out
experiments run under windows XP on a personal computer
with a 3.19GHz Intel Xeon CPU, 12.0GB DDR2 mem-
ory, and a 512MB NVIDIA Quadro Fx580 graphics card.
The average time to create our canonical form for a model,
which contains 21136 triangle faces on average, is about
230 seconds, in which, approximately, we spent 120 sec-
onds in computing the embedded surface with 4000 trian-
gle faces, and took 63 seconds to segment the mesh, and
finished the assembling step in 47 seconds.

In Fig. 6, our mesh segmentation results are compared
with human-generated segmentations, which are created by
a researcher using the Interactive Segmentation tool devel-
oped by Chen et al. [4]. We find that the automatic seg-
mentation approach generally produces very similar results
as the manual one, while some segmentation boundaries of
our approach are still not so even due to the utilization of
patch clustering. As suggested in [10], similar boundary
smoothing techniques could be applied to further improve
our segmentation method.

Fig. 7 shows several examples of our feature-preserved
canonical forms using automatic segmentation (Fig. 7(e)) as
well as manual segmentation (Fig. 7(d)), together with their
original models (Fig. 7(a)) and embedded surfaces calcu-
lated by classical MDS (Fig. 7(b)) and Least Square MDS

Figure 8. Precision-recall plots of our method (AFPCF-CM-BOF)
and other eight approaches evaluated on the McGill database

Table 1. Comparing retrieval results of our method (first row) with
the state-of-the-art on the McGill database.

NN 1-Tier 2-Tier DCG
AFPCF-CM-BOF 100.0% 86.8% 95.3% 97.4%
LSMDS-CM-BOF 99.6% 84.7% 95.5% 97.2%
CMDS-CM-BOF 96.1% 74.2% 88.6% 93.9%

BF-SIFT 97.3% 74.6% 87.0% 93.7%
ISI8 95.3% 64.2% 79.9% 90.0%

(Fig. 7(c)), respectively. As we can see, results obtained
using MDS embedding techniques are seriously distorted,
while our new canonical forms not only provide isometry-
invariant representations for non-rigid 3D meshes, but also
preserve important features that appear on the original mod-
els. We also observe that, our feature-preserved canonical
forms constructed using the method with automatic seg-
mentation are almost identical with the results generated by
the approach with manual segmentation. That validate the
robustness of our canonical form computing method against
small segmentation errors.

We also demonstrate the application of our feature-
preserved canonical form in non-rigid 3D shape retrieval.
Experiments were carried out on the McGill articulated 3D
shape benchmark [27]. As mentioned before, after the cal-
culation of canonical forms, all rigid 3D shape retrieval
methods can be employed to search for non-rigid models.
In order to take advantage of the preserved local details on
our canonical form as well as its isometry-invariant global
structure, here we adopted a visual similarity based ap-
proach called CM-BOF [11], which utilizes salient local
features to describe views captured around a 3D model,
in our application with default settings. For convenience,
the Feature-Preserved Canonical Form (FPCF) obtained



Figure 6. Examples of mesh segmentations generated manually by a human being (a) and automatically by our method (b), respectively.

Figure 7. Examples of non-rigid 3D models (a) and their canonical forms (b)(c)(d)(e) constructed using four methods.

by our method with Automatic mesh segmentation is de-
noted as AFPCF. Therefore, AFPCF-CM-BOF stands for
the retrieval method using CM-BOF with AFPCF canon-
ical forms, while LSMDS-CM-BOF denotes the approach
using CM-BOF with Least Square MDS embedding and
CMDS-CM-BOF for the Classical MDS. Precision-recall
plots as well as four quantitative measures (NN, 1-Tier,
2-Tier, DCG) [26] were calculated to evaluate and com-
pare the searching accuracy of the proposed AFPCF-CM-
BOF method with the following eight non-rigid 3D shape
retrieval algorithms: LSMDS-CM-BOF,CMDS-CM-BOF,
BF-SIFT [21], Intrinsic Spin Images (ISI8) [32], Heat Ker-
nel Signatures (HKS) [23], Spin Images (SI) [8], the shape

distribution of Geodesic distance (G2) [16], and Laplace-
Beltrami Spectrum (LBS) [24]. As we can see from the
results demonstrated in Fig. 8 and Table 1, the feature-
preserved canonical form generally provides more accurate
searching results than other canonical forms. Moreover, the
AFPCF-CM-BOF algorithm using the proposed canonical
form markedly outperforms other non-rigid 3D shape re-
trieval methods. Yet, despite of advantages on all other mea-
sures, the 2-Tier value of AFPCF-CM-BOF is 0.2% less than
LSMDS-CM-BOF. We speculate that the task of searching
models in the McGill database (255 objects) [27] is too easy,
and thus taking account of more details in shape matching
can only slightly improve the retrieval accuracy for methods



tested on this small non-rigid shape database.

5. Conclusion
In this paper, we introduced a novel method to con-

struct feature-preserved canonical forms for non-rigid 3D
meshes. Experimental results not only validated the advan-
tage of our method against other existing canonical forms,
but also demonstrated the effectiveness of the algorithm for
non-rigid 3D shape retrieval, in the presence of better per-
formance compared to the state-of-the-art.

Three potential directions we would like to consider in
the future are listed as follows: 1) Develop more effective
and efficient algorithms to segment 3D meshes into near-
rigid parts; 2) Apply better mesh manipulation methods to
naturally deform 3D models; 3) Carry out experiments for
our feature-preserved canonical form on other benchmarks
that contain larger numbers of non-rigid 3D objects.
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