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Abstract 
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1. Introduction 

2Let K be an algebraically closed field of characteristic greater than 3. Let E : y = 
3x + Ax + B be an elliptic curve defined over K, and Q = (xQ, yQ)  = ∞ a point on E. 

Let Pi = (xi, yi) be the n2 points such that [n]Pi = Q, where n ∈ Z, (char (K),n)=1. The 
Pi are known as the n-division points of Q. In [4], Feng and Wu showed that 

1
 
n

xi2 = xQ, 
n

i=1 

2n 

n

yi = nyQ.2n
i=1 

This shows the mean value of the x-coordinates of the n-division points of Q is equal to 
xQ, and nyQ for the y-coordinates. In this paper we establish a similar formula for elliptic 
curves in twisted Edwards form. Our main result is given below. 

Theorem 1. Let Q  = (0, ±1) be a point on a twisted Edwards curve. Let Pi = (xi, yi) be 
the n2 points such that [n]Pi = Q. 

If n is odd, then 

2n1
 

2nn
n 

i=1 

1
 
2n

1 
xi = xQ, 

2nn
n 

i=1 

1
 
2n

(−1)(n−1)/2 

yi = yQ. 

If n is even, then
 

1
 
2nn
xi = 0,

2n
i=1 

1
 
2nn

2 yi = 0. 
n

i=1 

Edwards curves are a new model for elliptic curves which have been shown to have 
uses in cryptography [1],[2],[5]. They have not been studied nearly as well in comparison 
to the more commonly used Weierstrass curves. While this paper has no direct applications 
in cryptography, a better understanding of Edwards curves could lead to improvements in 
future cryptographic uses. For example, given points P and Q = [n]P on an elliptic curve, 
the discrete log problem is to find n. It is crucial for elliptic curve cryptography that this 
problem is computationally infeasible. Theorem 1.1 provides us with some information 
about the value n. 

This paper is organized as follows. In section 2 we review twisted Edwards curves, and 
in section 3 we look at their division polynomials. The twisted Edwards division polyno
mials, introduced in [6], [7], are an analogue to the classical division polynomials and a 
key ingredient of the proof of Theorem 1. We prove Thereom 1 in section 4. Section 5 
concludes with a look at some open questions. 
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2. Twisted Edwards curves 

H. Edwards recently proposed a new parameterization for elliptic curves [3]. These Ed
wards curves are of the form 

2 2Ed : x + y 2 = 1 + dx2 y , 

with d = 1, d ∈ K. In [1], Bernstein et al. generalized this definition to twisted Edwards 
curves. These curves are given by the equation 

2 2Ea,d : ax + y 2 = 1 + dx2 y , 

where a and d are distinct, non-zero elements of K. Edwards curves are simply twisted 
Edwards curves with a = 1. The addition law for points on Ea,d is given by:   x1y2 + x2y1 y1y2 − ax1x2

(x1, y1) + (x2, y2) = , . 
1 + dx1x2y1y2 1 − dx1x2y1y2

If a is a square and d is not a square in K, then the addition law is complete. This means 
that the addition formula is valid for all points, with no exceptions. The addition law for 
Weierstrass curves is not complete, which is one of the advantages of Edwards curves. The 
additive identity on Ea,d is the point (0, 1), and the inverse of the point (x, y) is (−x, y). 

There is a birational transformation from Ea,d to change it to a curve in Weierstrass 
form. The map   

φ : (x, y) → (5a − d) + (a − 5d)y 
12(1 − y) 

, 
(a − d)(1 + y) 
4x(1 − y)

(1) 

maps the curve Ea,d to the curve 

2 a2 + 14ad + d2 a3 − 33a2d − 33ad2 + d3 

E : y = x 3 − x − . 
48 864 

This map holds for all points (x, y), with x(1− y) = 0. For these points, we have φ(0, 1) = 
∞, and φ(0, −1) = (a+d , 0).6 

3. Division polynomials for twisted Edwards curves 

We will need some results from [6], [7], concerning division polynomials for twisted Ed
wards curves. These polynomials are the analogue of the classical division polynomials 
associated to Weierstrass curves. In fact, the twisted Edwards division polynomials are the 
image of the classical division polynomials under the birational transformation (1) given in 
the last section. Standard facts about the classical division polynomials can be found in [8] 
or [9]. 

