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1 Introduction

This paper is a continuation of work which is presented in Cohl (2010) [6]. In [6], formulae were presented for

derivatives of associated Legendre functions of the first kind Pµ
ν (z) and the second kind Qµ

ν (z), for |z| > 1, with

respect to their parameters, namely the degree ν and the order µ. The strategy applied in [6] was to differentiate

integral representations of associated Legendre functions, which were given in terms of modified Bessel functions

of the first and second kind, with respect to their parameters. The derivatives of the integrands, for the integral

representations of associated Legendre functions given in [6], which include the derivatives with respect to order

evaluated at integer-orders for modified Bessel functions of the first and second kind, are well known (see for instance

§3.2.3 in Magnus, Oberhettinger & Soni (1966) [13]).

Unfortunately, in [6], no justification for differentiation under the integral sign of the chosen integral representations

of associated Legendre functions is given. In this paper, we give justification for differentiation under the integral sign

for the integral representations of associated Legendre functions given in [6] and hence complete our proof for the

validity of the parameter differentiation formulae given therein. The parameter differentiation formulae given in [6]

are derivatives for associated Legendre functions of the first and second kind with respect to the degree, evaluated at

odd-half-integer degrees, for general complex-orders, and for derivatives with respect to the order evaluated at integer-

orders, for general complex-degrees. See [6] for a discussion of other known formulae for derivatives with respect to

parameters for associated Legendre functions.

This paper is organized as follows. In §2 we investigate properties of the complex function z 7→ z√
z2 − 1

. In §3 we

present a description of a map on a subset of the complex plane which leads to the Whipple formulae for associated

Legendre functions. In §4 we give justification for differentiation under the integral sign for the integral representations

of associated Legendre functions given in [6].

Throughout this paper we use the following conventions. First

j
∑

n=i

an = 0 for all a1, a2, . . . ∈ C, and i, j ∈ Z with

j < i. Secondly, for any expression of the form (z2 − 1)α, read this as

(z2 − 1)α := (z + 1)α(z − 1)α,

for any fixed α ∈ C and z ∈ C \ {−1, 1}.

2 Properties of the function z 7→ z/
√

z2 − 1

Proposition 2.1. Define the function f : C \ {−1, 1} → C by

f(z) =
z√

z2 − 1
:=

z√
z + 1

√
z − 1

.

This function f has the following properties.

1. f
∣

∣

C\[−1,1]
is even and f

∣

∣

(−1,1)
is odd.

2. The sets (0, 1) and (−1, 0) are mapped onto i(−∞, 0) and i(0,∞) respectively.

3. The sets i(−∞, 0) and i(0,∞) are both mapped to (0, 1).

4. f(0) = 0.
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5. If z ∈ C \ [−1, 1] then Re f(z) > 0.

Proof. When z 6= 0 and the exponent w is any complex number, then zw is defined by the equation

zw := exp(w log z),

where the exponential function can be defined over the entire complex plane using the power series definition

exp(z) :=

∞
∑

n=0

zn

n!
,

and the logarithmic function is defined for points z = rei arg z, with r > 0, as

log z := log r + i arg z.

Recall that if z ∈ C \ {0}, then arg z (often referred to as the argument, amplitude or phase) is given by the angle

measured from the positive real axis to the vector representing z. The angle is positive if measured anticlockwise and

we choose the arg z ∈ (−π, π]. Note that

arg (
√
w) =

1

2
arg w.

If z ∈ C and Im z > 0 then

arg (−(z ± 1)) = −π + arg (z ± 1),

so

arg
(

√

−(z ± 1)
)

= −π
2

+ arg
(√
z ± 1

)

,

and we have
√

−(z ± 1) = −i
√
z ± 1.

Hence

f(−z) =
−z

i2
√
z + 1

√
z − 1

= f(z).

Similarly if Im z < 0 then
√

−(z ± 1) = i
√
z ± 1,

and we have the same result.

Let x > 1. Then

arg
√

−(x± 1) =
π

2
,

so

f(−x) =
−x

√

−(x+ 1)
√

−(x+ 1)
=

x√
x+ 1

√
x− 1

= f(x).

Therefore f
∣

∣

C\[−1,1]
is even.

If x ∈ (0, 1) then

f(x) =
−ix√

1 + x
√

1 − x
,

and

f(−x) =
ix√

1 + x
√

1 − x
= −f(x).

Moreover, f(0) = 0. Therefore f
∣

∣

(−1,1)
maps to the imaginary axis and is odd.
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If x ∈ (0,∞) then

f(ix) =
ix√

ix+ 1
√
ix− 1

=
x√

1 + x2
,

and

f(−ix) =
−ix√

−ix+ 1
√
−ix− 1

=
x√

1 + x2
,

so f maps both the positive and negative imaginary axes to the real interval (0, 1). Clearly f(0) = 0. This completes

the proof of 1, 2, 3 and 4.

