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Abstract

The description of the energy density associated with an electromagnetic field prop-

agating through matter must treat two different phenomena: dispersion, the variation

of the refractive index with frequency, and dissipation, the loss of field energy by ab-

sorption. In many cases, as in common dielectrics, the dispersive medium is essentially

transparent so dissipation can be neglected. For metals, however, both dispersion and

dissipation must be taken into account, and their respective contributions vary sig-

nificantly with the frequency of the electromagnetic field. Plasmonic structures such

as slits, holes and channel waveguides always involve surfaces between dielectrics and

metals, and the energy density in the vicinity of the interface figures importantly in the

dynamic response of these structures to light excitation in the visible and near-infrared

spectral regions. Here we consider the electromagnetic energy density propagated on

and dissipated at real metal-dielectric surfaces, including the important SPP, the sur-

face plasmon-polariton wave guided by the interface. We show how the “stored energy”

oscillates over an optical cycle between the plasmonic structure and the propagating

surface mode, while the dissipated energy continues to accumulate over the same pe-

riod. We calculate these energy densities for the case of the silver-air interface (using

two data sets for silver permittivity commonly cited in the research literature) over a

range of frequencies corresponding to the range of wavelengths from 200 to 2000nm.
OCIS codes: 240.6680,240.690,260.2110,260.3910,310.6628
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1. Introduction

The field of “nanoplasmonics,” the study of the electromagnetic response of subwavelength-

scaled conductive objects embedded in a dielectric media, is leading to new discoveries and

insights into the basic physics of these phenomena as well as opening new technologies

for molecular and environmental sensing [1], information storage [2], high-speed and wide-

band communications [3], solar energy conversion [4], and even the possibility of a new

paradigm in circuit functionality based on displacement current switching in metamaterials

rather than free charge current switching that underlies conventional complementary metal-

oxide semiconductor (CMOS) technology [5]. The common feature running through all these

pursuits is the spatial localization of electromagnetic energy well below the optical diffraction

limit at wavelengths ranging from the visible to the near infrared. This energy can take the

form of propagating surface waves or resonant standing-wave modes at specific positions on

the periphery of subwavelength-scale conductive objects. In both cases the energy density of

the field increases discontinuously, usually by many-fold, at the dielectric-conductor interface.

In addition to nanoplasmonics as described above another related burgeoning field, “meta-

materials,” is attracting a great deal of interest. The focus in metamaterials is to fashion the

optical response of fabricated, composite subwavelength structures in periodic arrays so as

to achieve polarization and magnetization properties not found in naturally occurring ma-

terials. Structured arrays combining subwavelength-scale wires and split-ring resonators, for

example, can exhibit negative permittivity and permeability within a particular frequency

range, thus giving rise to negative index of refraction and other unusual optical properties [6].

Alternating slabs of dielectric and metal, each with subwavelegth thickness, provides another

example of a metamaterial exhibiting negative permittivity and permeability within the same

frequency interval [7]. The proper characterization of energy density, including stored en-

ergy and dissipative energy, in metamaterials where the permittivity and permeability both

exhibit strong dispersion and loss has stimulated a flurry of recent studies [8–10], and a

recent publication has even proposed that negative energy density may have a real physical

meaning [11].

Metamaterials are usually some periodic array of subwavelength structures exhibiting ca-

pacitive and inductive electric and magnetic properties. However, another class of important

subwavelength arrays consist of metal-insultaor-metal (MIM) channels [12] and networks of

these channels, recently termed “resonant guided wave networks” (RGWNs) [13]. The optical

response of these waveguides does not include significant magnetization, but they do exhibit

frequency dispersion in a lossy medium. It is therefore worthwhile to obtain reliable disper-

sion expressions for the stored and dissipative energy density in these structures. We study

here the behavior of the energy density at the interface where dispersion, dissipation, and

phase response are governed by the behavior of the complex permittivity and conductivity

2



of the adjacent metal and dielectric materials. We find that conventional wisdom inherited

from circuit theory at radio and microwave frequencies does not usually obtain in the opti-

cal domain, and a true understanding of “plasmonic wave guiding” in this regime requires

careful consideration of these properties.