Theorem 2. Let (x, y) be a point on the twisted Edwards curve Ea,d, with (x, y) = (0, ±1). 
Then for positive integers n ≥ 1 we have   φn(x, y)ψn(x, y) φn(x, y) − ψn

2 (x, y)
[n](x, y) = , ,

ωn(x, y) φn(x, y) + ψ2 (x, y)n



4 D. Moody 

where 
ψ0(x, y) = 0, 

ψ1(x, y) = 1, 

(a − d)(y + 1) 
ψ2(x, y) = , 

x(2(1 − y)) 

(a − d)3(−dy4 − 2dy3 + 2ay + a)
ψ3(x, y) = ,

(2(1 − y))4 

2(a − d)6y(1 + y)(a − dy4)
ψ4(x, y) = , 

x(2(1 − y))7 

ψ2k+1(x, y) = ψk+2(x, y)ψk
3(x, y) − ψk−1(x, y)ψk

3
+1(x, y) for k ≥ 2, 

ψk(x, y)
ψ2k(x, y) = (ψk+2(x, y)ψk

2 
−1(x, y) − ψk−2(x, y)ψk

2
+1(x, y)) for k ≥ 3,

ψ2(x, y) 

and 
(1 + y)ψ2 (x, y) 4ψn−1(x, y)ψn+1(x, y)nφn(x, y) = − ,

1 − y a − d 

2ψ2n(x, y)
ωn(x, y) = . 

(a − d)ψn(x, y) 

Proof. See Theorem 5.1 in [6] or [7]. 

It is a bit of a misnomer to refer to ψn(x, y) as a division polynomial since it is not 
a polynomial. However, their behavior is largely shaped by a certain polynomial ψ̃n(y) 
in their numerator. In [6], [7], Hitt, Moloney, and McGuire showed that ψ̃n(x, y) can be 
written 

ψn(x, y) = 

⎧ ⎪⎨ ⎪⎩
 

l3n 2/8J ̃(a−d) ψn(y) if n is odd, 2−1)/2(2(1−y))(n (2)l3n 2/8J ̃(a−d) ψn(y) if n is even.
 2−2)/2x(2(1−y))(n

The first few ψ̃n(y) are 
ψ̃0(y) = 0, 

ψ̃1(y) = 1, 

ψ̃2(y) = y + 1, 

ψ̃3(y) = −dy4 − 2dy3 + 2ay + a, 

ψ̃4(y) = −2dy6 − 2dy5 + ..., 

˜ 12 − 2d3 11ψ5(y) = d3 y y + ... 

Note that ψ̃n(y) is a polynomial solely in y (and not x). We will use the recurrence 
relation they satisfy. Hitt, Moloney, and McGuire also proved a formula for their first 
coefficient, and we will establish a formula for the second leading coefficient. As will be 
shown, the second leading coefficient directly determines the mean value of the n-division 
points. 
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Proposition 3. We have   
k + 12k2+2k − 2 2k2+2k−1ψ̃2k+1(y) = d(k

2+k)/2 (−1)k y y + ... (3)
2

and 
2k2−1 2k2−2ψ̃2k(y) = d2k

2−1−l3k2/2J bky + bky + ... (4) 

where ⎧ ⎪⎪⎪k/y, if k ≡ 0 mod 4 ⎪⎨1, if k ≡ 1 mod 4 
bk = (5)⎪−k/y, if k ≡ 2 mod 4⎪⎪⎪⎩−1, if k ≡ 3 mod 4. 