Before we prove 5 we first show that f maps quadrant I into quadrant IV. This is non-trivial. Let r ∈ (0,∞) and

θ ∈ (0, π/2). Then

f(reiθ) =
r exp

[

i(θ − 1
2φ− 1

2ψ)
]

(r4 − 2r2 cos(2θ) + 1)
1/4

,

where

φ := tan−1

(

r sin θ

r cos θ + 1

)

,

and

ψ :=































π + tan−1

(

r sin θ

r cos θ − 1

)

if r cos θ < 1,

π

2
if r cos θ = 1,

tan−1

(

r sin θ

r cos θ − 1

)

if r cos θ > 1.

Firstly we would like to prove that θ − φ/2 − ψ/2 < 0, or equivalently

φ+ ψ > 2θ. (1)

We will break the problem into nine main cases with

















I. θ ∈
(

0,
π

4

)

II. θ =
π

4

III. θ ∈
(π

4
,
π

2

)

and
















A. r cos θ < 1

B. r cos θ = 1

C. r cos θ > 1.

Case IA. We need to show that

tan−1

(

r sin θ

r cos θ + 1

)

+ π + tan−1

(

r sin θ

r cos θ − 1

)

> 2θ,

for all r < 1/ cos θ and θ ∈ (0, π/4). First note that

tan−1

(

r sin θ

r cos θ + 1

)

∈
(

0,
π

2

)

,
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and

tan−1

(

r sin θ

r cos θ − 1

)

∈
(

−π
2
, 0
)

,

so

tan−1

(

r sin θ

r cos θ + 1

)

+ π + tan−1

(

r sin θ

r cos θ − 1

)

∈
(

π

2
,
3π

2

)

.

Since 2θ ∈ (0, π/2), we have the desired result.

Case IB. We need to show that

tan−1

(

r sin θ

r cos θ + 1

)

+
π

2
> 2θ,

for r = 1/ cos θ and θ ∈ (0, π/4). Since r = 1/ cos θ this reduces to

tan−1

(

1

2
tan θ

)

+
π

2
> 2θ.

This is true since 2θ ∈ (0, π/2) and tan−1
(

1
2 tan θ

)

> 0.

Case IC. Define g : {(θ, r) : θ ∈ (0, π/4), r ∈ (1/ cos θ,∞)} → R by

g(θ, r) := tan−1

(

r sin θ

r cos θ + 1

)

+ tan−1

(

r sin θ

r cos θ − 1

)

− 2θ.

We need to show that g(θ, r) > 0 for all θ ∈ (0, π/4) and r > 1/ cos θ. Fix θ ∈ (0, π/4). Then

∂g

∂r
(θ, r) = − 4r cos θ sin θ

r4 − 2r2 cos(2θ) + 1
< 0.

Therefore r 7→ g(θ, r) is strictly decreasing. Moreover

lim
r→∞

g(θ, r) = tan−1(tan θ) + tan−1(tan θ) − 2θ = 0.

Hence g(θ, r) > 0 for all r ∈ (1/ cos θ,∞).

Case IIA. This follows as in Case IA.

Case IIB. Trivial.

Case IIC. In this case θ = π/4 and r >
√

2. Consider the function g : (
√

2,∞) → R defined by

g(r) := tan−1

(

1

1 +
√

2
r

)

+ tan−1

(

1

1 −
√

2
r

)

.

We need to show that g > π/2. The derivative of g is given by

dg(r)

dr
= − 2r

1 + r4
< 0.

This implies that g is a strictly decreasing function. Taking the limit

lim
r→∞

g(r) = tan−1(1) + tan−1(1) =
π

2
.

Since g is a strictly decreasing function of r, we have the desired result.

Case IIIA. Define g : {(θ, r) : θ ∈ (π/4, π/2), r ∈ (0, 1/ cosθ)} → R by

g(θ, r) := tan−1

(

r sin θ

r cos θ + 1

)

+ tan−1

(

r sin θ

r cos θ − 1

)

− 2θ.
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We need to show that g(θ, r) > −π for all θ ∈ (π/4, π/2) and r < 1/ cosθ. Fix r ∈ (0,∞). If θ > cos−1(1/r) and

θ ∈ (π/4, π/2), then
∂g

∂r
(θ, r) =

2(r2 cos(2θ) − 1)

r4 − 2r2 cos(2θ) + 1
< 0,

since cos(2θ) ∈ (−1, 0). Therefore θ 7→ g(θ, r) is strictly decreasing. Since

lim
θ→π

2
−
g(θ, r) = tan−1(r) + tan−1(−r) − π = −π,

the required inequality follows.

Case IIIB. For θ ∈ (π/4, π/2), would like to prove the inequality

tan−1

(

r sin θ

r cos θ + 1

)

+
π

2
> 2θ,

with r = 1/ cos θ, or equivalently,

tan−1

(

1

2
tan θ

)

+
π

2
> 2θ.

Consider g : (π/4, π/2) → R defined by

g(θ) := tan−1

(

1

2
tan θ

)

− 2θ +
π

2
.

