
5654 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 60, NO. 12, DECEMBER 2012

Spherical Wave Scattering Matrix Description of
Antenna Coupling in Arbitrary Environments

Ryan J. Pirkl, Member, IEEE

Abstract—A framework is presented for investigating antenna
coupling in arbitrary environments by way of antenna and en-
vironment scattering parameter matrices. The environment scat-
tering parameter matrices are bona fide scattering parameters that
describe the environment when all radiation ports are terminated
with nonreflecting loads. Simplification of the antenna coupling
equations leads to a second formulation that is compatible with
classically-defined antenna scattering parameter matrices. A third
formulation, based on an auxiliary set of matrices describing the
environment’s scattering when all unexcited radiation ports are
open-circuited, extends the coupling formulation used in spherical
near-field antenna measurements to arbitrary environments.

Index Terms—Antenna coupling, antenna scattering parame-
ters, environment impedance parameters, environment scattering
parameters, spherical modal signal flow graph, spherical waves.

I. INTRODUCTION

C OUPLING between antennas in arbitrary environments
is expressed in terms of spherical modal scattering pa-

rameter matrices for the antenna and the environment. This en-
ables a complete mathematical description of both antenna-an-
tenna and antenna-environment interactions. This workwasmo-
tivated by a need to characterize such interactions in severe scat-
tering environments such as a reverberation chamber.
Antenna–antenna coupling in anechoic (i.e., nominally free-

space) environments forms the mathematical theory underlying
near-field antenna measurements [1]–[8]. Equations describing
how two antennas interact with respect to some bounding planar
[2], cylindrical [3], or spherical [6] surface have enabled the
development of near-field antenna characterization techniques
based on scattering parameter measurements obtained on these
bounding surfaces. Extensions of the spherical near-field an-
tenna coupling equations have been used to characterize bistatic
scattering from objects [9], mutual coupling between antenna
array elements [10], and channel matrices for multiple-input
multiple-output antenna systems in free-space [11].
More complicated scattering environments have been ana-

lyzed by describing the scattering between multiple objects in
terms of each object’s -matrix [12], [13]. The -matrix de-
scribes the spherical modal scattering characteristics of a pure
scatterer and is applicable to environments featuring localized
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scatterers in free-space. In a series of papers, Felsen et al. pre-
sented a domain decomposition framework for analyzing arbi-
trary scattering environments where the solution to the overall
scattering problem was formulated in terms of coupling be-
tween subdomain solutions [14]–[16]. In [17], a variation of
this domain decomposition technique was used to describe cou-
pling between isolated subdomains in terms of radially prop-
agating beams. In [18] and [19], a domain decomposition ap-
proach based on a spherical interface surrounding an antenna
was used to evaluate the change in an antenna’s input impedance
due to a nearby scatterer.
Here, we employ a variation of the domain decomposition

techniques described in [14] and [17]–[19] that allows us to
treat the environment’s scatterers in aggregate through environ-
ment-specific modal excitation functions. These functions pro-
vide a compact description of the environment’s response to a
spherical modal excitation that enables the free-space spherical
antenna coupling equations to be generalized to arbitrary en-
vironments. We present the complete coupling formulation in
Section II along with qualitative descriptions of the antenna and
environment scattering parameters. Then, in Section III, we de-
fine the environment’s scattering parameter matrices in terms
of its impedance parameter matrices and relate these impedance
parameter matrices to the environment’s total field response to
a spherical modal current source. Two alternative coupling for-
mulations are presented in Section IV. In Section V, the for-
mulations are validated by way of simulations of coupling be-
tween a pair of infinitesimal dipole antennas in both free-space
and a rectangular cavity. Applications and possible extensions
of this work are discussed in Section VI. A summary is given in
Section VII.

