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Abstract— The intended applications of automatic face recog-
nition systems include venues that vary widely in demographic
diversity. Formal evaluations of algorithms do not commonly
consider the effects of population diversity on performance.
We document the effects of racial and gender demographics
on the accuracy of algorithms that match identity in pairs
of face images. In particular, we focus on the effects of the
“background” population distribution of non-matched identities
against which identity matches are compared. The algorithm we
tested was created by fusing three of the top performers from
a recent US Government competition. First, we demonstrate
the variability of algorithm performance estimates when the
non-matched identities were demographically “yoked” by race
and/or gender (i.e., “yoking” constrains non-matched pairs to
be of the same race or gender). We also found a shift in the
match threshold required to maintain a stable false positive
rate when demographic control scenarios varied. These results
were verified with two independent data sets that differed
in demographic characteristics. In a second experiment, we
explored the effects of progressive increases in population
diversity on algorithm performance. We found systematic, but
non-general, effects when the balance between majority and
minority populations of non-matched identities shifted. Finally,
we show that identity match accuracy differs substantially
when the non-match identity population varied by race. The
results indicate the importance of the demographic composition
and modeling of the background population in predicting the
accuracy of face recognition algorithms.

I. INTRODUCTION

The appearance of a face is determined by its gender,
race/ethnicity, age, and identity. The goal of most face
recognition algorithms is to identify someone as a unique
individual. Often this test requires the algorithm to match
the identity of faces between images that may vary in the
quality or nature of the viewing conditions. The diversity of
faces in the real world means that face recognition algorithms
must operate over a backdrop of appearance variability that
is not related to an individual’s unique identity. Thus, face
recognition algorithms intended for real-world applications
must perform predictably over changes in the demographic
composition of the intended application populations. The

most likely application sites for algorithms include airports,
border crossings, and crowded city sites such as train and
metro stations. These locations are characterized by ethni-
cally diverse populations that may vary by the time of year
(e.g., tourist season) or even by the time of day (e.g., flights
from the Far East arrive in the morning and European flights
in the afternoon).

The performance of state-of-the-art automatic face recog-
nition algorithms has been tested extensively over the last
two decades in a series of U.S. Government-sponsored tests
(e.g., [1]). Measures of algorithm performance in these tests
provide the best publicly available information for making
decisions about the suitability and readiness of algorithms
for applications of importance to security and surveillance.
Traditionally, these tests have emphasized measuring perfor-
mance over photometric conditions such as illumination and
image resolution [2], [3], [4], [5]. They have also concen-
trated primarily on the quality of the “match” (i.e., similarity)
between images of the same individuals, considering this
to be the critical factor determining algorithm performance.
When the degree of similarity between matched identities is
high, as is the case when photometric factors are controlled,
the algorithm is expected to perform well.

Much less consideration has been given to the distribution
against which matched identities are compared. To digress
briefly, all measures of the performance of face recognition
algorithms rely both on the distribution of data for the
population of identity matches (i.e., pairs of images of
the same person) and on the distribution of data for non-
matched identities (i.e., pairs of images of different people).
By definition, the identity match population contains image
pairs of the same race and gender. The non-matched identity
population, however, may be structured in several ways. To
date, in most evaluations, this distribution consists of pairs
of faces that have different identities and which may, or may
not, be of different races or genders.

More formally, identity match decisions (same person or
different people?) are generally based on a computed simi-



larity score between two face images. If this score exceeds a
threshold similarity score, the faces are judged as an “identity
match” (sometimes referred to as an “identity verification”).
Otherwise, the images are judged as non-matched identities.
False accept errors occur when the computed similarity score
between a pair of face images exceeds the match threshold.
In most applications, this threshold is set to achieve a low
false alarm rate (commonly on the order of 0.001).

As noted, in many formal evaluations of algorithms,
the distribution of similarity scores for the non-matched
face images includes face pairs that may differ in gender,
race/ethnicity, and age [1]. The inclusion of these categori-
cally mismatched image pairs may lead to an over-estimation
of an algorithm’s ability to discriminate the identity of face
pairs. In other words, when non-match face pairs differ on
categorical variables such as race and gender, some part of
the performance of the algorithms may be due to the easier
problem of discriminating faces based on race or gender, than
to the more challenging problem of recognizing individual
face identities.