We need to show that g > 0. Then
∂g

∂θ
(θ) = − 6

4 + tan2 θ
< 0

and

lim
θ→π

2
−
g(θ) = lim

θ→π

2
−

tan−1

(

1

2
tan θ

)

− π +
π

2
= 0.

The required estimate follows.

Case IIIC. Define g : {(θ, r) : θ ∈ (0, π/2), r > 1/ cos θ} → R by

g(θ, r) := tan−1

(

r sin θ

r cos θ + 1

)

+ tan−1

(

r sin θ

r cos θ − 1

)

.

We would like to prove the inequality g(θ, r) > 2θ for all θ ∈ (π/4, π/2) and r > 1/ cos θ. We first show that

g(θ, r) > π/2 for all θ ∈ (π/4, π/2) and r > 1/ cos θ. Then

∂g

∂θ
(θ, r) =

2r2(r2 − cos(2θ))

(r2 + 2r cos θ + 1)(r2 − 2r cos θ + 1)
> 0,

for all θ ∈ (π/4, cos−1(1/r)) since cos(2θ) < 0 and all factors are positive. Hence g(θ, r) > g(π/4, r) for all θ ∈
(π/4, π/2) and r > 1/ cos θ. Next

dg

dr

(π

4
, r
)

=
−2r

(r2 +
√

2r + 1)(r2 −
√

2r + 1)
< 0,

for all r ∈ (
√

2,∞) and

lim
r→∞

g
(π

4
, r
)

=
π

2
.

Therefore g (π/4, r) > π/2 for all r ∈ (
√

2,∞) and hence g(θ, r) > π/2 for all θ ∈ (π/4, π/2) and r > 1/ cos θ. We

have shown that

tan−1

(

r sin θ

r cos θ + 1

)

+ tan−1

(

r sin θ

r cos θ − 1

)

>
π

2
,
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for all θ ∈ (π/4, π/2) and r > 1/ cos θ. Since also 2θ > π/2, the inequality

tan−1

(

r sin θ

r cos θ + 1

)

+ tan−1

(

r sin θ

r cos θ − 1

)

> 2θ,

is equivalent to the inequality

tan(2θ) < tan

[

tan−1

(

r sin θ

r cos θ + 1

)

+ tan−1

(

r sin θ

r cos θ − 1

)]

. (2)

Using the addition formula for the tangent function

tan(z1 + z2) =
tan z1 + tan z2
1 − tan z1 tan z2

,

the inequality (2) reduces to

tan(2θ) <
r2 sin(2θ)

r2 cos(2θ) − 1
,

which is trivially verified. Thus (1) is valid for all θ ∈ (0, π/2).

Secondly we would like to show that θ − φ/2 − ψ/2 > −π/2 or equivalently

φ+ ψ − 2θ < π. (3)

This inequality if clear for cases B, C, IIA and IIIA. All that remains is to prove (3) for case IA. Define g : {(θ, r) :

θ ∈ (0, π/4), r ∈ (0, 1/ cos θ)} → R by

g(θ, r) := tan−1

(

r sin θ

r cos θ + 1

)

+ tan−1

(

r sin θ

r cos θ − 1

)

− 2θ.

We need to show that g < 0. Fix θ ∈ (0, π/4). Then

∂g

∂r
(θ, r) = − 4r cos θ sin θ

r4 − 2r2 cos(2θ) + 1
< 0.

Therefore r 7→ g(θ, r) is strictly decreasing. Moreover

lim
r→ 1

cos θ
−
g(θ, r) = tan−1

(

1

2
tan θ

)

− π

2
− 2θ.

However 2θ + π
2 ∈ (π/2, π). It follows that g(θ, r) < 0 for all θ ∈ (0, π/4) and r ∈ (0, 1/ cosθ).

Thus f maps quadrant I into quadrant IV.

Due to the evenness of the f , quadrants I & III are mapped to quadrants IV, and quadrants II & IV are mapped

to quadrant I. Therefore if z ∈ C \ [−1, 1] then Re
z√

z2 − 1
> 0. This completes the proof of 5.

The range of f is {z ∈ C : Re z ≥ 0 and z 6= 1}. Every complex number in the range of the function is taken twice

except for elements in (0, 1) and on the imaginary axis. These complex numbers are taken only once.

3 The Whipple formulae for associated Legendre functions

There is a transformation over an open subset of the complex plane which is particularly useful in studying associated

Legendre functions (see Abramowitz & Stegun (1972) [1] and Hobson (1955) [11]). This transformation, which is valid

on a certain domain of the complex numbers, accomplishes the following
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cosh z ↔ cothw

coth z ↔ coshw

sinh z ↔ (sinhw)−1



















. (4)

This transformation is accomplished using the map w : D → C, with

D := C \
{

z ∈ C : Re z ≤ 0 and Im z = 2πn, n ∈ Z
}

,

and w defined by

w(z) := log coth
z

2
. (5)

The map w is periodic with period 2πi and is locally injective. The map w restricted to D∩{z ∈ C : −π < Im z < π}
is verified to be an involution. The transformation (4) is the restriction of the mapping w to this restricted domain.