We first review previous approaches to this problem by Brillouin [14], Landau [15], Loudon

[16], and Ruppin [17] and then extend the Brillouin approach to a lossy, dispersive metal,

carrying out an example calculation on the important conductor silver interfacing with air.

2. Electromagnetic Energy Density Calculations

2.A. The Poynting Vector

An expression for the energy density associated with electromagnetic vector fields occupying

a volume including free space and material may be adduced from the two curl equations of

Maxwell,

∇× E +
∂B

∂t
= 0 (1)

∇×H− ∂D

∂t
= J (2)

where Eq. 1 is the Faraday-Law relation between electric field E and magnetic induction field

B while Eq. 2 shows Ampère’s Law relating the magnetic field H, displacement field D, and

current density J. A standard text book development [18] leads to

∇ · (E×H) + E · J = −E · ∂D
∂t
−H · ∂B

∂t
(3)

The right side of Eq. 3 clearly reflects the time rate of decreasing energy density; but in

order to achieve a more geometrical interpretation of the left side of Eq. 3, we integrate both

sides over the considered spatial volume and use the divergence theorem to convert volume

integration of the first term on the left to a surface integral.∫
S

(E×H) · n dA = −
∫
V

E · J dV

−
∫
V

(
E · ∂D

∂t
+ H · ∂B

∂t

)
dV (4)

It is clear that the the second term on the right side Eq. 4 represents the rate of decrease of

field energy contained in the volume. The first term on the right is a volume integral over

the scalar product of the E-field and current density within the volume. If we assume no

current sources within the volume, the E-field can be written in terms of the current density

and the material conductivity σ as σE = J. The integrand of the first term on the right side

of Eq. 4 is then written as J2/σ and interpreted as the dissipative “Joule heating” or “ohmic
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loss” within the volume. The term on the left therefore expresses the total decrease in energy

density (radiative and dissipative). According to Poynting’s theorem this term represents the

flow of electromagnetic energy through the surface S enclosing the volume V . The vector

product of E and H is termed the Poynting vector S and we write∫
S

S · n dA = −
∫
V

∂u

∂t
dV (5)

where u is the total decrease of energy density–ohmic losses when they are present as well

as loss from the radiating field itself. In free space or in nonconducting dielectric media we

have ∫
S

(E×H) · n dA =

∫
S

S · n dA

= −
∫
V

(
E · ∂D

∂t
+ H · ∂B

∂t

)
= −

∫
V

∂u

∂t
dV (6)

or in differential form

∇ · S = −
(
E · ∂D

∂t
+ H · ∂B

∂t

)
= −∂u

∂t
(7)

We are usually interested in the absolute value of the energy flow across the bounding surface;

and, for harmonically oscillating waves, the average over an optical cycle. We have then,

〈S〉 =
1

2
< (E×H∗) (8)

and

〈∇ · S〉 =

=
1

4

[
E · ∂D

∗

∂t
+ H · ∂B

∗

∂t

]
=

〈
∂u

∂t

〉
(9)

Equation 9, the optical-cycle average of the time rate of change of the energy density, is the

starting point for our discussion of the energy density in material media subject to harmonic

electromagnetic fields with frequencies covering the range from near-UV to near-IR spectral

region.

