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Abstract  
The Guide to the Expression of Uncertainty in Measurement (GUM) is self-consistent 
when Bayesian statistics is used for the Type A evaluations and the standard deviation of 
posterior distribution is used as the Bayesian Type A standard uncertainty.  We present 
the case that there are limitations on the kind of Bayesian statistics that can be used for 
the Type A evaluations of input quantities of the measurement function.  The GUM 
recommends that the (central) measured value should be an unbiased estimate of the 
corresponding (true) quantity value.  Also, the GUM uses the expected value of state-of-
knowledge probability distributions as the (central) measured value for both the Type A 
and the Type B evaluations of input quantities.  It turns out that the expected value of a 
Bayesian posterior distribution used as a Type A (central) measured value for an input 
quantity can be unbiased only when a non-informative prior distribution is used for that 
input quantity.  Metrologically, this means that only the current observations without any 
additional information should be used to determine a Type A (central) measured value for 
an input quantity of the measurement function. 
   
1. Introduction 
 
The Guide to the Expression of Uncertainty in Measurement (GUM) uses conventional 
(sampling theory) statistics for the Type A (statistical) evaluations of input quantities of 
the measurement function.  The estimates from conventional statistics have sampling 
probability interpretation.  The Type B (non-statistical) evaluations have state-of-
knowledge probability interpretation.  Thus the Type A and the Type B evaluations have 
different probabilistic interpretations and they cannot be combined logically.  So the 
GUM declares the Type A evaluations of input quantities to be the parameters of state-of-
knowledge probability distributions [1, section 4.1.6].  The discussion of section 2 
reminds us that this declaration is insufficient to make the GUM self-consistent.  It is well 
known that the GUM is self-consistent when Bayesian statistics is used for the Type A 
evaluations and the standard deviation of posterior distribution is used as the Bayesian 
Type A standard uncertainty.  We present the case that there are limitations on the kind of 
Bayesian statistics that can be used for the Type A evaluations of input quantities of the 
measurement function.  Use of Bayesian statistics for the Type A evaluation of an input 
quantity requires specification of a prior distribution for that input quantity.  The prior 



 2

distribution can be informative or non-informative.  For example, the scaled and shifted t-
distribution discussed in the Supplement 1 to the GUM (GUM-S1) [2, section 6.4] is a 
Bayesian posterior distribution determined from non-informative prior distributions for 
the parameters of normally distributed observations.  As discussed in section 3, the GUM 
recommends that the (central) measured value should be an unbiased estimate of the 
corresponding (true) quantity value.  Also the GUM uses the expected value of state-of-
knowledge probability distributions as the (central) measured value for both the Type A 
and the Type B evaluations.  As discussed in section 4, the expected value of a Bayesian 
posterior distribution used as a Type A (central) measured value for an input quantity can 
be unbiased only when a non-informative prior distribution is used for that quantity.  
Concluding remarks appear in section 5. 
 
2. Use of Bayesian statistics the Type A evaluations of input quantities makes the 
GUM self-consistent 
 
Suppose the measurement function is  
 
 1 2Y X X= +  (1) 
 
where X1 is a statistical parameter representing the expected value of a series of 
observations (subject to random effects) depending on the value Y for a measurand and 
X2 is the required correction for all recognized significant systematic effects in the 
(central) measured value for X1.  We use upright symbols (such as X1, X2, and Y) for the 
(true) values of physical quantities, statistical parameters, and required corrections for 
systematic effects.  As in the GUM, we assume that the measurand is defined with 
sufficient completeness; thus, for all practical purposes the (true) value Y is unique.  The 
constants X1, X2, and Y have unknown values.  In metrology, almost no quantity has 
completely unknown value because some information is often available.  Therefore by 
‘unknown value’ we really mean ‘insufficiently known value’.  Operationally, the 
measurement function (1) is expressed as 
 
 1 2Y X X= +  (2) 
 
where X1, X2, and Y represent random variables with state-of-knowledge probability 
distributions about the unknown values X1, X2, and Y respectively.  We use italic 
symbols (such as X1, X2, and Y) for variables with state-of-knowledge probability 
distributions about the quantity values X1, X2, and Y, respectively.  The GUM uses the 
same symbols for the quantities and for the variable with state-of-knowledge distributions 
about the quantities.  Since we discuss the sampling theory concept of unbiased 
estimates, it is useful to use different symbols for quantities and variables.  
 