This transformation is particularly useful for certain associated Legendre functions such as toroidal harmonics (see

Cohl et al. (2001) [7], Cohl & Tohline (1999) [8]), associated Legendre functions of the first and second kind with

odd-half-integer degree and integer-order, and for other associated Legendre functions which one might encounter in

potential theory. The real argument of toroidal harmonics naturally occur in (1,∞), and these are the simultaneous

ranges of both the real hyperbolic cosine and cotangent functions. One application of this map occurs with the

Whipple formulae for associated Legendre functions (Whipple (1917) [17], Cohl et al. (2000) [9]) under index (degree

and order) interchange. See for instance, (8.2.7) and (8.2.8) in Abramowitz & Stegun (1972) [1], namely

P
−ν−1/2
−µ−1/2

(

z√
z2 − 1

)

=

√

2

π

(z2 − 1)1/4e−iµπ

Γ(ν + µ+ 1)
Qµ

ν (z), (6)

and

Q
−ν−1/2
−µ−1/2

(

z√
z2 − 1

)

= −i(π/2)1/2Γ(−ν − µ)(z2 − 1)1/4e−iνπPµ
ν (z),

which are valid for Re z > 0 and for all complex ν and µ, except where the functions are not defined.

4 Justification for differentiation under the integral sign

In this section, we present and derive formulae for parameter derivatives of associated Legendre functions of the first

kind Pµ
ν and the second kind Qµ

ν , with respect to their parameters, namely the degree ν and the order µ. We cover

parameter derivatives of associated Legendre functions for argument z ∈ C \ (−∞, 1].

We incorporate derivatives with respect to order evaluated at integer-orders for modified Bessel functions (see

Abramowitz & Stegun (1972) [1], Brychkov & Geddes (2005) [5], Magnus, Oberhettinger & Soni (1966) [13]) to

compute derivatives with respect to the degree and the order of associated Legendre functions. Below we apply these

results through certain integral representations of associated Legendre functions in terms of modified Bessel functions.

Modified Bessel functions of the first and second kind respectively can be defined for all ν ∈ C (see for instance §3.7

in Watson (1944) [16]) by

Iν(z) :=

∞
∑

m=0

(z/2)ν+2m

m!Γ(ν +m+ 1)
,

and

Kν(z) :=
π

2

I−ν(z) − Iν(z)

sinπν
.
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For ν = n ∈ N0, the first definition yields

In(z) = I−n(z).

It may be verified that

Kn(z) = lim
ν→n

Kν(z)

is well defined. The modified Bessel function of the second kind is commonly referred to as a Macdonald function.

The strategy applied in this section is to use integral representations of associated Legendre functions, expressed

in terms of modified Bessel functions, and justify differentiation under the integral sign with respect to the relevant

parameters.

4.1 Parameter derivative formulas from K
ν
(t)

It follows from Gradshteyn & Ryzhik (2007) (6.628.7) [10] (see also Prudnikov et al. (1988) (2.16.6.3) [15]) that

∫ ∞

0

e−ztKν(t)tµ−1/2dt =

√

π

2
Γ

(

µ− ν +
1

2

)

Γ

(

µ+ ν +
1

2

)

(

z2 − 1
)−µ/2

P−µ
ν−1/2(z)

= Γ

(

µ− ν +
1

2

)

(

z2 − 1
)−µ/2−1/4

e−iπνQν
µ−1/2

(

z√
z2 − 1

)

, (7)

where we used the Whipple formulae (6), for Re z > −1 and Re µ > |Re ν| − 1/2. We would like to generate an

analytical expression for the derivative of the associated Legendre function of the second kind with respect to its

order, evaluated at integer-orders. In order to do this our strategy is to solve the above integral expression for the

associated Legendre function of the second kind, differentiate with respect to the order, evaluate at integer-orders, and

take advantage of the corresponding formula for differentiation with respect to order for modified Bessel functions of

the second kind (see Abramowitz & Stegun (1972) [1], Brychkov (2010) [4], Brychkov & Geddes (2005) [5], Magnus,

Oberhettinger & Soni (1966) [13]). Using the expression for the associated Legendre function of the second kind in

(7), we solve for Qµ
ν−1/2(z) and re-express using the map in (5). This gives us the expression

Qµ
ν−1/2(z) =

(

z2 − 1
)−ν/2−1/4

eiπµ

Γ
(

ν − µ+ 1
2

)

∫ ∞

0

exp

( −zt√
z2 − 1

)

Kµ(t)tν−1/2dt. (8)

In order to justify differentiation under the integral sign we use the following well-known corollary of the bounded

convergence theorem (cf. §8.2 in Lang (1993) [12]).

Proposition 4.1. Let (X,µ) be a measure space, U ⊂ R open and f : X × U → R a function. Suppose

1. for all y ∈ U the function x 7→ f(x, y) is measurable,

2. ∂f
∂y (x, y) exists for all (x, y) ∈ X × U ,

3. there exists g ∈ L1(X) such that
∣

∣

∣

∂f
∂y (x, y)

∣

∣

∣
≤ g(x) for all (x, y) ∈ X × U .