The energy density, averaged over an optical cycle, of an electromagnetic field oscillating

at frequency ω in a nonmagnetic material media characterized by permittivity ε = ε0εr and

permeability µ0 is given by

< u > =
1

4
[E ·D∗ + H ·B∗]

=
1

4

[
ε(ω)|E2|+ µ0|H2|

]
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and with

|H| =

√
ε(ω)

µ0

|E| (10)

we have

< u >=
1

2
ε(ω)|E|2 =

1

2
E ·D∗ (11)

The relative permittivity εr (dielectric constant) may be complex with a real part ε′r and

an imaginary part ε′′r . The total power density, Eq. 9, with the help of Eq. 10, can now be

written

< W (t) >=

〈
∂u

∂t

〉
=

1

2

[
1

2
(E + E∗) · 1

2

(
∂D

∂t
+
∂D∗
∂t

)]
(12)

2.B. Brillouin Approach

Brillouin’s analysis [14] of the energy density in lossless (εr = ε′), nonmagnetic material

media starts from the careful statement that the adiabatic average energy density is given

by the simple formula of Eq. 11. By “adiabatic” is meant that the field amplitude within the

medium grows slowly from zero and varies over a time very long compared to the internal

motions of the electron and nuclei of the material. To construct an adiabatically varying

amplitude, as shown in Fig. 1, Brillouin establishes a composite field consisting of two “signal”

frequencies ω1, ω2 symmetrically placed about a “carrier” ω,

ω1 = ω + ν

ω2 = ω − ν

The resulting electric field and its complex conjugate are then expressed as

E =
1

2
E0

(
e−iω1t − e−iω2t

)
(13)

E∗ =
1

2
E0

(
eiω1t − eiω2t

)
Using Brillouin’s composite field, we seek to calculate the rate of change of the energy density

by applying Eq. 12. The real part of the E-field can then be written as

1

2
(E + E∗) =

1

2
E0 [cos(ω1t)− cos(ω2t)]

= −E0 [sin(ωt) sin(νt)]

Similarly the displacement fields D,D∗ can be written

D =
1

2
ε0E0

[
εr(ω1)e

−iω1t − εr(ω2)e
−iω2t

]
D∗ =

1

2
ε0E0

[
ε∗r(ω1)e

iω1t − ε∗r(ω2)e
iω2t
]
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and after taking the time derivative of the displacement field, we have after extensive and

somewhat tedious algebra an expression for the total energy density, including both electric

and magnetic field contributions, in the ponderable medium.

〈u〉 =
1

2
ε0|E0|2

[
∂ωε′r(ω)

∂ω

]
=

1

2
ε0|E0|2

[
ε′r(ω) + ω

∂ε′r(ω)

∂ω

]
(14)

2.C. Landau Approach

In the Landau treatment [15], the time-varying field is given by,

E(t) = E0(t)e
−iωt (15)

where it is assumed that E0(t) is a smoothly and slowly varying function with respect to the

period 2π/ω. The time-dependent amplitude can then be expanded in a Fourier series as

E0(t) =
∑
η

Eηe
−iηt (16)

With η � ω, only slowly varying terms are retained in the Fourier expansion, and the time

derivative of the displacement field D can be written

∂D

∂t
= iωε(ω)E +

d(ωε)

dω

∂E

∂t
e−iωt

Neglecting the imaginary part of the permittivity and dropping the subscript in ω0, the total

harmonic-time-averaged energy density, the sum of the contributions from the electric and

magnetic fields, is found to be

〈u〉 =
1

2
ε0|E0|2

[
∂ωε′r(ω)

∂ω

]
=

1

2
ε0|E0|2

[
ε′r(ω) + ω

∂ε′r(ω)

∂ω

]
(17)

which is identical to the Brillouin result, Eq. 14.

2.D. Loudon Approach

In contrast to Brillouin and Landau, Loudon [16] analyzed the energy density for a wave

propagating through a dispersive and dissipative medium with a single resonant frequency.