In this study, we focus on the problem of how the
demographic composition of non-match populations affects
estimates of algorithm accuracy. Although demographic vari-
ables have been shown to affect both human ([6], [7], [8],
[9]) and machine ([10], [11]) accuracy recognizing faces,
the effects of these variables in the non-matched identity
distributions have not been studied previously. The first goal
of this study was to document the effects of yoking non-
match pairs according to the categorical variables of race
and gender, individually, and together. By “yoking” we mean
controlling the demographic variables within a non-match
pair, such that both faces in the pair are of the same gender,
same race, or same gender and race. We also examine the
implications of demographic control of the non-match pairs
for the choice of a threshold for match/non-match decisions.
The second goal was to examine algorithm accuracy with
systematic variations in the proportion of a “second” ethnic
group in the non-match distribution. Finally, we measured
algorithm accuracy when the identity matches were of a
particular race and identity mismatches were from another
race. This was compared to the case when the match and
non-match distributions were of the same race.

II. ALGORITHM FUSION AND TEST PROTOCOL

In this section, we overview the algorithm and test protocol
common to all experiments. The source of data for these
experiments was the FRVT 2006 [1], a U.S. Government
sponsored test of face recognition algorithms conducted by
the National Institute of Standards and Technology (NIST)
(Details of this test and its results can be found elsewhere,
[1]). We focused on the uncontrolled-uncontrolled identity
match test in the FRVT 2006 (Stimulus Set 1). In that
test, algorithms matched identity in pairs of images taken
under uncontrolled illumination conditions. To demonstrate
the general nature of the problem, we replicated a subset
of our results with a second data set (Stimulus Set 2) that

Fig. 1. Example same-identity image pair for the uncontrolled-uncontrolled
identity matching task.

TABLE I
SUMMARY DEMOGRAPHIC INFORMATION FOR STIMULUS SET 1.

Ethnicity Total Female Male
Caucasian 716 318 398
Asian 264 121 143
Hispanic 26 10 16
Southern Asian 23 2 21
Middle Eastern 6 1 5
African-American 12 1 11
Unknown 41 16 21
Total 1088 469 619

differed substantially in demographical characteristics from
Stimulus Set 1.

1) Stimulus Set 1: The Notre Dame multi-biometric data
set [1] was the primary source of face stimuli for the test.
This dataset consists of 9,307 images of 570 individuals.
The images were photographed with a 6 Mega-pixel Nikon
D70 camera and were taken under uncontrolled illumination
conditions, either outside or in a corridor or hallway. An
example image pair appears in Figure 1 and the relevant
demographic breakdown of faces appears in Table I. (Recall
that multiple images of individuals are represented in these
lists).

2) Stimulus Set 2: The Sandia data set, collected at
the Sandia National Laboratory, consists of high-resolution
frontal face images taken under both controlled and uncon-
trolled illumination [1]. The images were taken with a 4
Megapixel Canon PowerShot G2. The average face size for
the controlled images was 350 pixels between the centers
of the eyes and 110 pixels for the uncontrolled images. For
comparison with Stimulus Set 1, the demographic breakdown
of faces appears in Table II, with additional detail given to
the age of subjects, which is more variable in this data set.

3) Algorithm Test Procedure: In the FRVT 2006 evalua-
tion, each algorithm computed a similarity score for all possi-
ble pairs of target and query images. This yielded a matrix of
similarity scores where element si,j represents the similarity
between the ith target and the jth query image. The goal
of the algorithms was to distinguish matched-identity image
pairs and non-matched identity image pairs using the similar-
ity scores. The performance of the algorithms was evaluated
at NIST using receiver operator characteristic (ROC) curves
that plot the proportion of false alarms (false accepts) against
the proportion of hits (identity verifications). Because face
recognition algorithms are required to operate at low false
accept rates, a second measure was also computed. This is



TABLE II
SUMMARY DEMOGRAPHIC INFORMATION FOR SEX, RACE, AND AGE IN STIMULUS SET 2. VALUES WITHIN A DEMOGRAPHIC CATEGORY ARE BY

PERCENT (NUMBERS ARE ROUNDED). IF THE NUMBER OF SUBJECTS IN A GIVEN CATEGORY IS LESS THAN 2.5%, THEN THE CELL IS LEFT BLANK.

Sex Race Age
Dataset Female Male Caucasian East Asian Hispanic 18-29 30-39 40-49 50-59 60+
Notre Dame 62 38 76 13 92 7
Sandia 55 45 64 21 15 11 23 35 18

the verification or hit rate at the 0.001 false accept rate. In
this paper, we will use both types of measures.

