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8.1
Introduction

The interpretation of synthetic polymer mass spectrais a process thatusually requires
intricate knowledge of both, the synthetic chemistry of the investigated polymers as
well as the measurement process itself and the instrumentation at hand. The growing
usage of mass spectrometric tools in the polymer community also leads to an
increasing number of nonexpert users of the technique. Sophisticated tools for the
automated processing and interpretation of mass spectra have the potential to
significantly increase the acceptance of mass spectrometry (MS) as a versatile
technique in polymer characterization by these users, while atthe same time providing
an operator-independent and reproducible outcome of the interpretation process.
Especially when extracting quantitative information — for example on the composi-
tional distribution of copolymers or the molecular mass distribution (MMD) of
homopaolymers — operator-independent approaches for spectral evaluation are highly
desirable. Sophisticated data processing and database search tools have the potential to
maximize the efficiency and accuracy of investigations by hyphenated techniques,
including tandem mass spectrometry (MS/M 8), ion mobility spectrometry (IMS), and
online liquid chromatography mass spectrometry (LC-MS). The following sections
give an overview of the techniques that are currently available to the polymer
community and should guide the interested scientist in the selection of suitable tools
for spectral interpretation. The reader will realize that—although tools have matured in
areas such as copolymer characterization and molecular mass determination — the
field of automation in polymer MS is in many areas still in its infancy.

8.2
File and Data Formats

Once the physical process of spectrum acquisition has been carried out, every data
analysis effort — automated or manual — requires importing of the mass spectral data
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into a processing software suite. Here, the generated spectra are either displayed for
manual interpretation by the user or further automated data retrieval, preproces-
sing, interpretation, and quantification steps may be performed. The current
situation features a plethora of vendor-specific, proprietary data formats in M5, At
times, diversity exists even between instrument generations of the same vendor, and
the negative impact on scientific data exchange and efforts to automate spectral
interpretation needs to be realized. Polymer mass spectra acquired by direct
infusion electrospray ionization mass spectrometry (ESI-MS) or matrix-assisted
laser desorption ionization mass spectrometry (MALDI-MS) without chro-
matographic fractionation of the sample can be stored as a two-column data matrix,
and thus are easily handled in the form of simple text files for data export, which is
supported by most software.

However, in the last years, a trend is also witnessed within the polymer M$S
community toward the realization of increasingly more sophisticated scenarios,
featuring mass spectrometric analysis in combination with other means of macro-
molecular separation or fragmentation to maximize information content. Hyphen-
ated techniques such as size-exclusion chromatography (SEC) or chromatography
under critical conditions of adsoerption (LCCC) coupled online or offline to MS as well
as gas phase separation techniques such as IMS may allow more structural data to be
gained from the measurements than from a simple M5 experiment by itself. Tandem
MS in combination with knowledge about the fragmentation pathways of certain
polymer species may enhance the information gained on polymer functionality and
composition. The multidimensional data obtained from these approaches requires
sophisticated means for its compact storage, ideally in openly accessible data formats.
In the field of proteomics, the sheer complexity of information from tandem LC/MS?
experiments necessitates automated processing from the very beginning of the data
analysis chain and sophisticated tools have therefore been developed over the last
couple of years [2—4]. The requirement of a common open data format to enable the
platform and instrument vendor-independent processing and exchange of data has
also been realized in recent years within the proteomics community [1, 5, 6]. As a
result, two open data formats have emerged, based on the extensible markup
language (XML) standard: The mzXML[1] format, developed by the Seattle Proteome
Center and later the mzML [5] format developed by the Human Proteome
Organization’s proteomics standards initiative, which aims to marry the superior
elements of mzXML with a third data format, mzData [7]. Figure 8.1 shows the great
benefit of this approach in that a common (open source) data analysis pipeline may be
used to data analysis which uses one unified open file format as data input. Software
developers will be freed from the need to obtain knowledge about the different
vendor-specific formats thus enabling the development of truly universal software
tools. Furthermaore, common file standards will allow public storage and retrieval of
data over long periods. A number of open source programs are available today to
convert vendor-specific formats to mzXML or mzML files. A list of these converters
can be found in Ref. [3]. Increasingly, instrument vendors are also beginning to
support these open file standards.
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Figure 8.1 The mzXML file acts as a mediator,
allowing multiple input formats to be subjected
to a comman data analysis pipeline. New types
of instruments can be integrated into a
preexisting analysis framework with anly a utility
{here represented by C) to convert MS native

5.3 Optimization of lonization Conditions

Common data
analysis pipeline

output to the mz¥ML format. The open
structure of mzXML instance documents makes
them suitable for data exchange such that, for
example, they may be submitted to a data
repository to support the results presented in a
publication. Figure adapted from Ref. [1].
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Optimization of lonization Conditions

Finding the instrumental settings and experimental conditions at which the sensi-
tivity and accuracy of an analytical procedure is at its optimum is one of the main
goals in any analytical method development process. In M5, a great number of these
chemical and instrument parameters exist that the scientist can tweak. With regards
to polymer analysis by MS, depending on what the goal of the mass spectrometric
experiment is, the objective to be optimized may vary. The instrumental noise and
sensitivity may be important objectives in quantification studies of low abundant
polymer species. Minimization of ionization mass bias and optimization of detector
linearity or dynamic range are required in MMD determination by MALDI-MS [8].
Recently, the introduction of living/controlled radical polymerization protocols has
lead to new kinds of functional polymers carrying end groups such as halogen atoms,
dithioesters, or nitroxides which are bound to the polymer terminus by intrinsically
weak carbon—chalcogen or carbon—halogen bonds. Especially with nonpolar poly-
mers such as polystyrene [9, 10], which are difficult to ionize in general, but also with
poly(methyl methacrylate) (PMMA) [11, 12], loss of these end groups is often
observed in MALDI-MS. This leads to information loss and false deductions in the
case of mechanistic investigations or when MS is used to verify end-group fidelity.
ESI has the advantage that it often provides a much softer ionization of the polymer
molecule, with full retention of functionality [12, 13], but in a few cases, end-group
losses for polymers synthesized by living/controlled radical polymerization have
been observed even with ESI-MS [10]. The retention of functionality is therefore a
third important objective in polymer M5 requiring optimization, especially when
mechanistic and structural studies are to be performed.
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The physical processes affecting the performance of the jonization source, mass
separating process, and ion detection are often only insufficiently understood and
conditions depend critically on the type of mass spectrometer employved. With only
little or no a priori knowledge of the optimal conditions, the number of parameter
settings to be sampled is very large. Often, source optimization in both MALDI-TOF
and ESI-MS is performed in a one-factor-at-a-time fashion [14]. This approach,
although straightforward to perform, may not yield the best experimental conditions,
as interactions between parameters cannot be identified [15, 16]. Design of exper-
iment (DoE) is a useful tool that can be employed to significantly reduce the number
of the experiments required in optimizing ionization conditions, while retaining
maximum certainty in the eftects of the experimental parameters and their inter-
actions on arbitrary objectives to be optimized. Response surface designs allow the
statistical and graphical evaluation of the experimental data by regression analysis
with suitable model functions [15, 17, 18], A number of different applications of DoE
to LC-MS optimization exist in literature, many covering the optimization of the
liquid chromatographic separation [19, 20], but some also covering the optimization
of M5 source conditions [18, 20, 21]. More recently, Kell and coworkers successtully
employed a genetic search method [22] to achieve an operator intervention-free, fully
automated numerical optimization of up to 14 instrument settings in polypeptide
ESI-MS [23] and gas chromatography-MS [24]. These authors noted that the method
could yield optimum conditions by sampling less than 500 of the possible 10"
combinations and that relationships between source parameters were identified that
accounted for much of the success of the optimization. The hypothesis-generating
potential of genetic search processes in which little a priori knowledge of the system is
available was thus demonstrated.

A selection of articles exist that are directly related to polymer M5, Wetzel et al., for
example, employed an orthogonal experimental design to identify parameters that
significantly affected signal-to-noise ratio in polystyrene analysis by MALDI-TOF-
MS. From a set of five parameters including detector voltage, laser energy, delay time,
extraction voltage, and lens voltage, detector voltage and delay time were shown to be
the most influential [25]. Later, Wallace et al. employed numerical optimization
routines to iind conditions of minimal instrumental mass bias, which is one goal
when employing MALDI-MS to generate absolute MMD standards. Stochastic
numerical optimization [26. 27] was employed to this task, and the effects of
instrumental noise on the optimization procedure were dealt with by the use of
implicit filtering [28]. Optimal values of five instrument parameters were obtained in
as few as five iterations and the confidence intervals of the parameters were gained
which may serve for a sensitivity analysis of the effects of each parameter.

DoE can be especially useful when optimizing online LC-MS of synthetic paoly-
mers. Here, the operator is faced with the challenge of having to find optimum
ionization conditions in a system where the concentration of analytes eluting from a
chromatographic column is changing rapidly as a function of time. In such cases,
parameters may need to be varied between chromatographic runs with the goal to
obtain maxirnum information from a minimum amount of chromatographic runs to
save valuable instrument time. Gruendling et al. presented a method based on a
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D-optimal design, which allows for a modification of the number of experiments
included in the design plan [29]. The influence of four ionization source parameters,
including cone voltage, spray gas How rate, and capillary temperature on ionization
efficiency and their optimum settings were identified,

In MALDI-MS, the selection of proper conditions for sample preparation includ-
ing the correct chemical matrix, solvents, and ionization salt in suitable concentra-
tions is a crucial part of the signal optimization process. A number of studies exist in
this direction, with one very interesting approach by Schubert and coworkers [30].
These authors used quantitative structure—performance relationships for the rational
selection of potentially new well-performing matrices for MALDI of synthetic
polymers. Recently, Brandt et al. [31-33] employed partial least square regression
together with a training set of eight matrices, five cationization reagents and six
solvents to predict the performance of untested combinations of matrix, cationization
reagent and solvent. Molecular descriptors were used for the matrix and cationization
reagent, while Hansen solubility parameters were found to be the most informative
for the solvent. The authors concluded that, despite of inconsistencies due to the
formation of precipitates with some salts, the established structure-performance
relationships may serve as a starting point to predict the performance of matrices in
the case of unknown polymers.