He limited his treatment to the common case of nonmagnetic materials where dissipation

occurs only with the E-field contribution to the energy density. This analysis including

magnetic materials was carried out by Ruppin [17]. The permittivity is considered complex,

ε = ε′+iε′′ but the permeability µ is set equal to µ0. Dissipative media are characterized by a
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complex index of refraction n = η(ω)+iκ, and the usual definition of the wave group velocity,

dω/dk, does not lend itself to interpretation as the rate of energy transport through a lossy

material. The wave vector k = k0n becomes complex, and near an absorptive resonance

use of the real part of dω/dk can result in a “group velocity” greater than the speed of

light in vacuum. Loudon recasts the energy velocity within lossy media as the ratio of the

Poynting vector (time rate of energy flow normal to a unit area) and the energy density.

The essential objective of Ref. 16 therefore, is the proper expression of energy density in

dissipative media, and the simplest model for dissipation is a damped harmonic oscillator

with a single resonance frequency ω0 and damping rate γ.

Loudon begins with the electromagnetic wave propagating in a ponderable medium with

polarization P. Using the harmonic oscillator model, the equation of motion of the polariza-

tion wave is given by
d2P

dt2
+ γ

dP

dt
+ ω2

0P = ω2
pε0E (18)

where ω0 is the resonance frequency, γ the damping frequency, and ωp parameterizes the

interaction strength between the dipole oscillators in the medium and the electric field.

It corresponds essentially to the bulk plasma frequency of a lossy metal. The resonance

frequency ω0 arises from a restoring force (per unit mass) F/m = −k0r with k0 = ω2
0. The

total energy density u now comprises two terms: a stored energy term us and dissipative

energy term ud. Under conditions of near-resonant absorption Loudon obtains the time-

harmonic average electric-field contribution to the total energy density,

〈u〉 =
1

4
ε0|E0|2

(
ε′r +

2ε′′rω

γ

)
(19)

We can express the real and imaginary parts of the dielectric constant in terms of the

oscillator properties using a well-known text book result from classical electrodynamics.

ε′r =1 +
ω2
p (ω2

0 − ω2)

(ω2
0 − ω2)

2
+ (γω)2

(20)

ε′′r =
γω2

pω

(ω2
0 − ω2)

2
+ (γω)2

(21)

As expected Eq. 21 shows that when γ → 0, ε′′r → 0 and the second term inside the paren-

theses on the right side of Eq. 19 becomes

2ε′′rω

γ
→

2ω2
pω

2

(ω2
0 − ω2)

2 (22)

But from Eq. 20

lim
γ→0

dε′r
dω

=
2ωω2

p

(ω2
0 − ω2)

2
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and therefore the limiting expression for Eq. 19 as γ → 0 is,

lim
γ→0
〈u〉 = 〈us〉 =

1

4
ε0|E0|2

(
ε′r + ω

dε′r
dω

)
(23)

equivalent to the Brillouin (Eq. 14) and Landau (Eq. 17) formulas for the stored energy

density. When the dissipation rate γ is not negligibly small, we see from Eq. 19 that the term

including the dissipative energy density, averaged over an optical cycle, is

〈ud〉 =
1

2
ε0 |E0|2

ε′′rω

γ
(24)

It is worthwhile noting that as γ → 0, the dissipated power density,(
γω2

ε0ω2
p

)
|P|2 = (ε0ε

′′
rω)|E|2

goes to zero as expected, but the dissipative energy density 〈ud〉, identified with the second

term on the right in Eq. 19, does not. Of course one could alternatively define an average

dissipative energy density as the product of the cycle-averaged dissapative power density

and the period of the cycle,

ūd =
1

2
ε0ε
′′
r |E0|2

and clearly ūd vanishes as γ, ε′′r → 0.

It is also worthwhile noting that the Brillouin and Loudon expressions for the energy

density become equivalent not only in the limit γ → 0, but also in the free-electron-gas

(FEG) limit, ω0 → 0, where the restoring force on the oscillating electrons goes to zero. This

limit corresponds to the Drude model of metals [19]. In this limit, with ωτ >> 1, Eqs. 20, 21

become

ε′r → 1−
ω2
p

ω2
(25)

ε′′r →
γω2

p

ω3
(26)

From these last two expressions

dε′r
dω

=
2ω2

p

ω3
and ω

dε′r
dω

=
2ε′′rω

γ
(27)

and once again we see that Eq. 14 is equivalent to Eq. 19.