4) Algorithm Fusion Data: The experiments were con-
ducted using data extracted from a fusion of three of the top
performing algorithms in the FRVT 2006. The fusion of the
similarity matrices operated by first estimating the median
and the median absolute deviation (MAD) from 1 in 1023
similarity scores (mediank and MADk reference the median
and MAD for the kth algorithm). The fused similarity scores
were computed as the sum of each algorithm’s similarity
scores after the median has been subtracted and then divided
by the MAD. Thus, if sk is a similarity score for the kth

algorithm, and sf is a fusion similarity score, then sf =�
sk− mediank / MADk.
The fused data were partitioned subsequently into three

performance strata, representing face image pairs that were
matched at high, moderate, and low levels of performance.
This performance stratification has been referred to else-
where as the “Good, Bad, and Ugly (GBU) Challenge
Problem” [12]. In this study, we used face pairs from the
“bad” and “ugly” performance strata, which we will refer to
henceforth as the moderately difficult and the difficult face
pair conditions. The GBU challenge problem highlights the
broad range of algorithm performance when frontal image
matches are made. Of note, the pairs of identities used for
both the matched and mismatched data were held constant in
these strata. Thus, only the images of these identities differed
across the three strata. As such, the performance variations
among the three levels were due to photometric quality issues
(e.g., illumination) or to other extraneous variations in facial
expression rather than to recognizability differences of the
individual identities.

For any given matched identity pairing (i.e., images of the
same person), there were multiple similarity scores available
in all three performance strata. We used data from the
moderately difficult and difficult face pairs because they had
substantial error rates. In each condition, the fused algorithm
data consisted of a matrix of similarity scores between all
possible pairs of 1088 target face images and 1088 query
images. This included 3, 306 matched identity pairs and
1, 180, 438 non-matched identity pairs. Refer again to Table I
for the ethnic and gender composition of the identities in the
1, 088 target and query images used to create the similarity
matrix. As Table I makes clear, Caucasians and Asians are
the best represented races in the data set. We use only these
two races in the experiments we report in Sections IV and
V of this paper. For Section III, which used both Stimulus

Sets 1 and 2, all available races were considered.

III. DEMOGRAPHIC PAIRING IN NON-MATCH
IDENTITY DISTRIBUTIONS

The goal of these experiments is to document changes
in performance estimates for face recognition algorithms
as a function of the demographic characteristics of the
non-matched identity population. In the first section, we
show that performance estimates vary substantially when the
non-match population consists of face pairs that are yoked
by demographic groups (gender-only, race-only, gender and
race). In the second section, we examined the effects of de-
mographic controls on the appropriate choice of a threshold
cutoff point for assigning an identity match decision to the
face pairs.

A. Partitioning the Performance Estimation Process by De-

mographic Bins

We computed ROC curves in four ways that vary in the
demographic controls applied to the non-matched identity
distribution. Figure 2 shows the fusion algorithm’s perfor-
mance for the moderately difficult (left) and difficult (right)
face pairs. In the No Demographic Matching (No DM)
condition, we used all available pairs of mis-matched identity
to compute the ROC curve. Thus, non-match pairs could
be of the same or different gender and/or race. In the
Gender-matched Demographic (DM Gender Only) condition,
we used only same-sex pairs to compute the ROC curve,
although these pairs could be of a different race. In the Race-

matched Demographic (DM Race Only) condition, we used
only same-race pairs, although these pairs could be of a dif-
ferent gender. In the Gender and Race matched Demographic

(DM Gender-Race) condition, the non-matched pairs were of
the same-race and same-gender.

The graphs show a substantial decrease in performance as
the non-match distribution becomes more demographically
controlled. The difference in performance is further seen in
Table III, which shows the verification rates at the .001 false
alarm rate, as the demographic controls change. These rates
change markedly between the condition where there is no
demographic control and the condition where both gender
and race are controlled. Of note, the verification rate for
the difficult face pairs nearly doubles when the demographic
controls are removed completely. For the moderately difficult
pairs, the verification rate differs by 10 percent between the
no control and full control conditions.