Proof. As the result for the leading coefficient was shown in [6], [7], all that remains to 
be seen is that the second leading coefficient is as claimed. There are several cases to be 
considered, depending on k mod 4, since the recurrence relations for the ψ̃n(y) depends on 
n mod 4. We prove the lemma for the case when k ≡ 0 mod 4, and leave the other cases, 
which can be similarly treated. The proof is by induction. Looking at the first few ψ̃n it can 
be seen the result is true for n = 0, 1, 2, 3, 4 and 5. 

We begin with the case of n odd, n = 2k + 1. For k ≡ 0 mod 4, then the recurrence 
relation given in [6], [7] is 

4(a − d)(a − dy2)
ψ̃2k+1(y) = ψ̃k+2(y)ψ̃k

3(y) − ψ̃k−1(y)ψ̃k
3
+1(y). (6)

(y + 1)2 

Theorem 8.1 of [7] shows that when n is even, then y + 1 evenly divides into ψ̃n(y), 
so the first term is a polynomial in y. Examining degrees, we see that the degree of 
4(a−d)(a−dy2) ψ̃k+2ψ̃

3 in y is 2k2 + 2k − 2, while the degree of ψ̃k−1ψ̃
3 is 2k2 + 2k.

(y+1)2 k k+1 
As we are only concerned with the first two leading coefficients, we can ignore the first 
term in (6). Let j = k/2, an integer since k is even. By the induction hypothesis, we have   

j˜ ψ̃3 = −d(j2−j)/2 2j2−2j − 2 2j2−2j−1− y + ...ψk−1 k+1 y
2  
j + 1 3 

· d3(j2+j)/2 2j2+2j − 2 2j2+2j−1 y y + ... 
2    

j j + 1 
= −d2j2+2j 8j2+4j−1− y 8j

2+4j − (2 − 6 )y + ... 
2 2  

k + 1 
= d(k

2+k)/2 2k2+2k − 2 2k2+2k−1 y y + ... . 
2

j j+1This proves (3). Note that in the last lines, we used the fact that 2 − 6 = 2 2 
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k+1−2 . This is easy to see by writing j = 2i, as 2

j j + 1 2i 2i + 1 
2 − 6 = 2 − 6 

2 2 2 2 

= −4i 

= −k 

k + 1 
= −2 . 

2   
We now show (4). Again let k = 2j = 4i and define ej = 2j2 − 1 − 3j2/2 . The 

recurrence from [6], [7] shows that when k ≡ 0 mod 4, 

ψ̃k(y)
ψ̃2k(y) = ψ̃k+2(y)ψ̃k

3 
−1(y) − ψ̃k−2(y)ψ̃k

3
+1(y) . y + 1 

By the induction hypothesis and the results for ψ̃2k+1, we see that 

2j2−1 2j2−2ψ̃2k(y) = 
dej 

bj y + bj y + ... 
y + 1  

dej+1+j
2−j 2j2+4j+1 2j2+4j· cj+1y + cj+1y + ... 

2j2−2j−1
2 

· − y 2j
2−2j − 2lj/2Jy + ... 

− dej−1+j
2+j 2j2−4j+1 2j2−4jcj−1y + cj−1y + ...  

j + 1 2
2j2+2j − 2 2j2+2j−1 · y y + ... . 

2 

Looking at the degrees (in y) of the terms of the binomial, we see they are both equal to 
6j2 + 1, so we cannot ignore either. Observe that 

3(j + 1)2 

ej+1 + j2 − j = 3j2 + 3j + 1 − 
2 

= 3j2 + 3j + 1 − l6i2 + 6i + 3/2J 

= 3j2 + 3j + 1 − 3/2j2 − 3j − 1 

= l3j2/2J.     
Similarly, it is easy to check that ej−1 + j2 + j = 3j2/2 and ej + 3j2/2 = 2j2 − 1. 
Also e(k) = e(2j) = 8j2 − 1 −l6j2J = 2j2 − 1. Using these identities to further simplify, 
we find 

dej 
2j2−1 2j2−2 dL3j

2/2J 6j2+1ψ̃2k(y) = bj y + bj y + ... (bj+1 − bj−1)y 
y + 1 

j j + 1 6j2 
+ bj+1 − bj−1 + 4 bj+1 + 4 bj−1 y + ... . 