Suppose X1 is evaluated by statistical analysis of a series of n independent observations 
q1, q2, …, qn obtained under the same conditions.  Therefore, the corresponding measured 
value x1 and the standard uncertainty u(x1) are Type A evaluations [1, section 4.2].  
Suppose X2 is evaluated by non-statistical methods and the corresponding measured 
value x2 and the standard uncertainty u(x2) are Type B evaluations [1, section 4.3].  A 
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measured value y and the standard uncertainty u(y) for Y are determined from the results 
(x1, u(x1)) and (x2, u(x2)) using the measurement function (2) [1, section 5].  Thus 
 
 1 2y x x= +  (3) 
 
and 
 
 2 2 2

1 2( ) ( ) ( )u y u x u x= +  (4) 
 
When the probability distributions represented by (x1, u(x1)) and (x2, u(x2)) for X1 and X2, 
respectively, are correlated, the correlation coefficient between them must be included in 
the expression (4) for u2(y) [1, section 5.2].  In the GUM, a result of measurement such as 
(x1, u(x1)) indicates a range of values which could reasonably be attributed to the 
corresponding input quantity X1; the range of values is expressed as (x1 ± k ·u(x1)), where 
k is a chosen coverage factor [1, section 6].  To distinguish the particular measured value 
x1 from the other values in the interval (x1 ± k ·u(x1)) which could also be attributed to X1, 
we refer to it as the central measured value.   
 
Suppose the measurement procedure is in a state of statistical control; thus, the 
observations q1, q2, …, qn may be regarded as independent realizations (random draws) 
from the same Gaussian (normal) sampling probability distribution N(X1, σ2) with 
expected value X1 and some fixed variance σ2 (or standard deviation σ).  A sampling 
probability density function (pdf) describes the relative frequencies of occurrence for all 
realizations possible in contemplated replications of the observation process conditionally 
on the values of one or more statistical parameters.  Sampling pdfs used in metrology 
have a finite expected value and a finite variance.  The expected value X1 of the sampling 
pdf of the observations is unknown.  Indeed the purpose of measurement is to assign a 
value to X1 and hence to Y.  The variance σ2 may be known or unknown.  For example 
when the observations are indications from an established measurement system which 
has been used for a long time, substantial historical data might be available to know the 
value of σ2 for all practical purposes.  In that case the known value of σ2 rather than its 
statistical estimate discussed below should be used.  A Type A statistical estimate of σ2 
determined from a few observations is not very reliable [1, section E.4] 
 
Suppose  
 

 A
1

i iq q
n

= ∑  (5) 
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are the arithmetic mean, the experimental variance, and the experimental standard 
deviation of the mean of the n observations. A function of the observations is called a 
statistic. Thus qA, s2, and s(qA) are statistics.  The sampling distribution of the 
observations induces sampling distributions for the statistics.  If q1, q2, …, qn have joint 
normal sampling distribution, N(q1, q2, …, qn | X1, σ2), then the sampling distributions of 
qA and s2 are independent, qA has normal distribution N(X1, σ2/n), and s2 has the multiple 
σ2/(n – 1) of the chi-square (χ2) distribution with degrees of freedom (n – 1) denoted by 
[σ2/(n – 1)]·χ2

(n – 1) [3, section 5.3].  The GUM [1, section 4.2] indentifies the Type A 
measured value x1 and the standard uncertainty u(x1) as x1 ≡ qA and u(x1) ≡ s(qA), 
respectively.  The statistics qA and s2(qA) are point (single value) estimates of the 
expected values of the sampling pdfs of X1 and σ2/n in conventional statistics.  Thus the 
GUM uses conventional statistics for the Type A evaluations. 
 
The GUM [1, section 4.1.6] declares the Type A evaluations x1 ≡ qA and u(x1) ≡ s(qA) to 
be the parameters of a state-of-knowledge probability distribution represented by the 
result (qA, s(qA)) for the variable X1.  This declaration imparts a common probabilistic 
interpretation to the Type A and the Type B evaluations of the input quantities of the 
measurement function, so they can be combined logically.  The GUM [1, section G.3] 
identifies the state-of-knowledge distribution assigned by the result (qA, s(qA)) to the 
variable X1 as the scaled-and-shifted Student’s (central) t-distribution with degrees of 
freedom (n – 1), denoted here by t(n – 1)(qA, s2(qA)).  The expected value and the variance 
of t(n – 1)(qA, s2(qA)) are qA and [(n – 1) / (n – 3)]·s2(qA), respectively [2, section 6.4.9.4].  
Thus the expected value E(X1) is equal to qA and the standard deviation S(X1) is equal to 
√[(n – 1) / (n – 3)]·s(qA).  We note that the GUM Type A standard uncertainty u(x1) ≡ 
s(qA) is not the standard deviation S(X1) of the t-distribution t(n – 1)(qA, s2(qA)) represented 
by the result (qA, s(qA)). 
 