24
Automated Spectral Analysis and Data Reduction in MS"

Numerical spectrum analysis is an often neglected subject in the overall study of MS.
It is typically treated as an afterthought to the widely studied subjects of sample
preparation, ionization mechanisms, and mass-to-charge separation methods. Yet it
is the determination of accurate and precise peak positions that is at the core of
chemical identification in MS. Furthermore, it is the determination of peak intensity
that underpins any quantitative measurements. This section presents, in brief, two
new methods that have been developed at the National Institute of Standards and
Technology. These methods make no assumptions about peak shape.

Mass spectral “peaks” are defined as statistically significant excursions in the
spectrum intensity from its baseline that are the result of ions of a given mass-
to-charge ratio (m/z) being detected by the instrument. Spurious peaks may arise
from purely random events of either electronic or chemical origin. Electronic noise
arises from the detector, preamplifier, amplifier, or spectrum digitizer. Chemical
noise arises from stray ions that have been improperly separated in time, mass, or
kinetic energy. Typically spectrum averaging will smooth out such peaks if the noise
is truly random and uncorrelated. Spurious peaks may also arise from systematic
instrument artifacts, for example, periodic effects such as digitizer jitter (yielding
electronic noise) or voltage fluctuations (leading to chemical noise). From a purely

1) Cificial contribution of the National Institute of Standards and Technology: not subject to copyright in
the United States of America.
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statistical or numerical point of view, these may be impossible to distinguish from
genuine peaks. The analyst needs answers to the following questions:

1) When is a given excursion correctly classified as a genuine peak? (statistical
significance)

2) At what m/z is the peak most likely located? (peak location)

3) Does it overlap with other nearby peaks? (peak resolution)

4)  Where does a peak begin and end? (integration end points)

5) What is the area of the spectrum underneath the peak? (peak integration),

An answer to the first question is used to separate true peaks from spurious peaks.
An answer to the second question is required for species identification and is used
predominantly in qualitative analysis. The third question must be answered to
determine if two or more peaks overlap as a result of insufficient mass-to-charge
resolution. Overlapping peaks may lead to incorrect peak position and intensity
determination. Knowledge of the location of the peak beginning and end, the fourth
question, is required to determine peak area. Peak area, in turn, is typically required
for quantitative analytical results, Succinct answers to these questions will resultin a
reliable translation between the spectrum and the metrics the analyst wishes to
determine, Failure to properly answer these questions renders moot efforts at sample
preparation and data collection.

841
Long-Standing Approaches

Standard approaches to the reduction of mass spectral data have focused on
calculating either derivatives or intensity thresholds of the data. A few of the many
reviews in the literature can be found in Refs. [34-37]. Typically, excursions from the
baseline are found at increases in the first derivative. As the algorithm proceeds
sequentially through the data {typically but not necessarily from low m/z to high m/z),
an initial excursion of the derivative, or an increase in intensity above a preset
threshold, indicates a peak beginning. A peak maximum is found when the derivative
after an initial increase fattens out to zero. As the algorithm proceeds sequentially,
the derivative will change sign and then Hatten out to zero again, or the intensity will
drop below the preset threshold value, as the baseline is restored.

Many variations of this basic method exist. For example, second derivatives may be
used to find peak maxima. In some cases, third derivatives may also be employed.
There are two significant problems that one encounters when using these derivative-
based approaches. First, the function whose derivative must be approximated is only
available at discrete prescribed points, that is, one has access only to (x, y) pairs of data,
not to a continuous function. Second, random noise results in inaccurate derivative
estimates. It is well known that the availability and accuracy of derivative approx-
imations decreases as noise in a function increases. The result is that noisy data,
when analyzed with algorithms that employ derivative approximations, may fail to
find genuine peaks and may identify as peaks features that are purely artifacts.
Furthermore, the higher the derivative, the greater its sensitivity to random noise [38].
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In this case, smoothing or filtering of the data is one way to ensure existence and
computability of needed derivative estimates. Running or windowed averages,
Savitsky-Golay smoothing [39-41], Fourier filtering [42], and wavelet decomposi-
tion [43] are the most common of the many methods possible and have been
extensively discussed in the literature. However, the success of these methods relies
on a circular logic in which the type and degree of smoothing determine the
effectiveness of the peak finding algorithm, and the effectiveness of the peak finding
algorithm determines the amount of smoothing required. The problem is com-
pounded when the noise is variable across the m/z range, or when the noise is not
constant between spectra but the analyst wishes to apply to same data analysis
methods to all spectra of a series. Different kinds of, or degrees of, smoothing may be
required in different parts of the spectrum. Likewise, derivative computation
{or other gradient estimates) may be more feasible in one part of the spectrum
than another.

8.4.2
Some New Concepts

Many of the new concepts in peak identification and integration attempt to move
beyond the purely local approaches of derivatives or thresholds. Furthermore, they
attempt to do this without going toward global spectrum smoothing. Here “local”
refers to operations on any given mass versus intensity (x, y) data point and its nearest
neighbors. “Global” refers to operating on the spectrum as a whole without
consideration of any specific local features, such as Fourier filtering. New methods
endeavor to treat the spectrum as a series of regions that are larger than a few data
points but smaller than the spectrum as a whole. They attempt to isolate peaks into
“neighborhoods” or small sets of mass versus intensity data points. By analogy, the
spectrum is the city, the peaks are its neighborhoods, and the data points are
individual addresses.

8.4.3
Mass Autocorrelation

Signal autocorrelation has an extensive history in the communications field [44]. The
mass autocorrelation function, G(L) is defined as

Z S{m;)- S(m; )
> S(my)’

where §(m,) is the signal at mass m; taken on equal intervals of mass, Am, and Lis the
lag which is also measured in units of mass. Equal intervals of mass are used because
most correlation algorithms require the signal to be evenly spaced points on the scale
of interest. As an aside, remember that in TOF mass separation, the signal, 5(t), is
collected on equal intervals of time. The transformation from this time-base signal

G(L) =

(8.1)
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S(t;) to a mass-base signal S(m;) involves both an interpolation and a change of the
signal itself by a Jacobian transform. The mathematical methods to effect this
transformation are discussed in Ref. [45]. Numerical interpolation must be used
to convert the spectrum in mass from unequally spaced points to equally spaced
points for the application of autocorrelation methods. By choosing reduced (con-
tiguous) sets of the data, information about periodic peaks may be obtained in as local
or as global a context as desired. The periodicity of the peaks may arise from the
periodic nature of the polymer's structure such as repeat units periodicity or isotopic
periodicity.

In addition to verifying the mass of any repeat units found in the sample, there are
several important applications of mass autocorrelation to the analvsis of polymer
mass spectra. By autocorrelating in different regions of the data, and by overlaying
these results, subtle changes in polymer architecture can be discovered. This was
demonstrated for polysilsesquioxanes where the degree of intermolecular conden-
sation could be quickly and accurately tracked without having to resort to identifying
every peak in the spectrum [46, 47]. A second application involves pulling a weak
signal out of noisy data [45]. Exploiting the fact that for a polymer there should be a
repeating peak sequence at the repeat unit mass, autocorrelation can reveal if the
expected polymer ions have been detected in an otherwise noisy spectrum. Figure 8.2
shows a very noisy polystyrene MALDI-TOF spectrum. Identifying the mass differ-
ence between pairs of peaks is difficult. Autocorrelation compares intensities at all
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Figure 8.2 Autocorrelation applied to noisy polymer mass spectrometry data. (a) Mass spectrum,
(b) Autocorrelation function. Motice the clearly repeating structure at 104,15 gmol™ ' which is the
repeat unit mass of polystyrene.
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mass differences across the spectrum. In cases with matching peak distances the
autocorrelation coefficient increases. This can be seen in the figure where correla-
tions of peaks one, two, or three repeat unit masses apart are clearly seen and the
repeat unit of polystyrene is clearly identified, Careful inspection of Figure 8.2 also
shows small peaks on either side of the main autocorrelation series. These are due to
cither a separate set of end groups or adduct formation. In either case, finding this
effect by simple inspection of the original spectrum would be exceedingly difficult.
The third application is to mass calibration. If the repeat unit mass of the sample is
known, autocorrelation can be used to adjust the slope (but not the offset) of the
calibration curve, This serves to improve mass accuracy because if the slope can be
corrected, then the peak positions are more accurate. This is important when
calculating end group or adduct masses.

A software tool (PolyCalc) which has recently been introduced by Luftmann and
Kehr allows the molecular masses of repeating units and end groups, as well as an
approximation of the MMD to be obtained from the multiply-charged spectra
recorded in direct infusion ESI-MS [48]. The software operates by minimizing the
difference between a simulated mass spectrum and the measured ESI spectrum and
thus yields the monomer and end-group mass and estimates of the MMD of the
polymer, which is assumed to be Gaussian in shape. The software seems to be a
useful tool effectively extending the mass range of ES1-MS to around 10-20 kg mol '
if multiple charging is achieved. Programmatic extensions are needed to allow the
analysis of mixtures of multiple end-group-carrying polymers.

8.4.4
Time-Series Segmentation

Another alternative to calculating local derivatives is to consider the spectrum as a
whole and to reduce it to a set of concatenated line segments based on its features. As
shown in Figure 8.3, by connecting the first (x, y) pair to the last (x, y) pair in the
spectrum, a crude baseline for the entire spectrum is created. From thisline, the (x, y)
pair that is the greatest normal distance from the line is determined. This yields two
line segments spanning the spectrum. This procedure is continued until the spectrum
is replicated by a series of line segments with each peak determined (at the minimum)
by twoline segments and the intervening baseline determined (also ata minimum) by
a single line segment. After the spectrum has been segmented, least squares or
orthogonal distance regression [49] may be used to adjust the line segments to best fit
the data; however, caution must be exercised because if the random noise level varies
across the spectrum the quality of the fit will also vary across the spectrum. For this
reason, the NIST method [50] uses a background spectrum taken at the same
instrumental conditions as the spectrum to be analyzed with a sample that is free
of analyte (e.g., in the case of MALDI, contains the matrix and the cationizing salt). A
background spectrum requires additional experimental effort but yields significant
dividends when analyzing the data to determine quantitative measures.