II. COUPLING FORMULATION

Fig. 1 describes antenna-antenna and antenna-environment
interactions in an arbitrary environment by use of a signal flow
graph. The spherical modal signal flow graph describes the char-
acteristics of the environment and each antenna in terms of scat-
tering parameters relating inward and outward going waves at
different “ports.” The “ports” in Fig. 1 are the physical antenna
ports as well as radiation ports at the spherical interfaces, and
, bounding each of the antennas. Fig. 1(a) presents a partial

signal flow graph description that also illustrates the physical
aspects of the problem; the full signal flow graph is presented in
Fig. 1(b). Simplifications of Fig. 1(b) have been previously used
to describe antenna-antenna interactions for spherical near-field
antenna measurements in anechoic (i.e., nominally free-space)
environments [6] as well as for a single antenna in the presence
of a scatterer [18], [19].

U.S. Government work not protected by U.S. copyright.
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Fig. 1. Description of coupling between antennas in an arbitrary environment.
(a) Diagram representation. (b) Signal flow graph representation.

We specify that the antenna and environment scattering pa-
rameters are defined with respect to the characteristic imped-
ances of the radiation and antenna ports. For convenience, we
impose the constraint that the characteristic impedances of the
antennas’ physical ports be identical. We also emphasize that
the antenna and environment scattering parameters described in
Fig. 1 are defined with respect to spherical interfaces, and
, of finite radii. This is in contrast to the classically-defined

antenna scattering parameters (e.g., those presented in [6]) that
are defined with respect to spherical interfaces of infinite radius.
We revisit this point in Section IV, where we present an alterna-
tive formulation that is compatible with the classically-defined
antenna scattering parameters.
The following sections present a qualitative description of the

antenna and environment scattering parameter matrices used in
Fig. 1’s signal flow graph and the associated coupling equations
for two antennas in an arbitrary environment. A rigorous math-
ematical definition of the environment scattering parameter ma-
trices is given later in Section III.

A. Antenna Scattering Parameter Matrices

An antenna may be described by four scattering parameters
analogous to the scattering parameters of a typical two-port
system [6]. With respect to antenna #1, is a com-
plex scalar describing the antenna’s free-space reflection coef-
ficient, is a complex column vector describing the
antenna’s transmit properties, is a complex row
vector describing the antenna’s receive properties, and

is a complex matrix describing the antenna’s bistatic
scattering properties. The reflection coefficient is defined at
“Port 1” in Fig. 1; the transmission, reception, and scattering
properties are defined at radiation ports located on the spherical
interface bounding the antenna. The quantity is the finite
number of spherical modes required to describe the antenna’s
transmitting, receiving, and scattering characteristics [6], [20].
The description of antenna #2 is analogous with defined at
“Port 2,” and , , and
defined at radiation ports located on the bounding spherical in-

terface . Following the classical scattering matrix description
of antenna coupling, we define the bistatic scattering matrix of
free space as an identity matrix, , whereby the bistatic scat-
tering matrix describes the total (i.e., incident plus scat-
tered) field arising when a set of inward propagating waves im-
pinge on the antenna [6].

B. Environment Scattering Parameter Matrices

The environment may likewise be described by four scat-
tering parameters: , ,

, and . The matrix with , 2 and
, 2 relates the outward propagating spherical waves

at to the inward propagating spherical waves at . We
emphasize that, like the antenna scattering parameters, are
bona fide scattering parameters defined when all radiation ports
are terminated with perfectly matched loads.

C. Coupling Equations for Two Antennas in an Arbitrary
Environment

Starting from the signal flow graph presented in Fig. 1(b),
conventional signal flow graph manipulations1 or, alternatively,
matrix manipulations may be used to solve for the four scalar
scattering parameters of the overall antenna-environment-an-
tenna system. The solutions for and are given in (1) and
(2), respectively. Solutions for and may be determined
from (1) and (2) by interchanging “1” and “2” in the subscripts.

(1)

(2)

In (1) and (2), we have also identified three different types
of multiple scattering terms that are associated with feedback in
the signal flow graph. These terms have the following physical
interpretation.
A: Multiple scattering between antenna #1 and the

environment.
B: Multiple scattering between antenna #2 and the

environment.
C: Multiple “round trip” scattering between antenna #1, the

environment, and antenna #2.