Suppose that the Type B evaluations x2 and u(x2) are quantified by assigning to the 
variable X2, a state-of-knowledge pdf which is a rectangular on the interval (-a, a) for 
some a > 0 with expected value E(X2) = 0 and standard deviation S(X2) = a/√3.  The 
GUM [1, section 4.3.7] indentifies x2 as x2 = E(X2) = 0 and u(x2) as u(x2) = S(X2) = a/√3.  
We note that the GUM is not self-consistent: a Type B standard uncertainty u(x2) is the 
standard deviation S(X2) = a/√3 of the assigned rectangular distribution but a Type A 
standard uncertainty u(x1) ≡ s(qA) is not the standard deviation S(X1) = √[(n – 1) / (n – 
3)]·s(qA) of the assigned t distribution.  Thus the GUM declaration [1, section 4.1.6] of 
the Type A evaluations from conventional statistics as parameters of state-of-knowledge 
probability distributions is insufficient to make the GUM self-consistent.   
 
The GUM is self-consistent when Bayesian statistics is used for the Type A evaluation of 
an input quantity, the state of knowledge about that input quantity is expressed as a 
Bayesian posterior distribution, and the standard deviation of the posterior distribution is 
used as the Bayesian Type A standard uncertainty [4], [5], [6], and [7].  In the following 
paragraphs we review the use of Bayesian statistics for the GUM Type A evaluation of 
X1 from normally distributed observations q1, q2, …, qn.  In Bayesian statistics, the state 
of knowledge about unknown statistical parameters is expressed in terms of prior and 
posterior pdfs, see for example [8] and [9].  A prior pdf represents a priori state of 
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knowledge about a parameter before seeing the realized observations.  A posterior pdf 
represents a posteriori state of knowledge about a parameter in view of the realized 
observations.  The sampling pdf of the observations is interpreted as being proportional to 
something called a likelihood function for the unknown parameters conditional on the 
observations.  A likelihood function represents the information about the unknown 
parameters contained in the realized observations.  The prior pdfs and the likelihood 
function are combined using the Bayes’s theorem to determine posterior pdfs for the 
parameters.  The Bayes’s theorem states that posterior pdf is proportional to the product 
of the likelihood function and the prior pdf [8] and [9].  Thus the joint normal sampling 
pdf N(q1, q2, …, qn | X1, σ2) of the observations q1, q2, …, qn conditional on the 
parameters X1 and σ2 is interpreted as being proportional to the likelihood function l(X1, 
σ2 | q1, q2, …, qn) for the parameters X1 and σ2 conditional on the realized observations.  
Suppose the joint prior pdf for the parameters X1 and σ2 is p(X1, σ2).  Then according to 
the Bayes’s theorem, the joint posterior pdf p(X1, σ2 | q1, q2, …, qn) for X1 and σ2 
conditioned on the realized observations is proportional to l(X1, σ2 | q1, q2, …, qn) × p(X1, 
σ2).  A (marginal) posterior pdf for X1 alone is obtained from the joint pdf p(X1, σ2 | 
q1, q2, …, qn) by integrating out σ2. 
 
Two board categories of prior distributions are: informative and non-informative.  An 
informative prior distribution represents available knowledge about the value of an 
unknown statistical parameter as a probability distribution excluding the information 
supplied by the current observations.  A non-informative prior distribution is used when 
only the information supplied by the current observations and no prior information 
(whether available or not) is to be used in determining the posterior distribution.  A non-
informative prior distribution is a function of the unknown parameter which does not 
integrate to one.  Thus a non-informative prior distribution is not a proper pdf.  Bayesian 
statistical evaluations based on suitably chosen non-informative improper prior 
distributions are identical to or close to the estimates from conventional statistics albeit 
with state-of-knowledge interpretation [8] and [9].  This is to be expected because the 
likelihood function is same in conventional statistics and in Bayesian statistics. 
 