Then the function y 7→
∫

X
f(x, y)dµ(x) is differentiable on U and

d

dy

(
∫

X

f(x, y)dµ(x)

)

=

∫

X

∂f

∂y
(x, y)dµ(x).
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We call g a L1-majorant.

We wish to differentiate (8) with respect to the order µ and evaluate at µ0 = ±m, where m ∈ N0. The derivative

of the modified Bessel function of the second kind with respect to its order (see Abramowitz & Stegun (1972) [1],

Brychkov (2010) [4], Brychkov & Geddes (2005) [5], Magnus, Oberhettinger & Soni (1966) [13]) is given by

[

∂

∂µ
Kµ(t)

]

µ=±m

= ±m!

m−1
∑

k=0

2m−1−k

k!(m− k)
tk−mKk(t) (9)

(see for instance (1.14.2.2) in Brychkov (2008) [3]). For a fixed t, Kµ(t) is an even function of µ ∈ R (see (9.6.6) in

Abramowitz & Stegun (1972) [1]), i.e.

K−µ(t) = Kµ(t),

and for µ ∈ [0,∞), Kµ(t) is a strictly increasing function of µ. Also, for a fixed t, ∂Kµ(t)/∂µ is an odd function of

µ ∈ R and for µ ∈ [0,∞), ∂Kµ(t)/∂µ is also a strictly increasing function of µ. Using (9) we can make the following

estimate
∣

∣

∣

∣

∂

∂µ
Kµ(t)

∣

∣

∣

∣

<
∂Kτ

∂τ

∣

∣

∣

∣

τ=±(m+1)

, (10)

for all µ ∈ (µ0 − 1, µ0 + 1).

To justify differentiation under the integral sign in (8), with respect to µ, evaluated at µ0, we use Proposition 4.1.

If we fix z and ν, the integrand of (8) can be given by the function f : R × (0,∞) → C defined by

f(µ, t) := exp

( −zt√
z2 − 1

)

tν−1/2Kµ(t).

Since ∂Kµ(t)/∂µ is a strictly increasing function of µ ∈ [0,∞), we have for all µ ∈ (µ0 − 1, µ0 + 1)

∣

∣

∣

∣

∂f

∂µ
(µ, t)

∣

∣

∣

∣

= exp

( −zt√
z2 − 1

)

tν−1/2

∣

∣

∣

∣

∂

∂µ
Kµ(t)

∣

∣

∣

∣

< exp

( −zt√
z2 − 1

)

tν−1/2

∣

∣

∣

∣

∣

[

∂

∂τ
Kτ (t)

]

τ=±(m+1)

∣

∣

∣

∣

∣

= exp

( −zt√
z2 − 1

)

tν−1/2

∣

∣

∣

∣

∣

[

∂

∂τ
Kτ (t)

]

τ=m+1

∣

∣

∣

∣

∣

,

≤ exp

( −zt√
z2 − 1

)

tν−1/2(m+ 1)!
m
∑

k=0

2m−k

k!(m+ 1 − k)
tk−m−1Kk(t),

≤ exp

( −zt√
z2 − 1

)

tν−1/2(m+ 1)!2mt−1Km(t) =: g(t),

where we used (9) and the fact that Kk(t) ≤ Km(t) for all k ∈ {0, . . . ,m − 1}. Then g is a L1-majorant for the

derivative of the integrand, since the integral (8) converges for Re (z/
√
z2 − 1) > −1 and Re ν > m− 1/2.
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The conditions for differentiating under the integral sign have been satisfied and we can re-write (8) as

[

∂

∂µ
Qµ

ν−1/2(z)

]

µ=±m

=
(

z2 − 1
)−ν/2−1/4

[

∂

∂µ

eiπµ

Γ
(

ν − µ+ 1
2

)

]

µ=±m

(11)

×
∫ ∞

0

exp

( −zt√
z2 − 1

)

K±m(t)tν−1/2dt

+

(

z2 − 1
)−ν/2−1/4

(−1)m

Γ
(

ν ∓m+ 1
2

)

×
∫ ∞

0

exp

( −zt√
z2 − 1

)

tν−1/2

[

∂

∂µ
Kµ(t)

]

µ=±m

dt.

The derivative from the first term is given as

[

∂

∂µ

eiπµ

Γ
(

ν − µ+ 1
2

)

]

µ=±m

=
(−1)m

Γ
(

ν ∓m+ 1
2

)

[

iπ + ψ

(

ν ∓m+
1

2

)]

,

where the ψ is the digamma function defined in terms of the derivative of the gamma function,

d

dz
Γ(z) := ψ(z)Γ(z),

for z ∈ C \ (−N0).