3. Extended Brillouin Approach

Here we extend the Brillouin calculation of the energy density to include materials with loss.

Since real metals are always somewhat lossy, and they figure importantly in the physics of

8



surface plasmon waves at optical frequencies, an expression for the energy density including

loss has practical pertinence. We apply this approach to silver because its dispersion and loss

can be well characterized as a single damped resonator. We expect therefore to obtain results

similar to those obtained from Loudon’s formula (Eq. 19)based on a single, damped harmonic

oscillator. In subsequent work we will apply the extended-Brillouin method to other metals

such as gold and aluminum where the optical response cannot be characterized so easily.

Starting with the Brillouin two-wave construction and writing out the power density,

W (t) = u/T with T = 2π/ν, in terms of sines and cosines, we have

〈W (t)〉 =

[
ε0|E0|2

4

ν

2π

]
×[

2ν
∂[ωε′(ω)]

∂ω

∫ 2π/ν

0

[
sin2(ωt) sin(2νt)

]
dt

+ 4ωε′′(ω)

∫ 2π/ν

0

[
sin2(ωt) sin2(νt)

]
dt

+ 2ωε′(ω)

∫ 2π/ν

0

[
sin(2ωt) sin2(νt)

]
dt

− ν ∂[ωε′′(ω)]

∂ω

∫ 2π/ν

0

[sin(2ωt) sin(2νt)] dt

]
(28)

Figure 2 shows the electric field of the Brillouin wave, Eq. 13, as function of time for ω =

3×1015 Hz and ν = 1×1014 Hz. The figure also shows the slowly varying envelope sin(νt) to

highlight the field amplitude slowly changing in time. Equation 28 can be written in terms

of the integrals J1−4 as,

〈W (t)〉 =

[
ε0|E0|2

4

ν

2π

]
×[

2ν
∂[ωε′(ω)]

∂ω
J1

(
2π

ν

)
+ 4ωε′′(ω)J2

(
2π

ν

)
+ 2ωε′(ω)J3

(
2π

ν

)
− ν ∂ [ε′′(ω)]

∂ω
J4

(
2π

ν

)]
(29)
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where

J1(t) =
1

4ν

[
1− cos(2νt)+

ν2 (1− cos(2ωt) cos(2νt))− νω sin(2ωt) sin(2νt)

(ω2 − ν2)

]t
0

J2(t) =
1

4

[
t− sin(2ωt)

2ω
− sin(2νt)

2ν
+

ω sin(2ωt) cos(2νt)− ν cos(2ωt) cos(2νt)

2 (ω2 − ν2)

]t
0

J3(t) =
1

4ω

[
1− cos(2ωt)−

ω2 (1− cos(2ωt) cos(2νt))− νω sin(2ωt) sin(2νt)

(ω2 − ν2)

]t
0

J4(t) =

1

2ν

[
ν2 sin(2ωt) cos(2νt)− ων cos(2ωt) cos(2νt)

(ω2 − ν2)

]t
0

As is evident from inspection of Fig. 3, we are interested in the evaluation of the J func-

tions at the four quadrant positions, π/2ν, π/ν, 3π/2ν, 2π/ν; and it is clear from the above

expressions for J1−4 that, averaged over the optical cycle of the slowly varying envelope, the

only nonvanishing integral is J2, the term that represents dissipation. However, J1 repre-

sents the transfer of energy between the electromagnetic field and the ponderable medium

characterized by ε = ε′ + iε′′. This transfer is analogous to the energy oscillating from a

driving source to passive capacitive and inductive elements in an electrical circuit [20]. It is

common in electrical engineering to label this oscillating term as the “stored energy.” The

frequency of this transfer is twice the full optical cycle of the slowly varying envelope defined

by ν = (ω1−ω2)/2. We are interested in the J1 energy averaged over the transfer cycle; and

therefore the appropriate limits of integration for this integral are from 0 to π/2ν. Taking

these limits we find the following expression for J1−4,

J1

( π
2ν

)
=

1

2ν
+
ν cos2 (ωπ/2ν)