The expected value and the standard deviation of a Bayesian posterior pdf are commonly 
referred to as posterior expected value and posterior standard deviation respectively. 
We will discuss two situations: σ2 is known and σ2 is unknown.  If σ2 is known and the 
prior pdf for X1 is taken as the non-informative function p(X1) ∂ 1 then the Bayesian 
posterior pdf p(X1 | q1, q2, …, qn) of X1 is the normal distribution N(qA, σ2/n) [9, section 
2.9].  Thus the posterior expected value and the posterior standard deviation of X1 are, 
respectively, E(X1 | q1, q2, …, qn) = qA and S(X1 | q1, q2, …, qn) = σ/√n.  If σ2 is unknown 
and the joint prior pdf for X1 and σ2 is taken as the non-informative function p(X1, σ2) ∂ 
1/σ2 then the Bayesian posterior pdf p(X1 | q1, q2, …, qn) of X1 is the scaled and shifted t-
distribution t(n – 1)(qA, s2(qA)) [9, section 3.2].  Thus the posterior expected value and the 
posterior standard deviation of X1 are, respectively, E(X1 | q1, q2, …, qn) = qA and S(X1 | 
q1, q2, …, qn) = √[(n – 1) / (n – 3)]·s(qA).  Note that in both cases the posterior expected 
value is E(X1 | q1, q2, …, qn) = qA.   
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The most basic expression of uncertainty in the GUM is the standard uncertainty.  When 
Bayesian statistics is used for the Type A evaluation of an input quantity, the posterior 
distribution represents the state of knowledge about the input quantity and the posterior 
standard deviation is used as the standard uncertainty.  A Type B evaluation of standard 
uncertainty is the standard deviation of a state-of-knowledge pdf assigned to an input 
quantity.  Thus when Bayesian statistics is used for the Type A evaluations, both the 
Type A and the Type B evaluations of standard uncertainty are the standard deviations of 
state-of-knowledge distributions.  The use of standard deviation as the basic expression 
of uncertainty corresponds to the use of the expected value as the central measured value.  
In addition we note that the GUM recommends propagating the uncertainties through a 
linear Taylor series approximation of the measurement function about the expected 
values of state-of-knowledge pdfs for the input quantities [1, section E.3.1].  Thus in the 
GUM a central measured value for an input quantity is always the expected value of a 
state-of-knowledge pdf for that quantity. 
 
Note 2.1: Use of Bayesian statistics for the Type A evaluations not only makes the GUM 
self-consistent but also simplifies the expression of uncertainty in measurement.  A 
Type A standard uncertainty s(qA) determined from conventional statistics is an 
incomplete expression without an accompanying statement of its associated degrees of 
freedom n – 1 which indicates the statistical uncertainty in s2(qA) from limited number n 
of observations.  The Bayesian standard uncertainty u(x1) = √[(n – 1) / (n – 3)]·s(qA) is a 
complete expression of uncertainty because it has no statistical uncertainty.  The built in 
factor √[(n – 1) / (n – 3)] accounts for the limited number n of observations.  Thus the use 
of Bayesian statistics greatly simplifies the expression of uncertainty in measurement by 
eliminating altogether the need of calculating degrees of freedom [6]. 
 
Note 2.2: The sampling distributions of the mean qA and the experimental variance s2 are 
statistically independent.  This independence and that qA and s2 are sufficient statistics [8, 
section 2.9] makes possible the Bayesian statistics results discussed in this paper.  It turns 
out that only for normally distributed observations q1, q2, …, qn, the mean qA and the 
experimental variance s2 are independently distributed [10, chapter 4].  So the sampling 
distribution of the observations must be normal for the Bayesian statistics results 
discussed in this paper to apply.  This means that the measurement procedure must be in 
a state of statistical control. 
 