III. ENVIRONMENT SCATTERING PARAMETER MATRICES

The previous sections demonstrated the utility of the envi-
ronment scattering parameter matrices in succinctly de-
scribing antenna coupling for arbitrary environments. In this
section, we develop a mathematical description of by way
of the environment’s response to an outward propagating spher-
ical modal excitation. We proceed by first determining the en-

1The process is analogous to the more common scalar signal flow graph ma-
nipulations described in [21], except that care must be taken with the order of
the noncommutative matrix products.
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vironment’s impedance parameter matrices, denoted , and
then calculating the environment’s corresponding scattering pa-
rameter matrices . This is convenient because whereas
is defined when all unexcited ports to be open-circuited,
is defined when all ports are terminated in a nonreflecting load
[22]. For spherical waves propagating into and out of radiation
ports, the open-circuit condition corresponds to free space, and
the nonreflecting load condition corresponds to a canonical min-
imum scattering antenna, as described in [23], [24]. In terms of
setting up the problem, the free-space termination condition is
inherently less complex than specifyingminimum scattering an-
tennas at all radiation ports. Here, we use the term “free space”
to describe a scatterer-free space that is isotropic and homo-
geneous with a permittivity and permeability matching its sur-
roundings. It is assumed that the antenna scattering parameters
are calculated when the antennas are placed within an equiva-
lent “free space”.
We begin by reviewing relevant properties of spherical

waves. Then, we describe the environment’s total field due to a
spherical modal excitation and determine a spherical wave ex-
pansion of this total field. Next, we relate the modal coefficients
of the expansions to the elements of the impedance parameter
matrices . Finally, we convert the impedance parameter
matrices to the desired scattering parameter matrices .

A. Spherical Waves

Following the conventions of [6] with the substitution
, we denote a vector spherical wave of mode and

type , as , where , , and denote the radial
distance, zenith angle, and azimuth angle, respectively, of the
spherical coordinate system. For the sake of brevity, we omit a
mathematical definition of ; see [6] for a rigorous
definition. As in [6], we will generally favor a simplified single
index mode notation for spherical waves whereby the index
denotes the triple index such that

. The index denotes the type of spher-
ical wave; here, we make use of outward propagating waves
( ), inward propagating waves ( ), and standing waves
( ). These waves are related by the following equality:

(3)

The electric field corresponding to a given spherical wave is
given by [6]

(4)

where is the observation point in spherical coordi-
nates, is the wavenumber of the time-harmonic field, and

denotes the wave impedance of the dielectric medium
having permeability and permittivity .
Within a source-free, isotropic, and homogeneous region

that contains the origin, an arbitrary time-harmonic electric
field of wavenumber may be expanded as a weighted
summation of standing ( ) spherical waves according to

(5)

The modal coefficients may be determined from observa-
tions of along a bounding spherical interface . Assuming
is centered about the origin with a radius , the resulting co-

efficients are given by [6]

(6)

where denotes the mode index used to extract
the th mode’s coefficient; is given by

for

for

(7)

and denotes the th order spherical Bessel function of the
first kind.

B. Electric Field due to a Spherical Modal Excitation

Consider the total field at some observation point due to a
source centered about and radiating a single spherical wave
of mode into an arbitrary environment. Using conventional
electric field formulations based on dyadic Green’s functions
(see [25]), we define this total field, denoted , as

(8)

where is the environment’s electric dyadic Green’s
function, and is a modal current density characterized by
the following properties:

(9)

and

(10)

In (10), is the free-space (i.e., infinite scatterer-free
space) electric dyadic Green’s function. The current density

defines the excitation for a unit amplitude outward
propagating ( ) spherical wave of mode . For arbitrary
, analytic representations for have been presented in
the literature [26], [27]. As a special case of (8), we define

as the total field arising when this modal current
source is located at in free-space

(11)

Note that in (8)–(11), we have used superscripts to distinguish
between Green’s functions and total field response functions for
the arbitrary environment (“ ”) and free space (“ ”).