Analogous ROC curves for the Sandia data set appear in
Figure 2. Similar to the results for Stimulus Set 1, the more



TABLE III
VERIFICATION RATE AT THE .001 FALSE ALARM RATE WITH VARIABLE

TYPES OF DEMOGRAPHIC CONTROL

Demographic Control Moderately Difficult Difficult
No DM .7925 .1515
DM Gender Only .7402 .1165
DM Race Only .7408 .1137
DM Gender and Race .6851 .0823

demographically controlled conditions showed decreased
performance. This finding bolsters our conclusions about the
effects of demographic control using an independent data set
with a markedly different demographic structure.

B. Estimating the Decision Threshold Based on Demo-

graphic Composition of Non-Matched Identities

In application-based scenarios, face recognition algorithms
use a threshold similarity score to determine if two face
images are the same identity or are different identities.
Threshold similarity scores are usually chosen to optimize
an operational criterion such as a false alarm rate. Typically,
thresholds for these automatic face recognition systems are
generally set to maintain a false alarm rate of 0.001. Here we
look at the implications of variable demographic controls in
the choice of a similarity threshold cutoff for identity match
decisions.

In Figure 3, we plot the false accept rate as a function of
threshold similarity score using the four demographic control
procedures described previously (No DM, DM Gender Only,
DM Race Only, DM Gender-Race). (Note that lower more
negative values indicate higher similarities.) The left graph
shows the function for the moderately difficult pairs and
the right graph shows the function for the difficult pairs.
The graph below shows the shift for the Sandia data set.
In all cases, the threshold that produces a false accept rate
of .001 is shifted for the different demographic control
conditions. Moreover, the full functions of thresholds are
similarly shifted. This indicates that to operate at a partic-
ular false alarm rate, threshold values must be set taking
into consideration the nature of demographic controls in
the non-match population. The results indicate that as the
demographic controls tighten, the similarity cutoff threshold
shifts to higher similarity scores.

IV. SIMULATIONS ON MIXED DEMOGRAPHICS

In real world applications, the representativeness of dif-
ferent demographic categories varies arbitrarily in different
population contexts, from nearly 100 percent of a single
majority race to various degrees of inclusion of (an)other
race(s). In this section, we systematically explore the effects
of progressive increases in population diversity on algorithm
performance. Again, we focus on diversity in the non-
matched identity distribution. We begin by measuring algo-
rithm performance when only one race of faces is included
in the non-match identity distribution (Caucasian). Next,
we gradually increase the numbers of faces of a second
race (Asian) in this distribution and reassess performance.

We refer to this case as the Caucasian-to-Asian condition.
In a second simulation, we reversed the process. In this
case, we start with only Asians in the non-matched identity
distribution, and progressively include more Caucasians.
We refer to this case as the Asian-to-Caucsian condition.
In the Caucasian-to-Asian condition, the matched identity
distribution contained only Caucasian face pairs. In the
Asian-to-Causian condition, the matched identity distribution
contained only Asian face pairs. (In Section V we explore
other combinations of the identity match distributions.)

Because of the imbalance in the number of Caucasian
and Asian faces available in the database, these two condi-
tions investigate different scenarios of population shifts. The
Caucasian-to-Asian condition simulates a population shift
that begins with a single race and ends with a population that
is characterized by a strong majority race and moderately
sized minority population (slightly over 10 percent). The
Asian-to-Caucasian condition simulates a population shift
that begins with a single race (Asian) and progressively shifts
to equal inclusion of the two races (Asian and Caucasian).
As additional Caucasian pairs are included, the population
continues to shift toward a majority of Caucasians and a
minority Asian population.

A. Methods

The stimulus set for this experiment included faces of the
two races that were best represented in the database: Asians
and Caucasians. (See Table I for a listing of numbers of
images of people of these races). Note that “Asians” in this
study refer to people from the Far East (e.g., China, Japan,
Korea). Recall that the original similarity matrix consisted of
10882 entries containing the similarity scores for all possible
pairs of the images. The data for this experiment consisted
of a subset of those similarity scores. Specifically, they were
the set of similarity scores from same-gender and same-race
Caucasian and Asian face pairs.

Identity Match Data. The identity match data for both
conditions did not vary across the simulations. For the
Caucasian-to-Asian condition, the similarity scores for all
possible pairs of Caucasian identity matches (n = 2110)
were used to create the identity match distribution. For the
Asian-to-Caucasian condition, the similarity scores of all
possible pairs of Asian identity matches (n = 866) were
used to create the identity match distribution. These numbers
represent approximately three images of each person in the
database, allowing for approximately three pairings of a
person with him/herself.