A nonlinear programming algorithm using an L2 {least squares) approximation to
an L1 (least absclute-value) fit was employed [51-55]. L1 fits are superior to L2 fits due

245



246

8 Automated Data Processing and Quantification in Polpmer Mass Spectrometry

Figure 8.3 Schematic representation of time-  beginningsfendings. The calculated relative
series segmentation on a model problem. Inthe  area for each peak is the area of the triangle but
final panel, the green circles represent peak many other area-summing routines are
positions, and the blue circles represent peak possible.

to their increased tolerance for outliers, that is, outlying points do not exert as
much control over the final fit. Given a dataset of N points, a collection of strategic
points is found and the unique optimal piecewise linear function passes through the
x coordinate of each strategic point. This defines a set of function maxima and
minima corresponding to the peak maxima and the peak limits, respectively. The
original data is then integrated by finding the area of the polygon determined by the
strategic points.

Our segmentation method is a two-step algorithm. The first portion requires the
selection of strategic points and is derived from the earlier work of Douglas and
Peucker [56]. Strategic points are selected based on an iterative procedure that
identifies points whose orthogonal distance from the end-point connecting line
segment is the greatest. Once a point with greatest orthogonal distance from the
mean has been identified, it joins the collection of strategic points and, in turn,
becomes an end point for two new line segments from which a point with greatest
orthogonal distance is found. This numerical scheme is performed until the greatest
orthogonal distance to any end-point connecting line segment drops beneath a
prescribed threshold value. This threshold value is the only algorithmic parameter
and is based on a statistical analysis of the data and its corresponding analyte-free
spectrum. Clearly the selection of these points does not require equally spaced data;
therefore, the method is equally well suited for TOF data expressed in either time or
mass space. Generally, it is chosen to work in time space with the data in its most
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basic state and to eliminate for doing a point-by-point correction of intensity using
partial integrals [45]. The second phase of the algorithm, developed specifically for
this work, requires the solution of an optimization problem, specifically, locating
strategic point heights {i.e., adjusting strategic point y-axis values at their associated
strategic x-axis values) that minimize the sum of orthogonal distance from raw data.
This problem is a nonlinear (and nonquadratic) optimization problem that can be
accomplished quickly using a recently developed nonlinear programming
algorithm [57].

The algorithm works as shown in Figure 8.3 [50, 54]. Clearly this method requires
no knowledge peak shape and no preprocessing of the data (e.g., smoothing), nor
does it require equal spacing of data points. Note that the strategic points defining
the beginning and end of adjacent peaks are located in the same spot resulting
from the choice of cos®(x) as the underlying function for this demonstration of
the procedure.

Once the data set is fully segmented, strategic points are discarded in accordance
with the statistical analysis of the original data set and its corresponding analyte-free
data set. This “deflation” of strategic points using statistics-derived thresholds is
performed by first analyzing the analyte-free spectrum for peaks and peak areas.
Once a collection of peaks and peak areas has been accumulated, the spectrum with
sample is then analyzed. Each peak identified from the spectrum with analyte is
compared to peaks found in close relative proximity from the analyte-free spectrum
algorithm output (i.e., peaks that appear with similar time or mass coordinates). If
any peak in the spectrum with analyte has a smaller peak height or smaller peak area
than most (about 95%) of the background-spectrum peaks in close proximity, then
that peak is ignored. Likewise, any peak that falls outside the statistically significant
measure for area and height is also discarded. Thus, no peak is identified from the
sample spectrum that could have been identified by height or by area from
the background spectrum. This discarding of strategic peints also serves to prevent
the inadvertent subdivision of larger peaks into a set of smaller peaks. This can
sometimes occur if the noise in the analyte spectrum is much greater than the noise
in the corresponding background spectrum.

Onice the final set of strategic points has been found, the area of the polygon
defined by these points is calculated. (The polygon is often, but not always, a triangle.
The algorithm will work on polygons of any number of vertices connected by line
segments.) The line connecting the first and last strategic points for a given peak
determines a “local baseline.” The mathematical basis for the polygonal area
calculation algorithm is Green's theorem in the plane and can be interpreted as
repeated application of the trapezoidal rule for integration [58). The method returns
the exact area of the polygon.

Figure 8.4 shows an example of a MALDI-TOF mass spectrum of polystyrene
having three difterent end groups. Without user intervention, but with the require-
ment of a background spectrum for statistical deflation of the number of peaks, the
algorithm is able to identify and integrate peaks without smoothing or making any
assumptions on peak shape. In this case, the areas calculated from the triangular
shapes defined by the three strategic points for each peak were calculated. However,
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Figure 8.4 Time-series segmentation applied to real polymer MALDI-TOF mass spectral data.
Mote that the background spectrum has been shifted down slightly for clarity.

any method to determine the area is suitable, for example, simply summing the
signal channels between the beginning and ending strategic points defining
each peak.

8.5
Copolymer Analysis

The practical details and applications of soft ionization MS to analyze copolymer
structure have been discussed in a preceding chapter and shall not be reiterated here.
MS can serve two purposes in copolymer characterization; in addition to a deter-
mination of the end-group structure, it is possible to glean the copolymer compo-
sition from a mass spectrum (a sequence determination may be attempted after
partial degradation or via MS/MS). The last two decades have seen the development of
a number of mathematical approaches and software tools aimed at a spectral
interpretation of copolymer mass spectra (consider also Chapter 9.9 for an alternative
viewpoint on the topic). Mass spectra of copolymers are significantly more complex
than homopaolymer spectra. This is owing to the fact that where the MMD of
homopolymers is a one-dimensional function of one repeat unit length, copolymers
feature a two-dimensional topology distribution of the chain lengths of two (or
multiple) monomer-building blocks.



8.5 Copolymer Analysis

The monoisotopic m/z of a copolymer ion in charge state z featuring m units of
monomer M1 with mass my; and n repeat units of monomer M2 with mass my,, and
with a combined end-group mass mg is given by the following equation:

W gy + 1 M + Mg

miz= . + iy (8.2)

where mM+ is the mass of the adduct metal cation.

Spectral interpretation can be attempted in a generally very straightforward
manner: If a hypothesiz about the constituent monomers and the end group of
the polymer can be made, the resultant copolymer spectrum can be modeled based
solely on Eq. (8.2). A problem, however, arises, as the two-dimensional topology
distribution is projected onto a one-dimensional mass spectrum, which in most
cases leads to loss of information. This is due to the fact that different combinations
of m and n can lead to the same or very similar m/z. Consider the example of
iy = 100 Da and my; = 40 Da: A polymer with constitution m = 4 and n = 10 will
feature the same mass-to-charge as one with m = 6 and n = 5. Further complication
arises, as each copolymer features a distribution of masses due to the isotope
distribution of "*C atoms making up the backbone of the polymer and the limited
instrumental resolution, Nevertheless, in the majority of cases, quantitative data
may be extracted on the copolymer composition and topology distribution, given
that the effects of mass bias on the ionization of copolymers with differing
composition can be neglected.

Mathematical tools developed from the early 1990s for the quantitative interpre-
tation of copolymer spectra have been accounted for in an extensive review by
Montaudo [59]. This early work focused mainly on the application of chain-statistical
maodels of the copolymerization process. The use of chain statistics to simulate a
theoretical copolymer topology distribution can aid spectral interpretation by com-
parison of a model spectrum with the spectrum measured in reality. It was shown that
using MALDI-MS with appropriate chain models, the average monomer composi-
tion, ¢ of copolymers could be determined [60-63]. An evaluation by a direct method
in which no assumptions about the polymerization process are required is also
possible using the following equation [60, 64—66];

DD me (L)

m

b1 = Z me M- “.-n.n]

(8.3)

where [, ,, is the mass spectral intensity at the mass corresponding to a co-oligomer
with m and n repeat units of the respective comonomers. The authors, however,
cautioned that inaccuracies result when the tallest peaks in the spectrum are due to
chains of less than 10 repeat units in length. Erroneous results will also be obtained in
the case of strongly overlapped mass spectral peaks with ambiguous assignments in
which case pruning methods have been employed [67]. The naturally occurring
isotope distribution and mass-dependence of the instrumental resolution need to be
corrected for if peak apices are compared instead of area ratios.
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Wilczek-Vera et al. were among the first to demonstrate that results from MALDI-
MS can be used to determine the full two-dimensional distribution of copolymer
composition and chain lengths [67-69]. These authors also employed random
coupling statistics in the case of block-copolymer formation to aid quantitative
spectral interpretation. Their work was later followed up by Suddaby et al. [70] and
recently by Willemse et al. [63, 71] and Huijser et al. [72, 73] who used the results for
the determination of reactivity ratios in free radical copolymerizations [63, 70, 71] as
well as for the mechanistic investigation of polycondensation reactions [72, 73]. These
authors also derived so-called fingerprint plots (see Figure 8.5) from the mass spectra.
These plots depict the two-dimensional contour plots of the probability distribution
of both comonomer chain lengths as determined from the mass spectra. They
provide a facile means to interpret the polymer mass spectrum and the form of
the distribution observed also allows deductions to be made about the type of the
analyzed copolymer (block vs. random) [74]. Weidner et al. recently employed the
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Figure 8.5 Copolymer fingerprint plots The dashed lines in the copolymer fingerprint
obtained from the pulsed laser-initiated radical  plots are indicative of the average chemical
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8.6 Data Interpretation in M5/MS

method to cases in which an online coupling of MALDI and ESI MS to chro-
matographic separations was required and reported the introduction of a software
tool developed in-house (MassChrom2D) [75, 76].

By employing a procedure named strip-based regression, Vivo-Truyols et al. [77]
provided for the first time an elegant and statistically sound algorithm for the
determination of the topology distribution of copolymers from their highly over-
lapped spectra in MALDI-MS. The characteristic of the algorithm to use strips whose
width is a fraction of the full-acquired mass range for processing allows the data
extraction problem to be treated by linear regression methods, whereas changes in
the instrumental resolution of the instrument with mass-to-charge and an incorrect
calibration do not deteriorate the results. As a further benefit, the application of the
regression approach allows the error associated with the relative abundance of each
comonomer combination to be determined.