Substituting these expressions for the derivatives into the two integrals and using the map in (5) to re-evaluate

these integrals in terms of associated Legendre functions gives the following general expression for the derivative of

the associated Legendre function of the second kind with respect to its order evaluated at integer-orders as

Γ(ν ∓m+ 1
2 )

Γ(ν −m+ 1
2 )

[

∂

∂µ
Qµ

ν−1/2(z)

]

µ=±m

=

[

iπ + ψ

(

ν ∓m+
1

2

)]

Qm
ν−1/2(z)

±m!
m−1
∑

k=0

(−1)k−m
(

z2 − 1
)(k−m)/2

k!(m− k)2k−m+1
Qk

ν+k−m−1/2(z).

If we start with the expression for the associated Legendre function of the first kind in (7) and solve for P−µ
ν−1/2(z)

we have

P−µ
ν−1/2(z) =

√

2

π

(

z2 − 1
)µ/2

Γ
(

µ− ν + 1
2

)

Γ
(

µ+ ν + 1
2

)

∫ ∞

0

e−ztKν(t)tµ−1/2dt. (12)

To justify differentiation under the integral sign in (12), with respect to ν, evaluated at ν = ±n, where n ∈ N0,

we use as similar argument as in (8) only with modification µ 7→ ν and m 7→ n. The same modified L1-majorant will

work for the derivative of this integrand, since the integral (12) converges for Re z > −1 and Re ν > |Reµ| − 1/2.
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The conditions for differentiating under the integral sign have been satisfied and we can re-write (12) as

[

∂

∂ν
P−µ

ν−1/2(p)

]

ν=±n

=

√

2

π

(

z2 − 1
)µ/2

[

∂

∂ν

1

Γ
(

µ− ν + 1
2

)

Γ
(

µ+ ν + 1
2

)

]

ν=±n

(13)

×
∫ ∞

0

e−ztK±n(t)tµ−1/2dt

+

√

2

π

(

z2 − 1
)µ/2

Γ
(

µ∓ n+ 1
2

)

Γ
(

µ± n+ 1
2

)

×
∫ ∞

0

e−zttµ−1/2

[

∂

∂ν
Kν(t)

]

ν=±n

dt.

The derivative from the first term in (13) is given as

[

∂

∂ν

1

Γ
(

µ− ν + 1
2

)

Γ
(

µ+ ν + 1
2

)

]

ν=±n

=
ψ
(

µ∓ n+ 1
2

)

− ψ
(

µ± n+ 1
2

)

Γ
(

µ± n+ 1
2

)

Γ
(

µ∓ n+ 1
2

) .

Substituting this expression for the derivative and that given in (9) yields the following general expression for the

derivative of the associated Legendre function of the first kind with respect to its degree evaluated at odd-half-integer

degrees as

±
[

∂

∂ν
P−µ

ν−1/2(z)

]

ν=±n

=

[

ψ

(

µ− n+
1

2

)

− ψ

(

µ+ n+
1

2

)]

P−µ
n−1/2(z)

+
n!

Γ
(

µ+ n+ 1
2

)

n−1
∑

k=0

Γ
(

µ− n+ 2k + 1
2

) (

z2 − 1
)(n−k)/2

k!(n− k)2k−n+1
P−µ+n−k

k−1/2 (z).

If one makes a global replacement −µ 7→ µ, using the properties of gamma and digamma functions, this result reduces

to

±
[

∂

∂ν
Pµ

ν−1/2(z)

]

ν=±n

=

[

ψ

(

µ+ n+
1

2

)

− ψ

(

µ− n+
1

2

)]

Pµ
n−1/2(z)

+ n! Γ

(

µ− n+
1

2

) n−1
∑

k=0

(

z2 − 1
)(n−k)/2

Γ
(

µ+ n− 2k + 1
2

)

k!(n− k)2k−n+1
Pµ+n−k

k−1/2 (z).

4.2 Parameter derivative formulas from I
ν
(t)

Starting this time with Gradshteyn & Ryzhik (2007) (6.624.5) [10] (see also Prudnikov et al. (1988) (2.15.3.2) [15]),

we have for Re z > 1 and Reµ > −Re ν − 1/2,

∫ ∞

0

e−ztIν(t)tµ−1/2dt =

√

2

π
e−iπµ

(

z2 − 1
)−µ/2

Qµ
ν−1/2(z)

= Γ

(

µ+ ν +
1

2

)

(

z2 − 1
)−µ/2−1/4

P−ν
µ−1/2

(

z√
z2 − 1

)

, (14)

where we used again the Whipple formulae (6).

We will use this particular integral representation of associated Legendre functions to compute certain derivatives

of the associated Legendre functions with respect to the degree and order. We start with the integral representation

12



of the associated Legendre function of the second kind (14), namely

Qµ
ν−1/2(z) =

√

π

2
eiπµ

(

z2 − 1
)µ/2

∫ ∞

0

e−zttµ−1/2Iν(t)dt. (15)

To justify differentiation under the integral sign in (15), with respect to ν, evaluated at ν0 = ±n, where n ∈ N, we

use again Proposition 4.1. If we fix z and µ, the integrand of (15) can be given by the function f : R × (0,∞) → C

defined by

f(ν, t) := e−zttµ−1/2Iν(t).