Identity Non-Match Distribution. For the Caucasian-to-
Asian condition, the simulation began with the non-match
distribution consisting of the similarity scores from all pos-
sible gender-matched Caucasian pairs of different identities
(n = 257, 418). For the Asian-to-Caucasian case, the sim-
ulation began with the non-match distribution consisting of
the similarity scores from all possible gender-matched Asian
pairs of different identities (n = 34, 224).

In both cases, face pairs from the other race, were added
into the non-match distribution, 1000 at a time, and the
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Fig. 2. ROC curves for the moderately difficult (left) and difficult (right) face pairs with different kinds of demographic control on the non-matched identity
pairs. Performance is best when the pairs are uncontrolled (No DM) and worst when the pairs are same-gender and same-race pairs (DM Gender-Race).
The gender-only and race-only controls yield performance in between the no-control and full control conditions. Analogous ROC curves for the Sandia
stimulus set appear in row 2 and support these findings using a database with different demographic characteristics.

verification rate at the 0.001 false alarm rate was computed.

B. Results

For completeness and clarity, before reporting the results
of the demographic mixing in the non-match distribution,
we first present the baseline performance of the algorithm
for the Asian versus Caucasian face pairs in Figure 4. The
top two panels indicate that algorithm performance for the
moderately difficult face pairs was marginally better for the
Asian faces (left panel). When the face pairs were difficult,
the performance was consistently better for the Caucasian
faces (right panel). We do not offer a strong interpretation of
this finding, because it is arbitrarily dependent on the three
algorithms chosen for the fusion. Two of these algorithms
were from Western countries and the third algorithm was
from a country in East Asia. In the bottom two panels of
Figure 4, we see a substantial shift in the similarity threshold
that produces a constant false alarm rate when the face race
differs. Again this indicates the importance of demographics
in the choice of a threshold value chosen to achieve a
constant false alarm rate.

The results from the demographic mixing of the non-

match distribution appear in Figure 5. The top lines in the
figure show the performance for the moderately difficult
pairs and the bottom lines show performance for the difficult
pairs. The blue lines show verification rate at 0.001 false
accept rate as Asian face pairs are added into the non-match
distribution for Caucasian face pairs. The red lines show this
rate as Caucasian face pairs are added into the non-match
distribution for Asian face pairs. As noted, the Caucasian to
Asian condition approximates a case where a minority race
gradually becomes better represented in the population until
it reaches its maximum, in this case at 13.3 percent of the
population.

Figure 5 shows that the effect of this gradual increase in
representation of the minority race is a steady decline in the
verification rate at the .001 false accept rate. The Asian-to-
Caucasian condition approximates a case where a minority
race gradually becomes better represented in the population
until it reaches its equilibrium with the first race (50 percent
diversity). Ultimately, Caucasians become the majority race
(red lines on the graph). Two results are apparent from
this simulation. First, in contrast to the Caucasian-to-Asian
simulation, which shows a theoretically comparable situation
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Fig. 3. False alarm rate is plotted as a function of threshold similarity score, using the four demographic control procedures. (Note that lower more
negative values indicate higher similarities.) The left graph shows the this function for the moderately difficult pairs and the right graph shows the function
for the difficult pairs. The graph below shows analogous data from the Sandia stimulus set. The threshold shifts toward values in the target distribution
(i.e., higher similarity scores) as the demographic controls tighten.

up to 13 percent diversity, verification rate increases in this
range. This suggests that the effect on verification rate in
these situations is not a general result, but rather, is likely to
depend both on the percentage diversity and on the algorithm
itself, which may process faces of different races in different
ways. The second result is the gradual continued increase in
verification rate as Caucasians become the majority race in
the non-match distribution. Over the full range of diversity
percentages, the verification rate at the .001 false alarm rate
varies by as much as 0.12.

V. DEMOGRAPHICALLY “REVERSED” IDENTITY MATCH
AND MISMATCH DISTRIBUTIONS

In the final experiment, we explore the case when the
population of face matches to be detected are of a different
race than the population against which these matches will be
compared.

We compared verification rate at the .001 false alarm rate
with the following four combinations of race in the identity
match and identity non-match distributions: a.) Caucasians
in the match distribution and Caucasians in the non-match
distribution (Caucasian-Caucasian); b.) Caucasians in the

match distribution and Asians in the non-match distribution
(Caucasian-Asian); c.) Asians in the match distribution and
Asians in the non-match distribution (Asian-Asian); and d.)
Asians in the match distribution and Caucasians in the non-
match distribution (Asian-Caucasian).