2 (ω2 − ν2)

J2

( π
2ν

)
=

1

4

[
π

2ν
− 1

2ω
sin (ωπ/ν)−

(
ω

2 (ω2 − ν2)

)
× sin(ωπ/ν)

]
J3

( π
2ν

)
=

1

2

[
sin2(ωπ/2ν)

ω
−
(

ω

ω2 − ν2

)
cos2(ωπ/2ν)

]
J4

( π
2ν

)
=− 1

2

ν sin(ωπ/ν)

ω2 − ν2
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The limiting expressions for these J(t) functions at the quadrants of interest when ω � ν

are

J1

( π
2ν

)
→ 1

2ν

J2

( π
2ν

)
→ π

8ν

J3

(
2π

ν

)
→ 0

J4

(
2π

ν

)
→ 0

and of course the average energy density is related to the average power density by

〈u(t)〉 = 〈W (t)〉T = 〈W (t)〉
(

2π

ν

)
(30)

Figure 3 shows the graphs of the kernels of the four J integrals for ω = 3 × 1015 Hz and

ν = 1× 1014 Hz. These plots immediately reveal some interesting physical aspects. The plot

of the kernel of J1(t), panel (a) in Fig. 3, shows the same behavior as the term found in

the lossless Brillouin and Landau treatments, while the kernel of J2(t), Fig. 3b, represents

dissipation when loss is included. For the lossless, “stored energy” component the alternation

in sign over the optical cycle can be interpreted as the energy oscillation between the field and

the medium . The kernel of J2(t) shows, however, that dissipation does not change sign and

takes place during both halves of the cycle. In order to find a general expression for the energy

density, the expression in Eq. 28 must be integrated to time, t, and the energy density can be

written in terms of these four integrals. Figure 4 shows the time evolution of the functions

J1−4(t) that determine the time behavior of the E-field energy density terms of Eq. 28. It is

clear from Fig. 4 a that this term describes alternating transfer between kinetic and potential

energy of the harmonically oscillating electron. In Figs. 4 c and 4d the rapidly oscillating

terms integrate to zero even for a quarter period. Quite different behavior, however, obtains

for Fig.4 b. This integral represents dissipated energy density in the medium that grows with

time and never returns to the field. The first term of Eq. 29 represents the power exchanged

between the medium and the E-field at each quarter of the oscillation period and corresponds

to an average stored energy density,

〈us〉 =
ε0 |E0|2

4

[
∂[ωε′r(ω)]

∂ω

]
(31)

while the second term represents the energy dissipated by the lossy medium in an optical

period.

〈ud〉 =
1

4
ε0 |E0|2 ωε′′r(ω)

(
2π

ν

)
(32)
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For a lossless medium ε′′ vanishes and the original Brillouin expression, Eq. 14 is recovered.

In the free-electron-gas limit, from Eq. 26, we have

〈ud〉 =
1

4
ε0 |E0|2

γω2
p

ω2

(
2π

ν

)
(33)

Comparing the Loudon expression for the dissipated energy density, Eq. 24, to that of the

Extended Brillouin, Eq. 32, we find that they differ in two respects: first, the factor 1/γ in

the Loudon expression represents the rate of “collisional” or “radiative” dissipation while

the factor 2π/ν in Eq. 32 represents the bandwidth of the slowly varying envelope, ν =

(ω1 − ω2)/2. Second, the Brillouin dissipation energy is essentially 1/2 that of the Loudon

result. The additional factor of 1/2 arises from the rapid modulation of the “signal” wave ν

by the “carrier” wave ω. Figure 5 shows these relationships.