2 2 
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j j+1From the definition of bj we see that 4 bj+1 + 4 bj−1 = 0, so 2 2 

de(k) 2j2−1 2j2−2 6j2ψ̃2k(y) = bj y + bj y + ... 2bj+1y 6j
2+1 + 2bj+1y + ... 

y + 1
 

de(k)
 8j2 8j2−1 = 2bj bj+1y + 4bj bj+1y + ... . 
y + 1 

rRecall that if we know y + 1 divides a polynomial of the form ay + byr−1 + ..., then their 
r−2quotient is ayr−1 + (b − a)y + .... So 

8j2−2ψ̃2k(y) = de(k) 2bj bj+1y 8j
2−1 + 2bj bj+1y + ... 

= de(k) 2k2−1 2k2−2bky + bky + .... 

as desired, proving (4). As mentioned before, the cases k ≡ 1, 2, 3 mod 4 can be similarly 
handled, and we omit the details. 

The following is an easy consequence. We leave the proof to the reader. 

Corollary 4. We have 

φ2k+1(y) − ψ2
2 
k+1(y) − yQ(φ2k+1(y) + ψ2

2 
k+1(y))
 

(a − d)3(k
2+k)dk

2+k
 
(2k+1)2 4(k2+k)= y − yQ(−1)k(2k + 1)y + ... , 

24(k2+k)−1(1 − y)4(k2+k)+1 

and 

φ2k(x, y) − ψ2
2 
k(x, y) − yQ φ2k(x, y) + ψ2

2 
k(x, y) 

4k2 4k2−1= (−1)k (a − d)3k
2−1dk

2 

(1 − (−1)k)y + 0y + ... 
24k2−2(1 − y)4k2 

4. Mean Value Theorem 

We now state and prove our mean-value theorem for twisted Edwards curves. 

Theorem 5. Let Q = (0, ±1) be a point on the Edwards curve Ea,d. Let Pi = (xi, yi) be 
the n2 points such that [n]Pi = Q. 

If n is odd, then 

2nn1 1 
xi = xQ, (7)

2n n 
i=1 

2nn (−1)(n−1)/21 
yi = yQ. (8)

2n n 
i=1 
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If n is even, then
 

1
 
xi = 0, (9) 

n

2n
i=1 

2 n 

n

2n
i=1 

2 n1
 
yi = 0. (10) 

Proof. For odd n, the approach is similar to that used by Feng and Wu in [4]. By Theorem 
2, we see [n](x, y) = Q if and only if 

φn(x, y)ψn(x, y) φn(x, y) − ψ2 (x, y)n, = (xQ, yQ). 
(x, y) (x, y) − ψ2 (x, y)ωn φn n

In other words, 

φn(x, y) − ψ2 (x, y) − yQ φn(x, y) − ψ2 (x, y) = 0.n n

From Corollary 4, for odd n this is equivalent to 

y
 n
2 n2−1− (−1)(n−1)/2 nyQy + ... = 0,
 

(we need not worry about when y = 1 since Q = (0, 1)). This polynomial has as roots the 
2n yi. So it must also be equal to the polynomial 

2� 

−( ) = ( ) + (1 0) Eonax, y y, ax ., 1,d/a

n

(y − yi). 
i=1 

nComparing the y
2−1 coefficients of these two equal polynomials, equation (8) follows 

immediately. 
The result for the x-coordinates in (7) could be established by rewriting the divi

sion polynomials in terms of x, however we prefer the following approach. Define a √ 
map Φ : Ea,d → E1,d/a by Φ(x, y) = ( ax, y). Using the addition law it is easily √ 
verified that Φ is a homomorphism. So if [n](x, y) = (xQ, yQ), then [n]( ax, y) = √ 
[n√]Φ(x, y) = Φ([√n](x, y)) = Φ(Q) = ( axQ, yQ) on E1,d/a. Observe also that 

√ 
√ By what we just noted the ( axi, yi) are the n2 points on E1,d/a which satisfy [n]P = 
( axQ, yQ). So then 

√ √ 
( axQ, yQ) = [n] (yi, − axi) + (−1, 0) 

(11)√ 
= [n](yi, − axi) + [n](−1, 0). 