Table IV lists the verification rates at the .001 false
accept rate for the four conditions. There was a sharp drop
in verification rate from the Caucasian-Caucasian condition
to the Caucasian-Asian case. This was true for both the
moderately difficult and difficult face pairs. Surprisingly, the
inverse pattern was found in comparing the Asian-Asian
condition to the Asian-Caucasian case. In this latter case, the
verification rate increased when the race of the non-matched
identity distribution differed from the race of the matched
identity.

An explanation of this might be found in the mean of
the similarity distributions for the match and non-matched
identity distributions or in the form of the distributions
themselves. A careful inspection of our data suggested both
factors at work. Differences in the separation of the various
match and non-match distribution means explained some, but
not all, of the verification rate data in Table IV. An explana-
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Fig. 4. ROC curves that show the performance of the fusion algorithm on the Caucasian and Asian face pairs (top panels). There is a marginal advantage
for Asian faces in the moderately difficult pair condition and an inversion of this pattern for the difficult pairs. Consistent with previous experiments, the
bottom panels of the figure show shifts in the similarity threshold functions that produce a constant false alarm rate.
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Fig. 5. Verification rate at the 0.001 false accept rate is plotted as a function
of the diversification of the the non-match distribution. When the non-match
matrix begins with 100 percent Caucasians (blue), verification rate declines
as the representation of the Asian minority race increases to its maximum of
13.3 percent. When the non-match matrix begins with 100 percent Asians
in the matrix (red), the verification rate increases as the representation of
the Caucasians increases, equals Asians, and reverses.

TABLE IV
VERIFICATION RATE AT THE .001 FALSE ALARM RATE WITH REVERSED

DEMOGRAPHICS.

Match Non-Match Moderately Difficult Difficult
Caucasian Caucasian .66 .08
Caucasian Asian .49 .03
Asian Asian .70 .06
Asian Caucasian .85 .16

tion of the remaining differences must come, therefore, from
subtle aspects of the shapes of the distributions themselves.

VI. CONCLUSIONS

In summary, all measures of the performance of face
recognition algorithms rely both on the distribution of data
for identity matches and on the distribution of data for
mismatched identities. Traditionally, attempts to improve the
performance of face recognition algorithms have emphasized
methods that increase the degree of match between images
of the same person (e.g., by bridging differences in illumi-
nation). Less consideration has been given to the effects of
the composition of the non-match identity distributions in
producing stable estimates of algorithm performance. These



estimates are important for predicting how the algorithms
will perform in real world environments. In this study,
we show that differences in the treatment of demographic
diversity in the non-match distribution can radically alter the
our estimates of algorithm performance.

The results of this study point to the following factors as
determinants of performance. First, the demographic pairing
of non-matched identity items can affect both the overall
level of performance estimated and the choice of thresholds
for match/non-match decisions. If no demographic pairing
constraints are imposed, and if the database is diverse, the
ability of algorithms to recognize unique identities will be
over-estimated. This is because some part of the performance
will be based on face categorization (e.g., by gender or
race) rather than identity discrimination. Second, we show
systematic, but not general, effects on the verification rate
at the .001 false alarm rate when a non-match identity
distribution increases in racial diversity. Third, again using
the measure of verification rate at the .001 false alarm
rate, we demonstrate that comparisons of match and non-
match distributions based on the same and different race
of faces can lead to substantial differences in performance
expectations.

These second and third findings are particularly troubling
because they suggest that it may be difficult to reliably
predict algorithm performance without good estimates of
the way the match and non-match identity distributions are
structured demographically. They further hint at difficulties
in choosing operating parameters, such as a threshold match
score, that will lead to stable false alarm rates under varying
population scenarios. Combined, the present findings pose
a new and pressing challenge for this literature to find a
method for tuning algorithm performance to the constantly
changing demographic environments in which these systems
must operate reliably. Again, returning to the context of an
airport or tourist attraction, the choice of an appropriate
non-match distribution and threshold may have to be re-
assessed periodically and adjusted as needed. The present
study offers the first quantitative evidence on the importance
of considering the demographic “background” in setting
performance expectations for face recognition systems in the
field.
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