C. Spherical Wave Expansion of the Electric Field Due to a
Spherical Modal Excitation

We consider spherical wave expansions of for two
configurations relevant to our determination of : 1) when
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Fig. 2. Two scenarios for determining the environment’s impedance parameter
matrices . (a) Source at exterior to the bounding sphere . (b) Source
interior to and centered within at . For both scenarios, the coordinate
system’s origin coincides with the center of the bounding spherical interface .

(the origin of the spherical wave) is exterior to , and 2) when
is centered within and bounded by . We assume that the

spherical interface has a radius and bounds a homogeneous
and isotropic volume. For convenience, we will also assume
that is centered about the origin. Fig. 2 illustrates the problem
geometry for the two cases.
1) Exterior Source: For the exterior source problem,

is source-free within . This allows the total field
on to be expanded as a weighted summation of

spherical standing waves ( )

(12)

where denotes the complex coefficients for each of the
standing waves. Using (6), the modal coefficients for the ex-
terior source problem are given by

(13)
2) Interior Source: For the interior source problem,

for may be described by a superposition of standing
waves ( ) plus a single outward propagating wave ( ).
Thus, for an interior source centered about the origin

(14)
where we have isolated the source’s free-space contribution
using the free-space electric field modal response function
defined in (11). By removing this free-space contribution and
then applying (6), the modal coefficients are given by

(15)

D. Solution for the Impedance Parameter Matrices,

The expansions coefficients in (13) and (15) describe
the environment’s response to a modal excitation for free-space
termination conditions. Recognizing that the excitation corre-
sponds to an outward propagating wave with a coefficient of
unity, the coefficients , along with the radiation ports’ char-
acteristic impedances, lead directly to the self- and mutual-im-
pedances of the environment.
Combining (13) and (15), and recognizing that the exterior

and interior source problems correspond to and ,
respectively, the environment’s impedance parameter matrices
are given by

(16)

where the elements of are given by (18), shown at the
bottom of the page, and is a diagonal matrix of complex
characteristic impedances whose th diagonal element is

(17)

where is the characteristic impedance of the th spherical
interface’s th radiation port of mode .

In (18), is associated with the standing wave of

mode at the th antenna’s bounding spher-
ical interface arising due to an excitation of mode

originating at the th antenna’s bounding spher-
ical interface , is the mode used to ex-
tract the standing wave of mode , and the coordinate system’s
origin is assumed to be centered within the spherical interface
, which bounds and is nominally centered about the th an-

tenna (i.e., ). Due to the factor of one-half in (18),
relate outward propagating waves originating at the th antenna
to inward propagating waves incident on the th antenna (for
free-space termination conditions). In Section IV, we use this
physical interpretation of to formulate an alternative set of
antenna coupling equations analogous to those used in spherical
near-field antenna measurements.

E. Solution for the Scattering Parameter Matrices,

Using (16) and the impedance-to-scattering parameter matrix
transformation described in Appendix A, the environment scat-
tering parameters are given by:

(19)

where is a diagonal matrix whose th diagonal element is

(20)

for

for
(18)
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and is an auxiliary matrix that is related to by

(21)

In (21), and are block matrices given by

(22)

(23)

In the following section, we show how the environment scat-
tering parameter decomposition given in (19) leads to a sim-
plification of the coupling equations presented in (1)–(2) that
are compatible with the classically-defined antenna scattering
parameters.