We use the following integral representation for the derivative with respect to order of the modified Bessel function of

the first kind (see (75) in Apelblat & Kravitsky (1985) [2])

∂Iν(t)

∂ν
= −ν

∫ t

0

K0(t− x)Iν (x)x−1dx. (16)

Let δ ∈ (0, 1) and M > 2. Consider g : (0,∞) → [0,∞) defined by

g(t) := Me−tRe ztRe µ−1/2

∫ t

0

K0(t− x)Iδ(x)x
−1dx.

Using (16) we have for all ν ∈ (δ,M)

∣

∣

∣

∣

∂f(ν, t)

∂ν

∣

∣

∣

∣

= e−tRe ztRe µ−1/2

∣

∣

∣

∣

∂Iν(t)

∂ν

∣

∣

∣

∣

= νe−tRe ztRe µ−1/2

∫ t

0

K0(t− x)Iν (x)x−1dx

≤Me−tRe ztRe µ−1/2

∫ t

0

K0(t− x)Iδ(x)x
−1dx

= g(t),

since for fixed t, ν 7→ Iν(t) is strictly decreasing. Now we show that g ∈ L1. The integral of g over its domain is

∫ ∞

0

g(t)dt = M

∫ ∞

0

e−tRe ztRe µ−1/2

∫ t

0

K0(t− x)Iδ(x)x
−1dxdt.

Making a change of variables in the integral, (x, t) 7→ (x, y) with y = t− x, yields

∫ ∞

0

g(t)dt = M

∫ ∞

0

e−yRe zK0(y)

∫ ∞

0

e−xRe z(x+ y)Re µ−1/2x−1Iδ(x)dx dy.

First we show that g is integrable in a neighbourhood of zero. Suppose Re µ − 1/2 < 0, x, y ∈ (0, 1] and a ∈ (0, 1).

Then

(x+ y)Re µ−1/2 = (x + y)−a(x+ y)Re µ−1/2+a ≤ y−a max
(

2Re µ−1/2+a, xRe µ−1/2+a
)

.

Since K0(y) ∼ − log(y) ((9.6.8) in Abramowitz & Stegun (1972) [1]) it follows that

∫ 1

0

K0(y)y
−ady <∞.

Furthermore since Iδ(x) ∼ (x/2)δ/Γ(δ + 1) ((9.6.7) in Abramowitz & Stegun (1972) [1]) it follows that

∫ 1

0

Iδ(x)x
−1dx <∞.
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Now we show that
∫ 1

0

Iδ(x)x
Re µ−1/2+a−1dx, (17)

is convergent if Reµ− 1/2 + a+ δ > 0. If we define

ǫ :=
Reµ+ ν0 + 1

2

3
> 0,

then Reµ = −ν0 − 1/2 + 3ǫ. Therefore if we take a := 1 − ǫ and δ := ν0 − ǫ < ν0 then

Reµ− 1

2
+ a+ δ = ǫ > 0,

and hence (17) is convergent and thus g is integrable near the origin. If Reµ− 1/2 ≥ 0 then similarly g is integrable

near the origin.

Now we show that g is integrable. Suppose Reµ− 1/2 > 0. Then

(x+ y)Re µ−1/2 ≤ [2 max(x, y))]Re µ−1/2 = 2Re µ−1/2 max(xRe µ−1/2, yRe µ−1/2)

for all x, y ≥ 0. For y → ∞ one has Kν(y) ∼
√

π/(2y)e−y ((8.0.4) in Olver (1997) [14]). Hence it follows that

∫ ∞

1

K0(y)e
−yRe zyRe µ−1/2dy <∞,

and
∫ ∞

1

K0(y)e
−yRe zdy <∞.

Furthermore since for x→ ∞, Iδ(x) ∼ ex/
√

2πx (p. 83 in Olver (1997) [14]) it follows that

∫ ∞

1

e−xRe zIδ(x)x
Re µ−3/2dx <∞,

and
∫ ∞

1

e−xRe zIδ(x)x
−1dx <∞.

If Reµ− 1/2 ≤ 0 then similarly g is integrable.

Therefore g is a L1-majorant for the derivative with respect to ν of the integrand in (15). It is unclear whether

differentiation under the integral sign is also possible for ν0 = 0. However, we show below that our derived results for

derivatives with respect to the degree for associated Legendre functions match up with the to be derived results for

degree ν = 0. It is true that relatively little is known about the properties of Bessel functions in relation to operations

(differentiation and integration) with respect to their order (cf. Apelblat & Kravitsky (1985) [2]).