It is not hard to see that for odd n, 

(−1)(n+1)/2[n](−1, 0) = , 0 
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on E1,a/d. Rewriting (11), we see that 

yi, −
√ 
axi = 

√ 
axQ, yQ + (−1)(n−1)/2 , 0 

√ 
a(−1)(n+1)/2 = (−1)(n−1)/2 yQ, xQ . 

By the result for the y-coordinates (8) (which we already showed), we then have 

2nn √ √ 
a(−1)(n+1)/2− axi = (−1)(n−1)/2 n xQ . 

i=1 

Thus (7) follows immediately.  2nWe now show that if n is even, then = 0. Assuming this, by repeating the i=1 yi  2nabove argument to swap the x and y-coordinates it follows that = 0 as well. We i=1 xi 2ncould use Corollary 4 again to show i=1 yi = 0, but we illustrate a different technique. 

Lemma 6. Let P1, P2, P3, and P4 be the 4 distinct points on Ea,d such that [2]Pi = Q, 
where Q = (0, ±1). Then 

4 4n n 
xi = 0 = yi. 

i=1 i=1 

Proof. Note that if [2](xi, yi) = Q then necessarily [2](−xi, −yi) = Q, as [2](xi, yi) = 
[2](−xi, −yi) directly from the addition formula for Edwards curves. From this the result 
follows immediately. 

We now show how combine mean value results for n-division points and m-division 
points to obtain one for the mn-division points.  2  2m mProposition 7. Fix m and n. Suppose we have that = cmxQ and = i=1 xPi i=1 yPi 

2dmyQ for some constants cm, dm which depend only on m, whenever the Pi, i = 1, 2, ..., m
are points such that [m]Pi = Q, for some Q = (0, ±1). Similarly, suppose we have that 2  2n n= enxS and = fnyS for some constants en, fn which depend only on i=1 xRi i=1 yRi 

n, where the Ri, i = 1, 2, ..., n2 are points such that [n]Ri = S, for some S = (0, ±1). 
Then given (mn)2 points T1, T2, ..., T(mn)2 on Ea,d such that [mn]Ti = U for some  (mn)2  (mn)2 

U = (0, 1). Then xTi = cmenxU and yTi = dmfnyU .i=1 i=1 

Proof. Consider the set of points {[m]T1, [m]T2, ..., [m]T(mn)2 }. Each element [m]Ti sat
isfies [n]([m]Ti) = U . So this set must be equal to the same set of n2 points V that satisfy 
[n]V = U . Call this set {V1, V2, ..., V 2 }. For each Vj , there must be m2 elements of the n

2Ti which satisfy [m]Ti = Vj . This partitions our original set of the (mn)2 points Ti into n
subsets of m2 points. Then by assumption, we have 

2(mn)2 nn n 
xTi = cmxVi = cmenxU , 

i=1 i=1 
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and 
2(mn)2 nn n 

yTi = dmyVi = dmfnyU . 
i=1 i=1 

For example, fix an elliptic curve and suppose we know the mean value of the x
9coordinates of the 3-division points, or = 3xQ. Similary if know the same for i=1 xi 

25the 5-division points, = 5xQ, then by Proposition 7 we know the mean value for i=1 xi 
225the 15-division points. It will be i=1 xi = 15xQ. 

Combining Proposition 7 and Lemma 6 we can conclude by induction that whenever 
n nn = 2k we have 
2 

= 0 = 
2 

. Together with the earlier results (7) and (8) i=1 xPi i=1 yPi 

for odd n, this shows (9) and (10). 