36
Data Interpretation in MS/MS

Advanced fragmenting techniques in M5 have been around for some while and
have been extensively used in the determination of polypeptide sequence by
bottom-up proteomics [78, 79]. The unambiguous interpretation of the wvery
information-rich spectra obtained from MS/MS is greatly facilitated by the
availability of highly advanced data processing software and database search tools,
which are an indispensable part of contemporary proteomics [3, 4] In recent
years, MS/MS has also become a topic of largely increasing popularity in the field
of synthetic polymer characterization. The tragmentation pattern of macromaole-
cules can provide detailed information on the structure of the constituent
monomer-building blocks as well as on the attached end groups, A number of
studies have established the main degradation pathways of commeon polymers
such as PMMA, poly(butyl methacrylate), poly(ethylene glycol), poly(propylene
glycol), poly(styrene), poly(2-ethyl-2-oxazoline)s, and poly(a-methyl styrene) [80-94].
Software for the automated interpretation of synthetic polymer tandem
mass spectra may prove to be a valuable tool for the determination of the
backbone structure and end groups of otherwise uncharacterized polymers as
well as for the analysis of the chain structure of copolymers. The advances in
software development and the large availability of open source software solutions in
biomolecular MS may greatly benefit development of suitable tools for synthetic
polymer MS/MS. So far, there is only one tool available developed by Thalassinos
et al. [95] that, however, greatly aids interpretation of tandem mass spectra and
which is provided free of charge by the author. A screenshot of the software is given
in Figure 8.6. Taking user-provided input on the repeating monomer units and the
o- and w-end-groups as well as the type of the attached cation, the software
automatically assigns the recorded peaks to [ragment ion species, followed by a
color coding of the peaks making further spectral interpretation highly
intuitive. Tentative assignments of the end groups can be quickly validated, which
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spectrum of the lithiated octadecamer of detailed above (left) of the spectrum.

otherwise poses a time-consuming process. The authors have also reported on
the application of Polymerator to analyze PPG [96] and poly(hydroxvethyl
methacrylate) [97].

87
Quantitative M5 and the Determination of MMDs by M5

MS with soft ionization has evolved into a powerful analytical tool in macromolecular
science within the last two decades, MALDI-MS [98] and ESI-M S [99] are especially
versatile tools for the analysis of synthetic polymers. A large field of application of M5
in polymer science aims at gaining qualitative information on the chemical identity of
the repeat units or end groups of a synthetic macromolecule based on the precise
measurement of the molecular weight of individual oligomer molecules. Although
MALDI-MS and ESI-MS yield exact molecular weights of individual molecules,
accurate MMD of synthetic polymers requires sophisticated spectral processing
approaches. This is because, intrinsically, synthetic polymers do not exhibit one
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uniform chain length but rather a distribution of molecular weights. Although in M5,
the molecular weight axis iz certain, due to instrumental bias and a dependence of
ionization efficiency on molecular weight and charge state, abundances of oligomer
ions are not an accurate description of oligomer concentration in the analyzed
sample. Classical methods used for the determination of MMDs by SEC yield
accurate information about the concentration of the polymer. The molecular weight
axis though is uncertain in SEC and existing calibration procedures may introduce
errors of up to 30% in the obtained molecular weights [100].

In the following text, two approaches, developed independently at the National
Institute of Standards and Technology [101] and at Karlsruhe Institute of Technol-
ogy [102, 103], respectively, are described and evaluated. The first approach
(see Section 8.7.1) has been employed in the context of creating an absolute molecular
mass standard (Standard Reference Material™ (5RM) 2881) from MALDI measure-
ments alone, using an internal calibration of the mass spectral intensity axis [101).
The second approach (see Section 8.7.2) relies on the use of SEC coupled online to a
quantitative concentration detector (refractive index (RI) detector), whereas molec-
ular mass calibration and band-broadening correction are achieved using peak data
obtained from online ESI-MS [102, 103).

870
Quantitative MMD Measurement by MALDI-MS?

The accuracy of a polymer's MMD determined from a well-resolved mass spectrum
depends on accounting correctly for the mass bias in the measurement, Here “well-
resolved” means having the ability to separate to baseline the individual peaks of two
oligomers whose mass differs by one unit of their {tvpically) periodic mass spacing.

This ability is required for the quantitation methods described in this section. The
methods found here have been developed at the National Institute of Standards and
Technology and are described in more detail in Refs. [101, 104-106]. Mass bias is the
systematic over- or undercounting of specific parts of the MMD by the mass
spectrometer. Here “specific parts” can refer to the high-mass or low-mass parts
of the spectrum, or to specific types of oligomers as defined by, for example, end
group or molecular architecture. Mass bias can occur in any of the three basic
functions of the mass spectrometer (sample ionization, separation by m/z, and
detection) as well as in the sample preparation or the data analysis. By systematic itis
meant that the bias is an inherent aspect of the measurement and how it is conducted
and not simply due to imperfect counting statistics. In the latter case, taking more
data will resolve the problem; in the former case, taking more data is not a viable
solution. For systematic bias, the magnitude of the bias must be found and a
correction is applied, otherwise the measured MMD is of litfle use.

Fundamental metrological principles identify two types of measurement uncer-
tainty, type A and type B. Type A refers to uncertainty that can be evaluated by the

2) Official contribution of the National Institute of Standards and Technology, not subject to copyright in
the United States of America,
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Figure 8.7 Schematic illustration of type A (“random”) and type B ("systernatic”) uncertainties in
MMD measurement.

statistical analysis of a series of observations, whereas type B refers to uncertainty that
cannot be evaluated by statistical methods alone. Generally, type A is spoken of as
statistical or randowm uncertainty and type B as systematic uncertainty. Their differ-
ences applied to the MS are shown in Figure 8.7. This section is concerned with the
determination of type B. Type A uncertainty that can be determined (and reduced) by
repeat measurements is not explicitly discussed here. It is noted that measurement
repeatability is critical. If the operator cannot repeat the measurement from run-to-
run and from day-to-day, the chances of measuring the correct MMD decrease
dramatically. The measurement method must be repeatable and reliable before it can
be considered for quantitative, much less for standards, work.

An MMD is a two-dimensional quantity of which the mass spectrum is its
(imperfect) representation. Thus, both the mass axis and the signal axis (i.e., the
intensity of the ion signal at any given mass) have to be calibrated separately, and their
associated type B uncertainties are considered separately,

Mass axis quantification is the most easily performed of the two and is not a
significant source of uncertainty in determining the MMD from the mass spectrum.
Calibration of most mass spectrometers is usually done with biopolymers of known
molecular masses. These biopolymers are selected because they typically provide a
single major peak whose mass is known accurately; thus, mass axis quantification is
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quite straightforward. Calibration must be done using at least two or three of these
biopolymers that span the mass range of interest. More calibration points would
increase calibration accuracy, Calibration of the mass axis can also be done by
combining a single biopolymer with a molecular material calibrant. If this material
is close to, or identical to, the material under study then, in general, inaccuracies
in mass axis calibration will be minimized. The oligomeric masses, m, with n
repeat units of mass rand masses of the end group, m.,q, of the polymer calibrant are
given by

My = NF + Magg + Madduc (84)

where myaquc refers to the mass of any charged or neutral atoms or molecules
noncovalently bound to the analyte. This may be, for example, any salts added to the
sample preparation to encourage charging of the analyte. Thus, calibration of the
mass axis using a homopolymer calibrant (for example) reduces to determining
n for one of the peaks. A mass accuracy of better than a few mass units is not
necessary since polymer MMDs are not critically dependent on such small mass
differences.

Calibration of the signal axis is much more ditfhcult. There are many systematic
uncertainties that can arise in the signal axis quantitation. It would be an insur-
mountable task to try to quantify each of these uncertainties individually. Instead, the
systematic bias in the signal axis is best determined heuristically by gravimetric
techniques. By mixing together in carefully prepared gravimetric ratios samples
having different MMDs, a mixture's MMD can be controlled. By comparing the
gravimetric ratios to the signal intensity in the mass spectrum, a calibration curve for
the signal axis can be obtained.

Various averages, known as molecular moments, where the entire shape of the
distribution is reduced to a single number, serve as useful numerical simplihications
of the MMD. Measuring and computing these sumrmary statistics has historically
comprised the core of the analysis of molecular materials. The two most common
measures of the MMD are the number-average molecular mass, M,, and the mass-
average molecular mass, M.

Z it (8.5)
S

E mf n

M, = (8.6
"
M,

where m; is the mass of a discrete oligomer 1, n; is the number of molecules at the
given mass m;, and PD defines the polydispersity (PD} index.
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To estimate the level of uncertainty in an instrumental method, a mathematical
construct is needed to determine how type B uncertainties affect the final measurand.
Assume that there is a point in the experimental parameter space (sample prepa-
ration, instrument operation, and data analysis) where the signal intensity, 5, for an
oligomer of mass m;is linearly proportional to n;, the number of polymer molecules at
that oligomer mass. Mathematically, this is given by

S = kny (8.8)

where for a narrow enough range of m, it is assumed that k is a constant independent
of m; and the range of linearity, n; < ng, is about the same for all molecules in the
(polydisperse) sample.

If the measurement is performed in the linear region for all the oligomers of the
sample, the overall signal from the quantity of analyte introduced into the mass
spectrometer is given by

> Smi=kY mm (8.9)

with nm; summed over all i. From this, it can be derived that

ZjS;-m:- kzin,-rn,-
Z.‘Sf B kzr_ni

The right-hand side of the equation is by definition the exact M,, of the polymer
independent of k since k in numerator and denominator cancels out. The same holds
for equations for M, and all higher moments. This is generally true when the
measurements are made in the linear range of analyte versus signal strength.
However, it is well known that the mass spectra of wide PD analytes give poor
representations of the MMD due to large systematic uncertainties in the signal axis.
That is, if the values of the m; span too great a mass range, then the values for kand for
the n; saturation limits must change dramatically, otherwise MS would be able to
obtain the MMD correctly for very broad distribution analytes which is widely
demonstrated not to be the case.