4. Application to Silver

We apply the energy density expressions obtained by the Loudon (Eq. 19), using the ex-

pressions for ε′ and ε′′ in the FEG limt (Eqs. 25, 26), and Extended Brillouin (Eqs. 31, 32)

approaches to the specific case of silver metal. The application takes place in two steps: the

first is to obtain differentiable analytic fits to the dispersive permittivity of the material, and

the second is to substitute them into Eq. 19 and Eqs. 31, 32.

Measurements of the wavelength dependence of the real and imaginary parts of the silver

permittivity have been compiled from various sources and tabulated by Palik [21]. A second

data set are the measurements reported by Johnson and Christy [22]. In Fig. 6 we plot (filled

circles) the Palik permittivity data for ε′ (panel A) and ε′′ (panel B).

The plots of ε′ and ε′′ vs. wavelength clearly show two branches above λ = 1200 nm. We

consider these data as two different sets, a lower branch and an upper branch. The lower

branch in ε′ corresponds to the upper branch in ε′′. We obtain analytic fits in two ways: first

using the dispersion relations of the harmonic oscillator (HOM) in the FEG limit, Eqs. 25, 26

and second by applying a polynomial fitting procedure to the data points. In both cases we

have used the lower-branch points in Fig. 6 A. For the harmonic oscillator model we first fit

Eq. 25 to the ε′ curve to obtain a value for ωp which was then substituted into Eq. 26 to

obtain γ. The resulting fits for ε′ in Fig. 6 A and ε′′ in Fig. 6 B are shown by the thick dashed

lines. The HOM FEG model fits the Ag permittivity dispersion quite well which shows that

silver is well-characterized as a simple Drude metal. The data were also fit using a quadratic

spline for ε′(λ) and cubic spline for ε′′(λ). The polynomial fits are indicated by the solid line

in Figs. 6 A,B.

In Fig. 7 we plot the Johnson-Christy data set for ε′ and ε′′, using the same procedures.

For both data sets excellent fits are obtained although ωp and γ determined from the HOM

12



fitting are not the same between the two data sets. Note that the values of ε′′ for the Palik

data set are about a factor of two higher than those in the Johnson-Christy data set.

5. Discussion

In Figs. 8, 9 are plotted the stored and dissipative energy densities for Ag as a function of

wavelength (normalized to ε0E
2
0), using the Palik and Johnson-Christy data, respectively.

From both data sets it is quite clear that the HOM FEG model reproduces quite well the

energy density of Ag metal over a wavelength range from about 600 nm to 1700 nm. The

deviations in ud(λ) at lower end of the wavelength scale, near 400 nm, is due to the absorptive

plasmon resonance—evident in panel (B) of Figs. 6, 7. Since the optical response of Ag is

essentially that of a free-electron gas, calculation of the energy densities with Eqs. 31, 32, the

Extended Brillouin expressions, produces very similar results. For other metals such as gold

or aluminum, the dispersion of the real and imaginary parts of the permittivity cannot be

characterized so easily. We will show in a subsequent report that in these cases, where the

HOM FEG model fails, the dispersion of the real and imaginary parts of the permittivity can

still be well fit to a polynomials and energy density calculated with the Extended Brillouin

expressions.
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Figure captions

Fig. 1

Brillouin composite field consisting of two “signal fields” with frequencies ω1, ω2 displaced

symmetrically above and below the “carrier” at ω0. Superposition produces a slowly varying

envelope in which the amplitude of the rapidly varying carrier is modulated.

Fig.2

Solid line shows electric field behavior in time as expressed by Eq. 13. Dashed line shows

slowly varying envelope.