IV. ALTERNATIVE COUPLING FORMULATIONS

A. “Far-Field” Formulation

As discussed in Appendix A, the antenna scattering parame-
ters allow for a decomposition similar to (19); specifically2

(24a)

(24b)

(24c)

(24d)

where and are scalar analogs of the diagonal matrices
and but defined in terms of the characteristic impedances
of the antennas’ physical ports (i.e., Ports #1 and #2 in Fig. 1).
As discussed in AppendixA, (24)’s decomposition relates an an-
tenna’s so-called “near-field” scattering parameters ( , , ,
and ) defined at a finite-radius spherical interface to so-called
“far-field” scattering parameters ( , , , and ) defined at
an infinite-radius spherical interface. The “near-field” antenna
(and environment) scattering parameters correspond to those
described in Section II, whereas the “far-field” antenna scat-
tering parameters are exactly those used in classical spherical
modal descriptions of radiating and scattering structures.
When the “near-field” antenna and environment scattering

parameter matrix decompositions are substituted into the cou-
pling (1)–(2), the diagonal matrices and the scalar

will cancel3 with their associated inverses. This leads
to an equivalent coupling formulation expressed in terms of the
“far-field” antenna and environment scattering parameters. The
associated coupling equations may be attained by performing
the following substitutions on (1) and (2):

(25a)

(25b)

2Note that , whereby the antenna’s reflection coefficient is unaf-
fected by the specification of the radiation ports’ spherical interface as may be
expected.
3The scalar cancels because we have specified the characteristic im-

pedances of the two antenna ports to be identical.

(25c)

(25d)

(25e)

Coupling equations based on (1)–(2) with the substitutions indi-
cated by (25) allow for direct substitution of the classically-de-
fined “far-field” antenna scattering parameters.

B. “Open-Circuit” Formulation

The matrices describe the reflection and transmission of
spherical waves under free-space termination conditions. This
provides a classical scattering matrix description of the environ-
ment that aligns with the physical interpretation of the transmis-
sion/translation matrices used in free-space antenna coupling
formulations (e.g., [6]) while also allowing for use of the “far-
field” antenna scattering parameters. These observations sug-
gest that an alternative, albeit equivalent, antenna coupling for-
mulation may be attained by performing the following substitu-
tions on (1) and (2):

(26a)

(26b)

(26c)

(26d)

(26e)

Coupling equations based on (1)–(2) with the substitutions indi-
cated by (26) may be interpreted as extensions to the classic cou-
pling equations used in free-space antenna and electro-acoustic
transducer characterizations [2], [6], [28].

V. NUMERICAL SIMULATIONS

In the following sections, we present example numerical re-
sults for our formulation for the case of -polarized infinites-
imal electric dipole antennas in free space and an ideal rectan-
gular cavity. Our numerical simulations were based on the alter-
native formulation described in Section IV-B. The integral ap-
pearing in (18) was evaluated by use of first-order linear spher-
ical interpolation/integration (see [29], [30]) of observations
on a 12-point icosahedral mesh lying on a spherical interface
of radius . Note that, because the simulations used
-polarized infinitesimal electric dipoles, we only had to con-
sider a single spherical mode . As
a partial validation of our formulation, we compared numer-
ical results to those obtained from environment-specific calcu-
lations of the antennas’ self- and mutual impedance by use of
the induced EMF method [31, Chapter 7]. As in [32], the en-
vironment-specific calculations of the dipoles’ self- and mutual
impedances were determined from the environment’s electric
dyadic Green’s function.

A. Free-Space Environment

The problem geometry for the free-space environment is il-
lustrated in Fig. 3. Two lossless and perfectly matched -polar-
ized infinitesimal electric dipoles are positioned on the -axis
within a free-space environment and separated by a distance .
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Fig. 3. Diagram of the free-space environment test case.

Fig. 4. Comparison of the simulated and analytic scattering parameters for two
perfectly matched -polarized infinitesimal electric dipoles on the -axis sepa-
rated by a distance : (a) and (b) .

Fig. 4 compares the simulation’s antenna port scattering param-
eters, and , with those computed by way of the EMF
method for . The dotted lines indicate the rel-
ative error in the simulated scattering parameters is approxi-
mately constant and less that for . Repeated
simulations with smaller bounding spherical interfaces resulted
in even smaller relative errors for all . Similar error reductions
were obtained by increasing the number of observation points
on the bounding spherical interface. This indicated that the rel-
ative error was dominated by the accuracy of the numerical im-
plementation of (18) as might be expected.