If k is not a constant independent of i then, and if the measurements are madeina
linear concentration range for each oligomer i (i.e., n; < ng), then

(8.10)

5,‘ = jﬂghi [3-11}

where k; is now a function of the oligomer i for a fixed experimental method: sample
preparation, instrument operation, and data analysis.

8.7.1.1 Example for Mixtures of Monodisperse Components

The simplest example of gravimetric quantitation to test mass spectrometer response
is to create a mixture of two monodisperse compounds: species 1 as a standard and
species 2 as the analyte whose concentration is sought. Ifthere is no systematic bias in
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the measurement, then the ratio of §,/5, is directly proportional to the gravimetric
mass ratio G;/G,, where G; is defined as the gravimetric mass of each species.
The signal from such a mixture, call it A, is

Sa=kim + kang (8.12)
The mass moments would be

(kymyng +kymyng)

Mgra'.l_t:p —
na {klu‘r'h o kzﬂ;‘z_]

(8.13)

Fav £ [k‘l mz Fly t kimznlj
M = 1 : 8.14
ek (kiming + kanmgng) { )

The gravimetric mass of species i is

G; = myn; {8.15)

Substituting into Eq. (8.14) we get

_[ihm; G_[ T kg_iﬂg Gz;'l

graV_Exp
Mua " = (k1 Gy + k2 Gy) gl
To simplify this let the mass fraction X be
G
= 8.17
Gy -+ Gz ( )

Substituting Eq. (8.17) into Eq. (8.16) and dividing numerator and denominator by
{G| -+ G;} }l'iE]db

(ki X +kamy(1-X)) (X +0my(1-X))

M = X R-X)  (X+00-X))

(8.18)

where

ky

fl =— 8.19
ky { )
In this way, the mass bias in the mass spectrum is reduced to a single metric, . ¢
equals one for an unbiased system. If species 2 is overcounted with respect to species
1, & will be greater than one, if species 2 is undercounted, # will be less than one. The

further @ is from one the greater the systematic bias in the mass spectrum.

8.7.1.2 Example for Mixtures of Polydisperse Components

For most mixtures encountered, any given oligomer peak in the mass spectrum
cannot be assigned exclusively to one or the other component of the mixture, In fact,a
given oligomer peak may have contributions from both components in the mixture.
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Figure 8.8 Schematic illustration of an indistinguishable and overlapping mixture of two
components, where the peak intensities in the mixture are simply sums of component oligomer
intensities.

Typically these overlapping MMDs are made up of indistinguishable oligomer
components, that is, each component of the mixture has some (but not all) oligomers
that are identical to those in the other component as illustrated in Figure 8.8, This
means that in this case the mass moments of the mixtures must be calculated and
used to create a calibration curve. A full theory for the case of distinguishable
oligomer mixtures (shown in Figure 8.9), or nonoverlapping MMDs (shown in
Figure 8.10), where each oligomer peak can be assigned to a specific component, is
given in Section 8.7.1.5. In this special case, true type B uncertainties can be given for
each oligomer in the target material and a true absolute molecular mass standard can
be created.

A Distinguishable, Overlapping Mixture

Component A Component B
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Figure 8.9 Schematicillustration of a distinguishable but overlapping mixture of two components.
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A Monoverlapping Mixture
Distinguishable (by definition)

Component B J|
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Figure 810 Schematic illustration of a nonoverlapping mixture of two components, which is
distinguishable by definition.

Equation (8.18) can be extended to a gravimetric mixture of polydisperse compo-
nents by substituting the experimental average molecular mass of each pure
component derived from its mass spectrum. This leads to the mass moments

(ki MEPX + ko MOT(1-X))  (MEPX + MO (1-X))

¥ .

- 20
- (X1 Ta(1-X)) X+001-X)) (8.20)

where g represents a given gravimetric mixture. In Eq. (8.20), k; and k, replace k; and
k; used in the monodisperse example and are the mass-average means over each
component of the mixture which is conceptually similar to the mass-average
molecular mass. Likewise, X is now calculated from the gravimetric amounts of
each component in the mixture. The mass moments of the pure components are
from their mass spectra using Eq. (8.21):

5 mz
MEP = 25 (8.21)

Z Sigy

To obtain an estimate of the value of #, the minimum value of the sum of squares is
found. The surn of squares over all mixtures g is expressed as

o 2
S8y = Zq: (ME™ — M) (8.22)

The simplest way to solve this equation is to insert an arbitrary value for # (typically
##=1) and calculate a value for 55, then increment ¢ and recalculate 55,. This most
basic iterative process will yield an optimal value typically in a few steps and can easily
be encoded in spreadsheet software. Recall that values of # near one indicate systems
with little bias in the mass spectrum,.
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8.7.1.3 Calculating the Correction Factor for Each Oligomer

Once f has been calculated and found to be near one, the next step in the process is to
calculate the various k;in order to correct the MMD. Ifthe k; are a sinoothly and slowly
varying function of i {or my), a Taylor expansion on k; may be made around a mass peak
near the center of the MMD, termed M. The center is used to assure that the function
is changing as little as possible over the entire width of the MMD; however,
mathematically, the choice is arbitrary. Thus

ki = ko + Q(mi—M,) + higher order terms in my; (8.23)

Si = kon; + Q{m— My In: + higher order terms in m; (8.24)

where k; and Q are the first two coefficients in the Taylor expansion. They are also
functions of all the experimental conditions: the instrument parameters, the sample
concentrations, and the sample preparation method. (By ky, itis not meant the k of the
zeroth index oligomer but rather the zeroth derivative of the Taylor expansion). In this
way, the entire physics of the experiment is folded into these two coethcients. From
these assumptions, and dropping the higher order terms in Eq. (8.24), one can derive
the following important relationship;

(8.25)

I:I —_—
MEP — MEﬂ{l +(Q/ko)(PDuwyMY, M[,;}

1+ (Q/ke) (M2, — Mo)

where M, is the mass spectral mass-average molecular mass for the mixture of
analytes given in Eq. (8.21). PD,, is mass average PD (M. /M, ) and is taken here to be
the experimentally measured value (M:™" /M;'"). Equation (8.25) is then solved for
ME“] for various values of Q/k; at a fixed M, chosen as described below for the values
of the mixtures described by g = A, B, C, and so on, and for the initial components of
the mixtures described as j=1 and j=2.

For a gravimetric mixture A, Mﬂv'ﬂ is calculated from the wvalues for the
individual components M!, and M, computed for each Q/k, using a simple
weighted average:

Gy G2

MED M M° 8.26
WA G1_ L Gl wl + G'i Y GI w2 [ .}

where G; is the gravimetric mass of component 1 in the mix, and G; is similarly
defined.
For each Q/fky, the sum of squares, §5; ), is computed as

SSig) = D _ (MEW-"—M?, )* (8.27)
7

where the sum is taken over all measured mixtures. The Q/k; which gives the
minimum value of the S5, 4, is then taken as the best fit. As with Eq. {8.22), solution
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of Eq. (8.27) required iteration over incremented values of Q/ky. Dropping the higher
order terms and rearranging Eq. (8.24) yields

%=1+%{ME—MU} (B.28)
Equation (8.28) shows us how to apply the correction factor Q /k; to each oligomer i to
arrive at a more reliable measure of the MMD. If Q /k; were equal to zero, then the
mass spectrum would show no mass bias and §; = kon;, This would mean that the
peak areas are directly proportional to the oligomer concentrations in the sample. If
Q/ky is nonzero, then mass bias is present. If M, is taken at the middle of the
distribution being calibrated, then the sign of Q/k; along with where the mass m; of
an oligomer iis greater than or less than M, determines whether the correction to the
ion intensity is positive or negative.

87.1.4 Step by Step Procedure for Quantitation
The steps of the method can be summarized as follows:

1) Obtain at least two samples having different MMDs but with otherwise very
similar, if not identical, properties.

For example, these could be polymers with different degrees of polymerization
or nanoparticles with different levels of functionalization. The different samples
could be obtained directly by synthesis or by separation of a single broader
maolecular mass sample. Two samples are required at a minimum, but additional
samples will allow for more calibration peints. If possible the only difference
between the two should be molecular mass. Any other differences, for example,
different functional groups may contribute to mass bias in an uncontrolled way.

2) Take mass spectra of each sample endeavoring to keep all experimental condi-
tions canstant.

As much as possible keep all aspects of the measurement constant. This
includes sample preparation, instrument settings, and data analysis. Also, mea-
surements should be made contemporaneously to keep any variables that change
over time constant. These variables could be sample preparation conditions, for
example, water absorption into samples or solvents, or time drift in instrument
settings.

3) Usealaboratory balance to make carefully controlled gravimetric mixtures of two
samples in several well-spaced ratios.

The balance needs to be calibrated and accurate to about least 0.1% of the total
mass measured, Any gravimetric errors are carried through the entire analysis.
Making stock solutions and then mixing solution volumes can be more accurate
than repeated weighing of small amounts of material. Generally, as a practical
matter, final weights must be at least 25 mg.

4) Take mass spectra of each mixture using the same experimental conditions as
used for the pure components.

The instrument settings may not be optimal for the mixtures, but they must be
held constant to satisfy the self consistency of the method. If the experimental
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conditions are such that some oligomers of the mixture have disappeared (as
compared to the pure component measurements), then compromise experimen-
tal conditions must be found. If this occurs, then it suggests strong mass bias in
the measurement.
5) From the mass spectra, calculate the mass-average molecular masses of the pure
components and of the mixtures.

Be careful in the application of “black box" software for this step. Unseen
algorithms for data processing can lead to substantial errors in converting the
mass spectrum to a MMD. Smoothing can introduce mass bias into a spectrum
that is not a product of the measurement itself but of the data analysis method
applied.

6) Use Eq. (8.22) to iteratively calculate the minimum value of 55, at a given f.

The most direct way to do this is to setup a simple spread sheet, Start with# =1
and change it systematically by small steps until a minimum in 55, is found. I[f #is
between 0.5 and 2 then the possibility exists that the MM D can be corrected. If not,
the results should be treated with caution, and the error is too great to be corrected
using only the linear term in the Taylor expansion. See Ref, [104] for an example of
computer code to make this calculation.