3. The GUM recommends that a Type A central measured value for an input 
quantity should be unbiased 
 
In conventional statistics a desirable property of a point estimate is that it is unbiased.  
Unbiased estimate: A statistic x is said to be an unbiased estimate of a parameter of true 
value X if the expected value of the sampling distribution of x is X, i.e. E(x) = X 
(equivalently, the expected value of x with respect to the joint sampling distribution of 
the observations is X).  The mean qA and the experimental variance of the mean s2(qA) 
are, respectively, unbiased estimates of X1 and σ2/n [3, chapter 7]. 
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Whether σ2 is known or unknown, the Bayesian posterior expected value of X1 
determined from suitably chosen non-informative improper prior distributions is E(X1 | 
q1, q2, …, qn) = qA.  The expected value of the posterior expected value E(X1 | 
q1, q2, …, qn) with respect to the joint normal sampling distribution of the observations 
q1, q2, …, qn is 
 
 1 1 2 A 1E(E( | , ,..., )) E( ) XnX q q q q= =  (8) 
 
Thus the posterior expected value E(X1 | q1, q2, …, qn) = qA determined from suitably 
chosen non-informative prior distributions (for X1 and σ2) is an unbiased estimate of X1. 
 
The GUM [1, section 3.2.4] states the following: 
 

It is assumed that the result of a measurement has been corrected for all 
recognized significant systematic effects and that every effort has been made to 
identify such effects. 

 
We believe this statement implies that the GUM subsumes and recommends that a 
Type A central measured value (referred to as the result of a measurement in the GUM) 
should be an unbiased estimate of the corresponding (true) quantity value.  
 
The GUM [1, section 3.2.3] states the following: 
 

It is assumed that, after correction, the expectation or expected value of the error 
arising from a systematic effect is zero. 

 
We think this statement means that the measured value y determined from a linear 
expression (such as (3)) of one Type A evaluated measured value (such as x1) and one or 
more corrections for systematic effects is regarded as an unbiased evaluation of the 
corresponding measurand Y. 
 
Note 3.1: Consider the measurement function Y = W1/W2 where the measured values w1 
and w2 for the input quantities W1 and W2 are Type A evaluations.  The values w1 and w2 
should be unbiased.  However the measured value y = w1/w2 for Y will not be unbiased.  
In general, a measured value y determined from a non-linear measurement function of 
one or more input quantities evaluated by statistical methods may not be unbiased.  This 
is a limitation of the GUM. 
 
Note 3.2: The concept of unbiasedness is meaningful only for the Type A evaluations.  
The Type B evaluations are determined using non-statistical methods and statistical 
criteria such as unbiasedness are not relevant. 
 
4. A Bayesian posterior expected value based on a proper prior pdf for an input 
quantity cannot be unbiased 
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We will discuss posterior expected value of X1 determined from independent normally 
distributed observations q1, q2, …, qn and a proper prior pdf for X1. First we consider the 
case of known σ2 and then we consider the case of unknown σ2 with a proper prior pdf.  
Suppose σ2 is known and the prior pdf for X1 is taken as normal N(μ0, τ02), where μ0 and 
τ02 are specified (known) constants, then the posterior state-of-knowledge pdf p(X1 | 
q1, q2, …, qn) of X1 is normal N(μ1, σ1

2), where  
 

 
1

1 0 A2 2 2 2
0 0

1 1n n qμ μ
τ σ τ σ

−
⎛ ⎞ ⎛ ⎞

= + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (9) 

 
and  

 
1

2
1 2 2

0

1 nσ
τ σ

−
⎛ ⎞

= +⎜ ⎟
⎝ ⎠

 (10) 

 
[9, section 2.6].  The posterior expected value μ1 of X1 based on the prior pdf N(μ0, τ02) is 
a weighted mean of μ0 and qA.  The expected value of μ1 with respect to the sampling 
distribution of qA is 
 

 
1

1 0 12 2 2 2
0 0

1 1E( ) Xn nμ μ
τ σ τ σ

−
⎛ ⎞ ⎛ ⎞

= + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (11) 

 
which differs from X1.  Thus the posterior expected value μ1 is not an unbiased estimate 
of X1.  We note that as τ02 tends to ∞ (in which case the prior pdf N(μ0, τ02) of X1 
becomes less and less informative), μ1 tends to qA the estimate discussed in section 2 
based on a non-informative improper prior distribution for X1.  A result similar to (10) is 
shown in [11, section 3].  
 