Fig.3

Plots of the integrands for the four constituent Jn functions included in the power density

expression, Eq. 29. J1−4 correspond to (a)-(d), respectively.

Fig.4

Time behavior of the integrals J1−4(t).

Fig.5

The “signal” sine wave sin2 νt is rapidly modulated by the “carrier” sine wave sinω2t and

can be replaced by the factor 1/2 sin2(νt). Averaging over the optical cycle period T results

in the factor 1/4 in Eq. 32.

Fig.6

(A) Plot of the Palik data [21] for ε′ vs. wavelength is shown in filled circles. Fits to these data

points are indicated for the FEG HOM model by thick dashed lines and for the polynomial

fit by the solid line. (B) Similar plots of Palik data [21] for ε′′.

Fig.7

(A) Plot of the Johnson and Christy data [22] for ε′ vs. wavelength is shown in filled circles.

Fits to these data points are indicated for the FEG HOM model by thick dashed lines and

for the polynomial fit by the solid line. (B) Similar plots of Johnson and Christy data [22]

for ε′′.

Fig.8

Stored energy density (left panel) and dissipative energy denisty (right panel). Dashed curves

traces the FEG HOM model (Eqs. 19,25, 26) normalized to ε0E
2
0 . Solid curve traces the

Brillouin Extended expressions (Eqs. 31, 32) using fitted polynomials to the Palik data for ε′

and ε′′.

Fig.9

Stored energy density (left panel) and dissipative energy denisty (right panel). Dashed curves

traces the FEG HOM model (Eqs. 19,25, 26) normalized to ε0E
2
0 . Solid curve traces the

Brillouin Extended expressions (Eqs. 31, 32) using fitted polynomials to the Johnson-Christy

data for ε′ and ε′′.
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Fig. 1. Brillouin composite field consisting of two “signal fields” with frequen-

cies ω1, ω2 displaced symmetrically above and below the “carrier” at ω0. Su-

perposition produces a slowly varying envelope in which the amplitude of the

rapidly varying carrier is modulated.
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Fig. 2. Solid line shows electric field behavior in time as expressed by Eq. 13.

Dashed line shows slowly varying envelope.
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Fig. 3. Plots of the integrands for the four constituent Jn functions included in

the power density expression, Eq. 29. J1−4 correspond to (a)-(d), respectively.
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Fig. 4. Time behavior of the integrals J1−4(t).
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Fig. 5. The “signal” sine wave sin2 νt is rapidly modulated by the “carrier”

sine wave sinω2t and can be replaced by the factor 1/2 sin2(νt). Averaging

over the optical cycle period T results in the factor 1/4 in Eq. 32.
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Fig. 6. (A) Plot of the Palik data [21] for ε′ vs. wavelength is shown in filled

circles. Fits to these data points are indicated for the FEG HOM model by

thick dashed lines and for the polynomial fit by the solid line. (B) Similar plots

of Palik data [21] for ε′′.
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Fig. 7. (A) Plot of the Johnson and Christy data [22] for ε′ vs. wavelength

is shown in filled circles. Fits to these data points are indicated for the FEG

HOM model by thick dashed lines and for the polynomial fit by the solid line.

(B) Similar plots of Johnson and Christy data [22] for ε′′.
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Fig. 8. Stored energy density (left panel) and dissipative energy denisty (right

panel). Dashed curves traces the FEG HOM model (Eqs. 19,25, 26) normalized

to ε0E
2
0 . Solid curve traces the Brillouin Extended expressions (Eqs. 31, 32)

using fitted polynomials to the Palik data for ε′ and ε′′.

24



Fig. 9. Stored energy density (left panel) and dissipative energy denisty (right

panel). Dashed curves traces the FEG HOM model (Eqs. 19,25, 26) normalized

to ε0E
2
0 . Solid curve traces the Brillouin Extended expressions (Eqs. 31, 32)

using fitted polynomials to the Johnson-Christy data for ε′ and ε′′.
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