7) Choose My, a mass near the center of the average molecular masses of the two
components,

The exact choice of M, is not critical; however, the correction to the distribution
will be more accurate near M, and less accurate the farther any given oligomer
mass is from My, If a certain mass range is more critical, then choose M, at the
center of that range.

8) Use Eq. (8.27) to iteratively calculate the minimum value of 55,510 at a given
Q/ko.

Again see Ref. [104] for computational assistance.

9) Use Eq. (8.28) and the value for Q/kg to correct the ion intensities 5, in the mass
spectrum to arrive at a new MMD.

Individual oligomer intensities may increase or decrease depending on whether

they were undercounted or overcounted in the mass spectrum.

At this stage, the analyst should have a good feel for the degree of mass bias in the
mass spectra, Furthermore, if this bias is not too large it can be corrected using the
methods outlined in this section. If the bias is large, higher order terms in Eqgs. (8.23)
and (8.24) need to invoked; however, methods to determine the values of the higher
order coefhcients have not been created. This 15 a fruitful topic for future research.

8.7.1.5 Determination of the Absolute MMD

The procedures outlined in this section do not provide systematic uncertainties for
the corrected values. The corrected mass spectrum is closer to the true MMD, but just
how close is it? In order to determine this, the following procedures must be invoked.
These procedures require distinguishable or nonoverlapping mixtures as well as
numerical instrument optimization to determine the systematic uncertainties inher-
ent in the instrument. This requires extra effort on the part of the analyst, but an
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MM D with both type A (random) and type B (systematic) uncertainties is a very useful
calibration standard for MS and any other molecular mass measurement technique.

Starting with Eq. (8.11), §;= k;n;, if an assumption is made that k15 a slowly varying
function of i (hence also of m;), then a Taylor expansion around a mass peak near the
center of the MMD, termed My, can be made. The center of the mass spectrum is
used to assure that the function is changing as little as possible over the entire width
of the MMD. Then

S¢ = koni + Q(m;— My )n; -+ higher order terms in my; {8.29)

Here Q and k; are functions of M, as well as of all the experimental conditions: the
instrument parameters, the sample concentrations, and the sample preparation
method. (By kg, itis not meant the k of the zeroth index oligomer but rather the zeroth
derivative of the Taylor expansion). In the experimental procedures referred to later,
once the instrument parameters and experimental preparation methods are opti-
mized, every attempt was made to keep them constant to insure experimental
reproducibility. (Later it will be shown how variation in the machine parameters
can affect the variation of Q/k, and thus the type B uncertainty.)

The implications of the model embodied in Eq. (8.29) will now be explored and it
will be shown how small linear shifts of the calibration constant Q over limited mass
ranges effect quantities derivable from mass spectral data. First the total signal, the
total detected mass, and the mass ratios of mixtures will be considered, and it will be
shown how these quantities relate to the true MMD of the analvte.

The total signal, Sy, from the polymer is given by

5T=Zsj=knzn,-+Q[M2—Mﬂ]Zm (8.30)

while the total mass of polymer detected, G, is given by

G = Z mS; = koM5 Y i+ QMY(MD— M) Z m; (8.31)

where M? and M® are defined in Eqs. (8.32) and (8.33), respectively, and are the true
number average and mass average relative molecular masses,

R
M = 2 (8.32)
Zl'ni
m.I:-i,
MO == (8.33)
M,
DY = X :
PD v (8.34)

(8.35)
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0 _ M-

PD! = M_w (8.36)
where m; is the mass of a discrete oligomer, and #, is the number of molecules at the
given mass m, The experimental moments from mass spectrum are defined as M,
M,, and M_, while the true values are given as M", M” and M!. PD,, defines the PD
index that is a measure of the breadth of the polymer distribution. When PD,, iz equal
to one (i.e., in statistical terms the variance of MMD is zero), all of the polymer
molecules in a sample are of the same molecular mass and the polymer is referred to
as monodisperse,

Multiplying Eqs. (8.32) and (8.33) together gives

M“Mu Zm‘}'n

DM

Then taking the ratio of Eqs. (8.30) and (8.31), one obtains

- 2 m,-.S,- (8.38)

(8.37)

with the result that
ex |:1+{Qﬂ;'ku:|m Mﬂ}
P =
e {{1+ (O k) (MY—M,) (8.39)

where M, is the experimentally measured M?.
For use later in this section by the same algebra is obtained:

2.
Mo = 25 (8.40)
5
with the result that
e (14 (Q/ko)(M2—My))
e e L A

All higher moments may be obtained in a similar way and have a similar form.
Equation (8.41) gives by simple division:

_ o 1+{QJ"II'II{9J{.M&_MD}}
ﬁﬂ‘Mﬁ&fm&mM&ma (8.42)

which yields

0 ) EQ.J'Hll':DH":ﬁ{PDw_” }
MY = M™PL1— EX A3
W=y {' 1+ (Q/ko) (M2—My) LA

Equation (8.43) states that the deviation of the mass moment measured by mass
gpectrum from the true mass moment is a function of the PD (arising from that
moment) divided by a correction term arising from how far that moment is from
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the mass My around which the Taylor expansion to obtain ky and Q is centered. In
Eq. (8.43), the reader should notice that if M? is close to My the term in
(Q/ko)(M2—My) is small compared to 1 and the result depends only on the PD
of the polymer,

Since the method depends on gravimetrically mixing analytes to obtain estimates
of Qfky, it is necessary to consider the equations relating to these mixtures.
Equation (8.31) states that the MS-measured total mass, G, is proportional to the
true mass, Gj:

Gi=M) m (8.44)

Gr' = koGH{1+ Q/ko( M}, — My)} (8.45)

Consider now a mixture of the chemically identical analytes with functional groups
having different masses, or two different molecular mass analytes having distribu-
tions that are well separated, such that each oligomer in the mass spectrum can be
assigned to a specific polymer in the mixture. Call them analyte A and analyte B that
will make up the components of the gravimetric mixtures. Then the measured ratio of
the masses of each is given by

{B.40)

foﬁl _ k@AG-D[-_aL {1 T (Q;&.-"lknﬁ :":*"'d'g-.q_Mu}'}
Gra  konGhy | 1-+(Qn/kos )(Mig—Mo)
Naote that the expansions are performed for both polymer distributions A and B
around the same M. Also note Qu. QOp. kpa. and ko are all functions of M. Thus,
from Eq. (8.46):

Gra _ G {1 +(Q/ko) (Mg, —-Muv} —

Grs  Gie L1+ (Q/k)(M{—Mo) |
Simple algebra leads us to

Gra _ G { (Q/ko) (M}, — M) }

e 1+ 8.48

Gra Gin 14 (Q/ ko) (M) —Mo) (8.48)

What is measured are Gy /Gyy from MS versus GY, /G, gravimetrically deter-
mined. The calculated slope is

(Q/ko) (M}, —Mpy) }

1 =<1+
Hope { 14 (0 ko) (M5 —Mo)

(8.49)

As before with Eq. (8.45), the reader should notice if M, is close to My, the term in
(Q/ ko) (M, —My) is small compared to 1 which means the slope depends only on the
difference (M), — M} ) and, thus, (Q /ky) maybe easily calculated. Finally, remember

that the gravimetric calibration of the signal axis using chemically identical analytes
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can avoid the issues pertaining to the uncertainties arising from ablation, ionization,
and detection. However, uncertainties in sample preparation as well as data analysis
repeatability and consistency still affect the gravimetric calibration techniques.

8.7.2
Quantitative MMD Measurement by SEC/ESI-MS

Today, SEC is used as the method of choice for the determination of MMDs. The
method suffers a number of significant drawbacks. First, it requires calibration with
polymer standards whose molecular weights need to be determined by independent
techniques [107]. For many polymer classes, well-characterized standards are not
available. In these cases, universal calibration, heavily relying on the accuracy of
Mark-Houwink parameters and the validity of the Flory-Fox equation [108-112] or,
alternatively, online calibration by light scattering and viscosimetric detection have
to be employed, which can lead to errors in the MMD of up to 30% [100].
Chromatographic band-broadening further deteriorates the SEC results, with an
especially strong impact on the apparent MM D of polymers exhibiting sharp peaks or
shoulders as in the case of distributions derived by experiments aimed at the
determination of kinetic rate constants [113, 114].

8.7.2.1 Exact Measurement of the MMD of Homopolymers

Barner-Kowollik and coworkers have recently shown that by employing SEC with
online concentration detection and using ESI-MS for an internal mass calibration,
very accurate MM Ds of synthetic polymers can be determined [102]. In the employed
chromatographic setup [115, 116] (see Figure 8.11), a concentration-sensitive RI
detector and the electrospray mass spectrometer are coupled to the chromatographic
effluent of a size-exclusion column in parallel.

800 x 0.10mm [ — A

THF 0.3

— S @

Capillary § -

400 = 0.05 mm 0.03

MeOH
(Nal 100 uM)

Capillary
300 = 010 mm

Figure 8.11 Chromatographic setup employed for coupling the concentration-sensitive Rl- andor
UV detectors and the ESI-MS to the effluent of an SEC column in parallel. Numbers indicate flow
rates in milliliters per minute.
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The method accounts for the individual strengths and hmitations of both detectors
by deriving the absolute polymer concentration solely from the Rl-detector trace, The
electrospray mass spectrometer is used only in its ability to accurately measure the
concentration profiles of the individual oligopmers eluting from the chromatographic
system for further processing. No use is made of MS to derive absclute concentration
data. The elution profiles of the individual oligomers derived by MS contain accurate
retention time information. This allows for a precise calibration of the SEC retention
time dependence on chain length. A calibration can be derived without additional
knowledge of the polymer class or any other physical assumptions as long as the
polymer molecule is compatible with ES1. In addition to the position in time, the exact
shape of the elution profile can be derived from online ESI-MS, which allows the
characterization of the chromatographic band-broadening function as well as correc-
tions to be made for band-broadening effects in the derived MWDs.