B. Rectangular Cavity Environment

The geometry of the rectangular cavity test environment
is illustrated in Fig. 5. Two lossless and perfectly matched

Fig. 5. Diagram of the 3-D rectangular cavity test case corresponding to a slice
in the - plane containing the two -polarized dipoles. The two antennas were
centered with respect to the dimension of the cavity, which spanned 7 m.

-polarized infinitesimal electric dipoles were positioned in
a 6 m 7 m 3 m lossless rectangular cavity with perfectly elec-
trically conducting walls. The first antenna was centered within
the cavity, and the second antenna was positioned 1.5 m from
the first antenna along the -direction. The implementation of
the rectangular cavity dyadic Green’s function was based on
the computationally efficient representations described in [33].
Fig. 6 compares the simulation’s antenna port scattering pa-

rameters, , , and , with those computed by way of the
EMF method for frequencies ranging from 100 MHz to 1 GHz.
The relative error for the rectangular cavity test case fluctuates
around . As in Fig. 4, the relative errors in Fig. 6 were dom-
inated by the accuracy of the numerical implementation of (18).
The variations in this error are attributed to the rapid variations
in the values of , , and due to the cavity’s resonances.

VI. APPLICATIONS

The coupling equations given by (1)–(2), along with the al-
ternative formulations presented in Section IV, provide a frame-
work for analyzing antenna coupling in arbitrary environments.
In the following, we discuss the pros and cons of two pos-
sible applications of this framework: electromagnetic simula-
tions and analytic analysis. In a forthcoming paper [34], we
demonstrate the utility of this framework for analytic analysis
by deriving the spatial autocovariance of scattering parameters
measured in a reverberation chamber.

A. Electromagnetic Simulations

As demonstrated by the numerical validation in Section V,
the coupling equations may be used to conduct full-wave elec-
tromagnetic simulations of antennas in different environments.
The advantage of such a solver lies in the decomposition of
the overarching coupling problem into independent calcula-
tions of the scattering parameter matrices for the antennas and
environment. Thereby, a given environment only needs to be
characterized (in terms of impedance or scattering parameter
matrices) once; thereafter, antenna coupling may be rapidly
computed for any pair of known antennas in that environment.
However, the antenna’s bistatic scattering matrices are rarely
known, and determining numerically or experimentally is
extremely time-consuming [8], [35]–[38]. Numerically calcu-
lating the electric field due to a modal excitation,
defined in (8), is also computationally expensive. For these
reasons, extending the simulation setup described in Section V
to more realistic antennas may not be worth the effort.
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Fig. 6. Comparison of the simulated and analytic scattering parameters for a
pair of -polarized perfectly matched infinitesimal electric dipoles: (a) ,
(b) , and (c) .

The situation improves somewhat when considering more
complex scattering environments that allow for a statistical de-
scription of or . This could be useful for numerically in-
vestigating the coupling between two antennas inside of a rever-
berant cavity (e.g., a reverberation chamber). The availability of
statistical models for the impedance and scattering parameter
matrices for reverberant cavities (see [39]–[42]) eliminates the
need to compute . However, the computational effort
required to determine the antennas’ bistatic scattering matrices
must still be considered.

B. Analytic Analysis

The framework also enables analytic investigations of
antenna coupling. For example, by nature of the spherical
wave formulation considered here, the framework enables
a closed-form analytic solution to antenna coupling for the
spherical cavity environment. This could serve as a canonical
reference environment for studying antenna coupling in ar-
bitrary reverberant cavities. Simplifications are possible with
additional knowledge of the antennas and/or environment
(e.g., reciprocity and passivity). For example, by following the
antenna reciprocity proof in [6], it may be shown that for a
reciprocal environment

(27)