Differentiating with respect to the degree ν and evaluating at ν = ±n, where n ∈ N, one obtains

[

∂

∂ν
Qµ

ν−1/2(z)

]

ν=±n

=

√

π

2
eiπµ

(

z2 − 1
)µ/2

∫ ∞

0

e−zttµ−1/2

[

∂

∂ν
Iν(t)

]

ν=±n

dt. (18)

The derivative of the modified Bessel function of the first kind (18) (see Abramowitz & Stegun (1972) [1], Brychkov

(2010) [4], Brychkov & Geddes (2005) [5], Magnus, Oberhettinger & Soni (1966) [13]) is given by

[

∂

∂ν
Iν(t)

]

ν=±n

= (−1)n+1Kn(t) ± n!
n−1
∑

k=0

(−1)k−n

k!(n− k)

tk−n

2k−n+1
Ik(t) (19)

(see for instance (1.13.2.1) in Brychkov (2008) [3]).
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Inserting (19) into (18) and using (7) and (14), we obtain the following general expression for the derivative of the

associated Legendre function of the second kind with respect to its degree evaluated at odd-half-integer degrees as

[

∂

∂ν
Qµ

ν−1/2(z)

]

ν=±n

= −
√

π

2
eiπµΓ

(

µ− n+
1

2

)

(

z2 − 1
)−1/4

Qn
µ−1/2

(

z√
z2 − 1

)

± n!

n−1
∑

k=0

(

z2 − 1
)(n−k)/2

2k−n+1k!(n− k)
Qµ+k−n

k−1/2 (z). (20)

Note that
[

∂

∂ν
Qµ

ν−1/2(z)

]

ν=0

= −
√

π

2
eiπµΓ

(

µ+
1

2

)

(

z2 − 1
)−1/4

Qµ−1/2

(

z√
z2 − 1

)

,

by Magnus, Oberhettinger & Soni (1966) [13]. Therefore (20) is also valid if ν = 0.

Finally, we obtain a formula for the derivative with respect to the order for the associated Legendre function of the

first kind evaluated at integer-orders. In order to do this we use the integral expression for the associated Legendre

function of the first kind given by (14) and the map given in (5) to convert to the appropriate argument. Now use the

negative-order condition for associated Legendre functions of the first kind (see for example (22) in Cohl et al. (2000)

[9]) to convert to a positive order, namely

Pµ
ν−1/2(z) =

2

π
e−iµπ sin(µπ)Qµ

ν−1/2(z)

+
(z2 − 1)−ν/2−1/4

Γ(ν − µ+ 1
2 )

∫ ∞

0

exp

( −zt√
z2 − 1

)

Iµ(t)tν−1/2dt. (21)

To justify differentiation under the integral sign in (21), with respect to µ, evaluated at µ = ±m, where m ∈ N, we

use as similar argument as in (15) only with modification ν 7→ µ and n 7→ m. The same modified L1-majorant will work

for the derivative of this integrand, since the integral (21) converges for Re (z/
√
z2 − 1) > 1 and Reµ > −Re ν − 1/2.

Since we were unable to justify differentiation under the integral for ν = 0 before, the case for differentiation under

the integral (21) with respect to µ evaluated at µ = 0 remains open. However, below we show that our derived results

for derivatives with respect to the order for associated Legendre functions match up to previously established results

in the literature for order µ = 0.

Differentiating both sides of the resulting expression with respect to the order µ and evaluating at µ = ±m, where

m ∈ N yields

[

∂

∂µ
Pµ

ν−1/2(z)

]

µ=±m

= 2Q±m
ν−1/2(z)

+
(

z2 − 1
)−ν/2−1/4

{

∂

∂µ

[

Γ

(

ν − µ+
1

2

)]−1
}

µ=±m

×
∫ ∞

0

exp

( −zt√
z2 − 1

)

I±m(t)tν−1/2dt

+

(

z2 − 1
)−ν/2−1/4

Γ
(

ν ∓m+ 1
2

)

×
∫ ∞

0

exp

( −zt√
z2 − 1

)

tν−1/2

[

∂

∂µ
Iµ(t)

]

µ=±m

dt.
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The derivative of the reciprocal of the gamma function reduces to

{

∂

∂µ

[

Γ

(

ν − µ+
1

2

)]−1
}

µ=±m

=
ψ
(

ν ∓m+ 1
2

)

Γ
(

ν ∓m+ 1
2

) .

The derivative with respect to order for the modified Bessel function of the first kind is given in (19). The integrals

are easily obtained by applying the map given by (5) as necessary to (7) and (14). Hence by also using standard

properties of associated Legendre, gamma, and digamma functions we obtain the following compact form

Γ(ν ∓m+ 1
2 )

Γ(ν −m+ 1
2 )

[

∂

∂µ
Pµ

ν−1/2(z)

]

µ=±m

= Qm
ν−1/2(z) + ψ

(

ν ∓m+
1

2

)

Pm
ν−1/2(z)

±m!

m−1
∑

k=0

(−1)k−m
(

z2 − 1
)(k−m)/2

2k−m+1k!(m− k)
P k

ν+k−m−1/2(z). (22)

Note that
[

∂

∂µ
Pµ

ν−1/2(z)

]

µ=0

= Qν−1/2(z) + ψ

(

ν +
1

2

)

Pν−1/2(z),

by §4.4.3 of Magnus, Oberhettinger & Soni (1966) [13]. So (22) is also valid if µ = 0.
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