The influence of chromatographic band broadening is described mathematically
by the discrete form of Tung's convolution equation (8.50) [117]. The SEC-trace, Sy,
recorded by a detector with a linear mass concentration response (RI detector) is
derived by the convolution of the mass-weighted MMD w, with the instrumental
spread and calibration function, Gy, .. Here Vg and n are the chromatographic
retention volume and the polymer repeat unit number, respectively.

S=Gxw or Sy, =) Gy,-w, (8.50)

Figure 8.12 provides a graphical representation of the process described
by Eq. {8.50): The individual elution profiles of each oligomer of a certain chain
length —instead of being negligibly narrow spikes or delta peaks — feature a somewhat
Gaussian peak shape. The Rl-detector trace is obtained by a summation over the
elution profiles of all individual oligomers, weighted by their respective concentra-
tions. A band-broadened size-exclusion chromatogram is hence much like a blurred
picture, where the detailed patterns are partially hidden, as each pixel is smeared out
over a larger area determined by the point spread function of the out-offocus lens.

If the functional form of Gy, , is known, a number of deconvelution approaches
may be applied to derive the reconstructed MMD, w,,. Unfortunately inversion of

Gy MMD

oK &

Bl signal

Figure 812 Graphical representation of the
convolution process in SEC. The concentration
of each individual oligomer molecule in the
maolecular mass distribution is multiplied with
its elution profile stored in the instrumental

.
-

Va n

calibration and broadening matrix Gy, -

The individual weighted oligomer profiles are
summed to result in the recorded Rl-detector
trace.
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Eq. (8.50) is an “ill-conditioned” problem and direct solution of the convolution
equation, for example, by linear regression leads to an amplification of instrumental
noise resulting in a highly oscillatory behavior of w, with possibly negative values,
lacking physical significance [118, 119]. Sophisticated numerical approaches there-
fore have to be used for the inversion of (8.50). Today the most widely used and most
effective deconvolution approaches are based on singular value fltering and the
application of regularization filters [119, 120]. Maximum entropy (MaxEnt) regular-
ization has been successful in a number of related scientific problems in image
reconstruction [121, 122] and spectroscopy [123]. It has been argued that use of the
Shannon entropy [124] criterion as information constraint is the only consistent way
of restoring a probability density function from noisy data [125, 126].

As can be seen in Figure 8.13, online ESI-MS can be used to extract the
chromatographic elution profiles of individual oligomers and thus to gain calibration
data (retention volume vs. chain length) together with band-broadening information
for each individual eluting oligomer. This data can in turn be used to construct Gy,
without the need for additional information, as long as the extracted ion chromato-
grams provide a correct representation of the actual elution profiles, Deconvolution
of Eq. (8.50) will directly yield the absolutely calibrated MMD, corrected for chro-
matographic band-broadening effects. In our approach, a MaxEnt-based algorithm
was employed in order to compute w,,. At the heart of this approach lies a constrained
nonlinear optimization problem (8.51). The general derivation of the objective
function based on Bayesian probability theory can be found elsewhere [127]. The
employed algorithm proceeds by calculating the theoretical Rl-detector trace from a
trial MMD. This concentration trace is then compared against the measured RI-
detector trace. The software iteratively manipulates w to obtain the closest possible fit
to the measured trace. The total squared sum of error (”) is used to assess the
agreement between the measured and the theoretical mass concentration trace. Ina
typical least squares approach, the single objective would be to minimize *, yielding
w,, as the maximum likelihood estimator of the MMD. However, as mentioned

'
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Figure 8.13 Extracted ion chromatogram recorded at mjz = 1949.5 Th, effectively reproducing to
the elution curve of a hydrogen-functional MMA oligomer of chain length, n=77 in charge state,
7= 4 (dots), together with a fitted EMG peak profile {grey curve).
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before, such an approach would lead to an excessive amplification of noise from the
Rl-detector trace because in SEC the individual oligomers elute very closely to each
other in time, so that many individual elution profiles overlap. This feature of SEC
complicates an accurate calculation of the individual contribution of each oligomer to
the RI-detector trace and leads to great covariance of the oligomer concentrations in
the obtained MMD. The problem is alleviated if a regularization filter— in the current
case MaxEnt regularization — is imposed on the estimated MMD [119]. An additional
entropy term, S [124-126], introduced in the objective function by means of a
Lagrange multiplier, 4 ascertains that the MMD i, is as smooth as permitted by some
limiting criterion [127]. Nonnegativity constraints in w, and first-order equality
constraints of the total area of W, and 5y, can further stabilize deconvolution.
Quadratic or Thikonov regularization employing these constraints also yields very
good results, while the resulting quadratic optimization problem is less complicated
to solve algorithmically.

w, = argmax(Q—4i-¥") with w,>0 ¥ n (8.51)
2
2 32 =2 i (8.52)
Wi g
Q=) w,log(w,) (8.53)

Figure 8.14 shows the deconvoluted absolute MMD and the chromatographic peak
parameters for a narrow-molecular weight PMMA standard, having a manufacturer-

{ﬂlzs ) 2 (b)
1 —— __ char 0.03;
) o el e
c 24
E
T !
221 b\
20 ' boreeemey, : S .
25 75 125 175 0 50 100 150 200
repeat unit (n) repeat unit (n)

Figure 8.14 (a) SEC retention time ([t} as a  different charge states. (b) Deconvoluted
function of the repeat unit length of a narrow  molecular mass distribution i, obtained fram

PMMA standard with manufacturer-specified MaxEnt data processing (sticks) and molecular
DF,, = 102, as derived from online ESI-MS mass distribution ebtained from conventianal
{symbuols). As can be seen, there is an excellent  calibration using M5 retention time data
overlap of the calibration data determined {curve].

from chromatographic peaks recorded in
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specified weight-averaged degree of polymerization (DP,,) of 102 and polydispersity
index (PDI) of 1.03. Linear retention time data free from outliers was obtained for this
sample (see Figure 8.14a), In many cases, ions of adjacent charge state appear in the
mass spectrumn for oligomers of the same chain length. Peak data were extracted for
both charge states in these cases and the data is superimposed in Figure 8.14. There
was excellent agreement between retention volume data from different charge states
as was previously reported by Simonsick et al. [115]. Furthermore, for repeat units
corresponding to the concentration apex of the MMD, no concentration-induced bias
in the retention times is seen for the analyzed sample.

A comparison of the deconvoluted MMD with that obtained from a conventional
calibration approach converting the retention volume axis to a molecular weight
axis by using only the retention time information without band-broadening
correction (Figure 8.14b, red curve) shows that for these narrow standards, the
MaxEnt procedure can effectively account for chromatographic band broadening.
As can be taken from, molecular weight moments for this standard obtained from
SEC/ESI-MS are about 5% lower than specified by the manufacturer and deter-
mined using SEC calibrations which can be traced back to light-scattering mea-
surements as absolute calibration source. The number-averaged degree of poly-
merization of the 10 kg mol ' PMMA standard was calculated independently using
'"H-NMR. This technique is an absolute, calibration-free means of determining
DP,. From three consecutive measurements, a DP, =94.5 + 1% was calculated,
which agrees with the average value obtained by SEC/ESI-MS (DP,, = 93.4) within
its standard deviation.

8722 MMD of the Individual Components in Mixtures of Functional Homopolymers
The great potential of MS in polymer analysis lies in its ability to measure the
molecular weight of individual oligomer molecules with an accuracy that allows both
the unambiguous identification of the chemical identity of the polymer and its end-
groups, as well as an accurate molecular mass calibration of the SEC system. This
strength of MS can be used to elucidate the individual MMDs and absolute
concentrations of components in mixtures of functional homopolymers. Knowing
the identity of the individual polymer species together with their concentrations
provides both the synthetic chemist and the polymer kineticist with new toolsets for
the characterization and optimization of polymerization processes.

The current approach features a direct extension of the method of absolute
molecular weight derivation for pure polymers (described in Section 8.7.2.1) [102]
to mixtures of individual polymer spedies [103]. An assumption is made that ESI-
MS can be used to successfully derive the relative concentrations of polymers
eluting from the SEC-column, as long as they are of the same chain length. In
other words, it is assumed that there is no significant end-group bias on
ionization efficiency. Furthermore, it is assumed that influences of the polymer
end groups and the chain length of the polymer on the Rl increment, dn/dc are
negligible. As demonstrated by a number of authors, this assumption is generally
valid except for low-molecular weight oligomers of less than about 20 repeat
units [128-130].
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Figure 8.15 Flowdiagram ofthe principaldata  arrive at the deconvoluted total molecular mass
processing approach. The instrumental distributions wy,,. Weighting of w,,, by the areas
calibration and band-broadening matrix Gy, under the peaks of the individual functional

derived by anline mass spectrometry as well as  oligomers A, ., yields w;.
the Rl-detector trace 5., are processed (o

The MMD of a single species 1, is thus calculated by simply weighting the net
MMD w, with the ratio x; ,, . of the areas under the individual functional oligomer
peaks, 4, ,, . of the species to the total area of all functional oligomer elution profiles at
the fixed charge state =z and repeat unit number n (see Figure 8.15 — “weighting by
peak areas”).

Al’.lr_‘

E—'Alnz {8.15)

Wine = Wy '_ﬁ.n:z *Xin,z with Kinz =

This approach is possible even in the presence of strong molecular mass influ-
ences on the ionization efficiency, as a quantitative rationing is carried out only
between the abundance of different end-group-carrying polymers of the same repeat
unit. Such a methodology is feasible as long as there is only a negligible effect of
the end group on ionization efficiency in the electrospray source. Furthermore, all
species with the same repeat unit need to arrive at the mass spectrometer at the same
retention time, so that ionization occurs in the same chemical background. The latter
assumption is valid in most cases, as the influence of the end group on hydrodynamic
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Figure 8.16 Reconstructed and original mass-weighted molecular mass distributions for a ternary
1:1: 1, mixture of hydrogen-functional {H-H}, bromine-functional (BriB), and dithicbenzoate
functionzl [CPDE) PRMMA,

volume is typically negligible when compared to the polymer backbone. To account
for possible end-group bias, a correction factor f; , . may be introduced, Because of a
lack of a proper functional description of the ionization process, negligible end-group
influences were assumed in the current approach (f=1). A validation of this
assumption as well as of the general applicability of the proposed method is given
in the following paragraph.