Equation (27)’s notation follows that used in (18) with the ad-
ditional mode index . Combining environ-
ment and antenna reciprocity with the reciprocity constraint that

or, alternatively, combining lossless environments
and antennas with the energy constraint that
may lead to further simplifications that elucidate the under-

lying physical constraints of certain scattering and propagation
problems.
Approximations to the coupling equations are possible when

antenna-antenna and antenna-environment interactions are
weak and dominated by first-order antenna/environment scat-
tering. When valid, the multiple scattering terms of the form

in the coupling equations may be approximated as
[43]

(28)

provided where denotes the matrix norm. In a
forthcoming paper [34], we demonstrate how (28) may be used
to simplify the coupling equations for the case of a lossy rever-
beration chamber. This simplified coupling model is combined
with a statistical description of the environment to derive the
spatial autocovariance of -parameters measured in a lossy re-
verberation chamber.

VII. SUMMARY

This work presented a rigorous framework for analyzing
coupling between antennas in arbitrary environments. The
framework decomposes the coupling problem into antenna and
environment terms that may be characterized independently
of each other. Three equivalent formulations were presented.
In the first formulation, the environment was characterized for
the case of nonreflecting loads at the environment’s radiation
ports defined at finite-radii spherical interfaces. Simplification
of this formulation resulted in a secondary formulation that
is compatible with classically-defined antenna scattering pa-
rameter matrices. The third formulation used an environment
description that shares the same physical interpretation as the
transmission/translation matrices used in conventional spher-
ical near-field antenna coupling formulations. The formulations
provide a framework for investigating deterministic and sto-
chastic coupling between antennas in canonical and complex
environments, respectively.
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APPENDIX
RELATIONSHIP BETWEEN IMPEDANCE AND SCATTERING

PARAMETER MATRICES

Characteristic Impedance of a Radiation Port: For an
origin-centered and unit amplitude outward propagating spher-
ical wave of mode , the complex power traversing
a spherical interface of radius centered about the origin is
(cf. [6, eq. (2.43)–(2.53)])

(29)

In general, is complex. However, it may be shown that
as whereby is purely real.

The corresponding radiation port’s characteristic impedance
at the interface may be defined in terms of a pair of

voltage- and current-like quantities and such that [44]

(30)

with the constraint that

(31)

This representation allows for a fair amount of freedom in the
specification of either or . For convenience, we specify
that be purely real. Note that .

Fundamental Relationship: Suppose a multiport system
with impedance parameter matrix relating currents to volt-
ages at each port. The corresponding scattering parameter ma-
trix description of this system, defined with respect to the ports’
characteristic impedances, is given by [44]

(32)

where is a diagonal matrix of potentially complex character-
istic impedances and is a diagonal matrix of coefficients that
map voltages to wave amplitudes. The th diagonal element of
corresponds to the characteristic impedance of the th

port’s mode , and the th diagonal element of is given by4

(33)

An Impedance Parameter Matrix Decomposition: Con-
sider an impedance parameter matrix decomposition

(34)

analogous to that used in (16). Substituting (34) into (32) and
rearranging terms yields

(35)

4Our representation of is a simplification of that presented in [44], because
we have required that be purely real

“Near-Field” and “Far-Field” Scattering Parameters:
For the case of purely real characteristic impedances,

and (35) becomes

(36)

where we have modified our notation to distinguish (35) from
(36) and be consistent with the preceding sections.
For spherical waves in a lossless medium, (36) defines the

scattering parameter matrix when the radiation ports are de-
fined on an infinite radius spherical interface such that , and
thereby , is purely real. This indicates that is a scattering
parameter matrix description of the system as observed in the
far field. The diagonal matrix and its inverse provide
a transformation between this “far-field” scattering parameter
matrix and (35)’s “near-field” scattering parameter matrix de-
scription , which is defined with respect to a finite radius spher-
ical interface. For a lossy medium, this physical interpretation
and the associated nomenclature breaks down, because an in-
ward propagating wave originating at infinity requires infinite
power. Regardless, (35)’s mathematical description of the scat-
tering parameter matrix remains valid, and the “near-field” and
“far-field” terminology is useful for distinguishing between
and , respectively.
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