Now suppose that σ2 is unknown.  A simple closed form of the posterior pdf for X1 is 
obtained when the prior pdfs for X1 and σ2 are dependent, conditionally on σ2 the 
distribution of X1 is normal N(μ0, σ2/κ0) and σ2 has the multiple σ0

2 of inverse chi-square 
distribution with ν0 degrees of freedom.  This means that σ0

2/ σ2 has chi-square 
distribution and that the prior distribution for X1 is worth κ0 independent normal 
observations of variance σ2.  Then the posterior state-of-knowledge pdf p(X1 | 
q1, q2, …, qn) of X1 is the scaled and shifted t-distribution  

 
1

2
1

1
1

( , )vt
σ

μ
κ

 (12) 

where 
 1 0 nν ν= +  (13) 
 
 1 0 nκ κ= +  (14) 
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 0
1 0 A

0 0

n q
n n

κ
μ μ

κ κ
= +

+ +
 (15) 

 

 2 2 2 20
1 1 0 0 A 0

0

( 1) ( )
n

n s q
n

κ
ν σ ν σ μ

κ
= + − + −

+
 (16) 

 
[9, section 3.3].  The posterior expected value μ1 of X1 is a weighted mean of μ0 and qA, 
where qA is an unbiased estimate of X1.  Thus μ1 is not an unbiased estimate of X1.  We 
note that as κ0 tends to 0 (in which case the prior pdf N(μ0, σ2/κ0) of X1 becomes less and 
less informative), μ1 tends to qA the estimate discussed in section 2 based on non-
informative improper prior distributions for X1 and σ2.   
 
A general result about Bayesian posterior expected values is as follows: A Bayesian 
posterior expected value determined using a proper prior pdf cannot be an unbiased 
estimate of the corresponding parameter [3, section 7.5.2].  In Bayesian statistics, 
unbiasedness of Bayesian point estimates is not important.  However in metrology, a 
central measure value identified as the posterior expected value is recommended to be 
unbiased [1, section 3.2.4].  
 
Note 4.1: In the first example discussed in this section the prior and the posterior pdfs for 
X1 had the same form namely normal distributions.  In the second example the joint prior 
and posterior distributions for X1 and σ2 had the same form [9, section 3.3].  Such prior 
distributions are referred to as conjugate prior distributions [9, section 2.6].  When 
conjugate prior pdfs are used, the posterior expected value often turns out to be a 
weighted average of the mean of observations (such as qA) and the expected value of the 
prior pdf (such as μ0) [3, section 7.2.3].  Such weighted mean cannot be an unbiased 
estimate of the expected value of the mean of observations with respect to the joint 
sampling distribution of the observations. 
 
5. Concluding remarks 
 
It is widely recognized that the use of Bayesian statistics for the Type A evaluations 
makes the GUM self-consistent and greatly simplifies the expression of uncertainty in 
measurement by eliminating altogether the need of calculating degrees of freedom.  We 
note that there are limitations on the kind of Bayesian statistics that can be used for the 
Type A evaluations of input quantities.  A central measured value for an input quantity in 
the GUM is always the expected value of a state-of-knowledge probability distribution 
for that quantity.  Further the GUM subsumes and recommends that a Type A central 
measured value should be an unbiased estimate of the corresponding (true) quantity 
value.  A Bayesian posterior expected value determined using a proper prior distribution 
for a quantity cannot be an unbiased estimate.  Therefore the GUM recommendation that 
a Type A measured value for an input quantity should be unbiased is satisfied only when 
a non-informative improper prior distribution is used for that input quantity.  
Metrologically, this means that only the current observations without any additional 
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information should be used to determine a Type A central measured value for an input 
quantity of the measurement function. 
 
Note 5.1: In metrology, a prior pdf for the value of a physical quantity is often based on 
an alternate measurement (or a previous measurement) determined using a different 
method perhaps by another metrologist.  In such cases, the object of current measurement 
may be to determine an independent measured value for that quantity; therefore, prior pdf 
cannot be used.  The current measured value may be compared with an alternate 
measured value.  When the uncertainties are reasonable and the two measured values are 
significantly different, one would suspect that the value of the measurand may have 
changed.  In that case the prior distribution and the current observations may correspond 
to different measurands. 
 
Note 5.2: Non-informative improper prior distributions are needed only for the Type A 
evaluations.  A Type B evaluation is frequently determined from a state-of-knowledge 
pdf assigned to the input quantity.  A Type B state-of-knowledge pdf may be interpreted 
as a Bayesian prior distribution.  Such prior distributions are proper pdfs.  
 
Note 5.3: The principles underlying non-informative prior distributions are discussed in 
text books such as the following: [9, section 2.9] and [12, section 5.6.2].  Useful non-
informative improper prior distributions for many commonly occurring situations in 
metrology have been determined by analytical methods.  The computational software for 
numerical Bayesian analysis is not very useful for finding suitable non-informative 
improper prior distributions. 
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