Three functional polymer species were used to validate the developed method (see
Figure 8.16): Commercial standards of PMMA synthesized by anionic group transfer
polymerization and carrying only hydrogen as end group are denoted by PMMA
{H-H). These standards were mixed in different weight ratios with PMMA synthe-
sized by atom transter radical polymerization carrying a bromine end group denoted
by PMMA(BriB) and PMMA(CPDB) synthesized by cyanoisopropyl dithiobenzoate-
mediated reversible addition fragmentation chain transfer polymerization.

The original molecular weight distributions of each species together with the
reconstructions from a 1:1:1,, mixture of these species are given in Figure 8.16.
Generally, a good agreement was attained between the individual original molecular
weight distributions and those that were reconstructed. The average degrees of
polymerization of PMMA(CPDB) are overestimated by around 8%, whereas the
degrees of polymerization of PMMA(H-H) and PMMA(BriB) are underestimated by
around 2% and 5%, respectively, Agreement between the original and reconstructed
area under the distribution (total mass concentration) is better, featuring a maximum
deviation of 5%.

The roughly 5% lower molecular weight averages of the original distribution of
PMMA(H-H)compared to the manufacturer-stated values are in agreement with earlier
findings. Any systernatic error in the reconstructed molecular weights islikely to be due
to resolution limitations of the mass analyzer toward higher molecular weights, as well
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as to possible unrecognized side products in the polymer standards and adduct
formation with salt and solvents. Baseline subtraction in the oligomer peak elution
proved to be difficult in some cases, due to background suppression and unresolved
peaks, therebyinfluencing correct calculation of the peak arearatios. The accuracy of the
current method especially in cases where there are only minor amounts of one species
presentinamixture can beimproved. Properbaseline correctionand safeguards against
mass spectral overlap are thus important issues to be addressed in further investiga-
tions, in order to further extent the dynamic range and mass range of the method.

8.7.3
Comparison of the Two Methods for MMD Calculation

The methods presented in Sections 8.7.1 and 8.7.2 — although being based on two
conceptually very different approaches - provide for the first time a means to measure
the MMD of synthetic polymers with unrivaled accuracy. In the accessible molecular
weight range of up to several tens of kilograms per mole, depending on instrumental
resolution, these methods therefore pose serious alternatives for the molecular mass
measurement of synthetic polymers by MS5.

The typical areas of application of each method should be noted: The method based
on MALDI-MS with internal calibration together with a very thorough error analysis
developed at the NIST provides for the first timne a tool to generate truly accurate
molecular mass standards where the molecular mass uncertainties can be ultimately
traced back to basic gravimetric and volumetric measurements, The polystyrene
MMD standard, SRM 2881 is the final product of this effort. The method furthermore
allows guantitative assessment of the mass bias observed in polymer analysis not just
by MALDI-MS but by chromatographic and other methods as well. The determina-

tion of the absolute MMD opens the door for many experiments where the shape of

the MMD plays a critical role in polymer behavior as in viscosity and rheology.

In the SEC/ESI-MS method on the other hand, a characterization of the molecular
mass bias is not attempted or deemed possible. The method relies on the online
internal molecular mass calibration of SEC, using MS only in its potential to
determine the molecular weight and elution times of macromolecules with high
accuracy and regardless of the polymer chemical identity as long as ionization can be
achieved. Any data on the concentration of macromolecules eluting from the SEC
column is obtained from a concentration-sensitive detector (an Rl detector in the
current case), Although relying on a couple of assumptions, this method is deemed
to be especially useful when fast but at the same time accurate determinations
of MMDs and compositions are required of many polymer species of differing
chemical makeup (e.g., in an industrial laboratory setting or in high-throughput
experimentation),

The availability of these two methods, which each rely on physically very different
approaches to ultimately provide the same molecular mass information, allows an
assessment of their accuracy by direct comparison. Figure 8.17 shows the number
fraction of styrene oligomers against repeat unit length for SRM 2881, as determined
by the NIST MALDI-based method (circles with 9526 confidence interval) [101] and by
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Figure8.17 The MMD ofthe NIST polystyrene  MMD determined by an SEC/ESI-MS analysis
rmolecular mass standard SRM 2887, The NIST-  with data treatment by the MaxEnt method

certified humber fractions [circles) were {triangles) [102] reveals the excellent agreement
determined by MALDI-MS using an internal between the molecular mass data obtained
calibration procedure of the mass spectrometric  from these two, conceptually very different
intensity axis [101]. A comparison with the methods.

atriple repeat measurement of the same standard employing SEC/ESI-MS (triangles)
with ionization by AgBF, [102).” The excellent agreement of the MMDs serves as
proof of the high accuracy of molecular mass data obtained from each of these two
methods. This is further supported by an independent measurement of DP,, by "H-
NMR in the case of the SEC/ESI-MS approach [102].

8.74
Simple Methods for the Determination of the Molar Abundance of Functional
Polymers in Mixtures

The above described methods have highlighted approaches that can be employed -
via the online coupling of SEC and ESI-MS — to arrive at exact mass distributions of
components (i.e., individual chain termini differentiated chains) of homo- and
copolymers, allowing for the extraction of absolute concentrations of individual
chains. While these approaches are — in terms of accuracy — very reliable, they are also
associated with a considerable instrumental and mathematical complexity. In the
following text, a method is presented that allows to quantitatively evaluate mass
spectra with regard to individual chain distributions with minimal computational
demand, while providing satisfactory results. In an ideal scenario, one would have

3) Mote that the error bars of the MALDI-derived MMD are the 95% confidence intervals, based on a
careful assessment of all errors including those in sample preparation {weighting, volumetric
measurements, and spotting), whereas the SEC/MS 95% conlidence intervals are based on a triple
repeal measurernent of a single standard solution and therefore only reflect repeatability of the
analytical data acquisilion process.
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mass spectra at hand that display no mass bias at all. In reality, however, there may
always be a certain amount of mass bias present. Let's assumne a scenario where the
ratio of two components in a polymer mixture (i.e., two chain distributions with
different yet well-defined end groups) is to be quantified ({the presented approach can
readily be expanded to more components). In the most simple and straightforward
approach for quantitatively evaluating mass data, the height of two peaks that do not
show isobaric overlap (i.e., P, and P, the species of interest), Ah"', is evaluated in
each repeat unit. As the height of each nonoverlapping single isotopic peak (alter-
natively the integral could be employed) is proportional to the number of molecules
corresponding to the associated mass, the individual peak heights can be employed to
arrive at the mole fraction of one of the species, F, via Eq. (8.55). Note that Fis given as
F(i), as it can be evaluated in every repeat unit, with i being the chain length to which
the repeat unit corresponds.

AhP((D

Fafen
= AR AR

{8.55)

While Eq. (8.55) can be a valuable tool as F(i) = F indicates the absence of mass
bias [131), it does not take into account any potential chain length-dependent
ionization mass biases other than evaluation of every repeat unit. However, a further
refinement allows for the elimination of the mass bias. A useful approach was taken
by Giingzler et al, in previous quantitative mass spectrometric evaluations [132, 133];
Let G{i) be the ratio of the peak heights of P, and P,¥i. This ratio may directly
be plotted against chain length, i, and yields identical information to F(i) as F(i) = G
(i)-(G(i) + 1)~". Now define G'(i.i—1), G"(i.i + 1) in a similar manner to G(i),
however taking the height of P;(Ah"2) from one repeat unit higher (Eq. (8.57)) or
lower (Eq. (8.58)). Thus, the vectors G(i), G'(i.i— 1), and G"(i,i + 1) are obtained.

. AhP(D)
s 2R (8.57)
ARP:(i—1)
p o ARP() :

In a subsequent step, G(i}, G'(i,i — 1), and G"(i,i + 1) are individually averaged ¥ i,
yielding the average values (G}, (G'), and (G"). {G) corresponds to the average ratio
within the same repeat unit, {G') corresponds to the average ratio within two repeat
units with the second repeat unit being at smaller maolecular weights, and (G")
corresponds to the average ratio of within two repeat units with the second repeat unit
being at larger molecular weights. With (G}, (G'}, and (G") at hand, one can plot
these values against Am/z, that is, the difference in Th between the positions (i — 1), 1,
and (i + 1). The y-intercept (Am/z=0) of such a plot yields {G)*"/*", which
represents the mass bias free ratio of the two products P, and P; in the polymer
sample. In systems where the mass bias is negligible, all the evaluation procedures,
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that is, averaging F(i), G(i), and calculating (G)*™*" should give (near) identical
results, providing a guide toward assessing whether more complex evaluation
procedures — as detailed in the previous sections — are required. In a range of
systems, the above approach has provided satisfactory results [131-133].

8.2
Conclusions and Outlook

The current chapter has provided an account of the contempaorary status of the field of
automated MS data processing in synthetic polymer chemistry. Espedally in the
recent couple of years, some important advances have been made in fields including
copolymer compositional characterization, the determination of accurate MMDs,
and the automated interpretation and integration of polymer MS data. The increasing
use of hyphenated techniques including MS/MS [88, 96, 134-136], IMS [137, 13§],
and LC-MS [76, 103, 139, 140] lead to the generation of large spectroscopic datasets.
The necessity of automated techniques for an efhicient processing of these large and
information-rich data in MS has been realized at an early point in the related fields of
biomacromolecular analysis and proteomics. Fragmentation databases and highly
sophisticated automated processing tools form an integral part of the MS5-based
proteomics today. Trends toward the creation of fragmentation databases to aid
the interpretation of MS/MS data are seen also in the polymer analysis community
[94, 95, 141], but the amount of freely available software tools is presently very limited,
with the only example being Polymerator by Thalassinos et al. [95]. It is no question
that the coming years will see the development of further sophisticated computational
tools to aid the polymer science community. The synergies with biomacromolecular
MS should be realized and the already (freely) available software tools [3, 4, 78] should
be customized to synthetic polymer applications and further exploited.
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