We remark that Theorem 5 was proved for points Q = (0, ±1). When Q = (0, ±1) then 
2 2n nwe claim i=1 xi = 0 = i=1 yi. Let Pi be the n2 points which satisfy [n]Pi = (0, ±1). 

If Pi is one of our n2 points, then −Pi is also. The only time Pi = −Pi are the points 
n(0, ±1). Then clearly 
2 

= 0. Then we repeat our trick of switching the x and yi=1 xi 
coordinates to get the same result for the sum of the yi. 

5. Conclusion 

Feng and Wu proved a mean value theorem for the x-coordinates of the division points on 
an elliptic curve in Weierstrass form using division polynomials. In this paper we showed 
similar results hold for both the x and y-coordinates on twisted Edwards curves. 

Based on numerical examples, we conjectured the following mean value formula for 
the y-coordinate of the n-division points on an elliptic curve in Weierstrass form. If (xi, yi) 

2 3are the n2 points such that [n]P = Q = ∞ on E : y = x + Ax + B, then 

2nn1 
yi = nyQ. (12)

2n
i=1 

Feng and Wu have since been able to prove this [4], although not with their technique of 
2using division polynomials. It fails as the polynomial satisfied by the n y-coordinates is a  2npolynomial in x and y, not just y. Thus we cannot set it equal to (y − yi). It would i=1

be interesting to see if the argument can somehow be modified to prove (12) with division 
polynomials. It is an open problem to see if mean value theorems can be found for other 
models of elliptic curves, such as Hessian curves, Jacobi intersections, and Huff curves. 

References 

[1] Bernstein, D.; Birkner, P.; Joye, M.; Lange, T.; Peters C. Twisted Edwards curves In 
Progress in cryptology—AFRICACRYPT 2008 proceedings; editor Vaudenay, S.; Ed.; 
Lecture Notes in Comput. Sci. 5023, Springer: New York, NY, 2008, pp. 389–405. 



11 Mean value formulas for twisted Edwards curves 

[2] Bernstein, D.; Lange, T. Faster addition and doubling on elliptic curves In Advances 
in cryptology— ASIACRYPT 2007 proceedings; editor Kurosawa, K.; Ed.; Lecture 
Notes in Comput. Sci. 4833, Springer: New York, NY, 2007 pp. 29-50. 

[3] Edwards, H. A normal form for elliptic curves. Bull. Amer. Math. Soc. 2007, 44, pp. 
393-422. 

[4] Feng R.; Wu, H. (2009). A mean value formula for elliptic curves. Available at http: 
//eprint.iacr.org/2009/586.pdf 

[5] Hisil, H.; Carter, G.; Dawson, E. New formulae for efficient elliptic curve arithmetic In 
Proceedings of INDOCRYPT 2007; editor by Srinathan, K.; Pandu Rangan, C.; Yung, 
M.; Eds.; Lecture Notes in Comput. Sci. 4859, Springer: New York, NY, 2007, pp. 
138–151. 

[6] Hitt, L.;	 Mcguire, G.; Moloney, R. (2008). Division polynomials for twisted 
Edwards curves. Available at http://arxiv.org/PS_cache/arxiv/pdf/ 
0907/0907.4347v1.pdf 

[7] McGuire, G.; Moloney, R. (2010). Two Kinds of Division Polynomials For Twisted 
Edwards Curves. Available at http://arxiv.org/PS_cache/arxiv/pdf/ 
0907/0907.4347v1.pdf 

[8] Silverman, J. The arithmetic of elliptic curves; Springer-Verlag: New York, NY, 1986; 

[9] Washington, L. Elliptic curves (Number theory and cryptography); Second edition. 
Chapman & Hall: Boca Raton, LA, 2008; 

http://arxiv.org/PS_cache/arxiv/pdf
http://arxiv.org/PS_cache/arxiv/pdf

