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Abstract 

 

The last 10 years have seen the emergence of micro- and nanomechanical force sensors 

capable of measuring the Casimir interaction with great accuracy and precision. These 

measurements have proved fundamental to further develop the understanding of vacuum 

fluctuations in the presence of boundary conditions.  These micromechanical sensors 

have also allowed to quantify the influence of materials properties, sample geometry and 

unwanted interactions over the measurement of the Casimir force. In this review we 

describe the benefits of using micro-mechanical sensors to detect the Casimir interaction, 

we summarize the most recent experimental results and we suggest potential 

optomechanical experiments that would allow measuring this force in regimes that are 

currently unreachable. 



Introduction 

 During the last 60 years, there have been considerable studies trying to understand 

the forces acting between electrically neutral objects in vacuum, particularly, the van der 

Waals and Casimir forces. The experimental characterization and physical interpretation 

of these interactions is still generating discussions and stimulating the development of 

increasingly sophisticated experiments.   

 In the late 1940s, Hendrik Casimir [1] demonstrated theoretically that there is an 

attractive force between two electrically neutral, perfectly reflecting, and parallel 

conducting plates placed in vacuum. This attractive force is known as the Casimir force 

and is considered a quantum phenomenon since in classical electrodynamics the force 

acting between neutral planes is strictly zero. Casimir compared the quantum fluctuations 

of the electromagnetic field existing inside and outside these ideal parallel plates. The 

plates impose well-defined boundary conditions to the fluctuating electromagnetic modes 

existing between them and, as a consequence, the zero-point energy of this system is a 

function of the separation between plates (see Figure 1). The difference between zero-

point energy inside and outside the plates is responsible for the attractive force between 

plates. This force has the same origin as the van der Waals force but acts at larger 

separations between bodies and, as a consequence, relativistic retardation effects need to 

be considered. 
 

 According to Casimir’s original calculation, the attractive force per unit area, i.e., 

the pressure between the plates, can be expressed as: 

        (1) 

where d is the separation between plates, c is the speed of light and  is Planck’s constant 

divided by 2 . The calculation of the Casimir’s pressure for dielectric surfaces at finite 

temperature was obtained by Lifshitz [2] in 1956. Several excellent reviews describing 

the theoretical aspects of these calculations and alternative derivations are listed in the 

reference section [3-15].  

 The simple Casimir formulation of the pressure acting between two neutral 

metallic plates represented one of the first indications that the zero-point energy of the 

electromagnetic field could be experimentally detected. The physical reality of the 

Casimir effect was a very controversial subject when proposed for first time. In his 

biography [16], Casimir described the unsuccessful discussions he had with Wolfgang 

Pauli trying to convince him that this force could have observable effects. Since then, 

there have been so many experimental confirmations of this force that its effects are now 

routinely considered when studying objects at separations below 1 µm. 

 The first experiment intended to measure the Casimir force was performed in 

1958 by Sparnaay [17] using parallel plates. While this experiment was not very 

successful due to the difficulties associated with moving parallel plates with high 

precision, it provided the first indication that surface roughness needs to be reduced and 

surface charges must be removed. Blokland and Overbeek did the first convincing 

measurement of the Casimir force in 1978 [18]. By using a sphere in front of a metallic 

plate, to eliminate the problems associated with the parallelism of the plates, they 

measured the force with an experimental accuracy of 50%. The experiment done by S. 

Lamoreaux in 1997 [19] is considered the first high-precision measurement of the 

Casimir force. He used a torsional pendulum in the sphere-plate configuration and 



obtained a 5% agreement between theory and experiment. Several variations of these 

experiments have been performed in the following years producing compelling evidence 

that the Casimir effect can be observed in various experimental conditions. A common 

feature of these experiments is that they involved macroscopic objects: They measured 

the Casimir force among objects having typical dimensions of several cm and for 

separations between bodies of the order of microns. 

 The first measurement of the Casimir force between microscopic objects 

separated by 100’s of nanometers or less, was performed by Mohideen in 1998 [20] using 

an atomic force microscope (AFM). In this experiment, a gold-coated 200 µm diameter 

sphere was attached to the tip of an AFM, which was used to measure the Casimir force 

between the sphere and a metalized plate. Similar experiments using AFM techniques are 

very popular today since they allow the measurement of this force at distances as short as 

20 nm [21].    

 The use of micro-mechanical devices as a novel technique for characterization of 

this force was introduced by Ho Bun Chan and collaborators at Bell Laboratories in 2001 

[22]. In this technique, a micro-mechanical torsional oscillator is used to detect the 

Casimir force induced by a metallic sphere approaching the oscillator. Furthermore, this 

experiment demonstrated that the Casimir force could be used to modify the mechanical 

state of microscopic devices introducing a novel mechanism for actuation at the micro- 

and nanoscale. Casimir force detectors based on micro-mechanical devices are currently 

the most sensitive devices to characterize this force [23].  

 The infographics shown in Figure 2 summarizes the typical dimensions of the 

objects used in Casimir experiments performed in the last decades. The area labeled 

“torsion balance” represents the macroscopic experiments performed with objects having 

tens of cm in size. The use of MEMS (Micro Electro Mechanical Systems) and AFM 

(Atomic Force Microscopy) technology, what we call microscopic experiments, allowed 

precise determination of the Casimir force down to 20 nm distances by involving objects 

with sizes below 1 mm.  

 In this review, we will describe the fundamentals of micro and nano electro 

mechanical devices (NEMS), we will explain the advantages they provide when used to 

detect the Casimir force and we will examine the most recent results obtained with this 

technology. We conclude this review with suggestions to improve the precision of 

micro/nano mechanical sensors to enable the investigation of the Casimir force in 

regimes that are currently not accessible. 

 

Micro and Nano electro mechanical systems 

 Mechanical devices with typical dimensions in the order of tens of microns, 

known as MEMS (Micro Electro Mechanical Systems), are already having a pervasive 

presence in science and technology [24]. They are widely employed as sensors and 

actuators due to their fast response time, enhanced sensitivity to external perturbations 

and the possibility of high-density integration of multiple elements into a single chip. By 

further reducing the size of these MEMS devices, we enter the world of NEMS (Nano 

Electro Mechanical Systems). In this size regime, the resonance frequency of these nano-

devices becomes extremely large (up to GHz) and their mechanical quality factor remains 

very high (Q ≈ 10
6
). This combination implies exceptionally high force sensitivities, 

ultra-low power consumption and access to non-linear response with small actuation 



forces [25]. Furthermore, NEMS devices allow integration of even larger number of 

nano-mechanical devices into extremely small areas.  

 As force detectors, MEMS and NEMS have been successfully used in a diversity 

of applications since they can routinely detect piconewtons (10
-12

 N) and, under special 

experimental conditions, they can detect forces as small as zeptonewtons (10
-21

 N).  

MEMS/NEMS based force sensors have been used to measure forces between individual 

biomolecules [26], to explore quantum effects in mechanical objects [27,28], to detect 

single spins by magnetic resonance force microscopy [29] and to study force fluctuations 

between closely spaced bodies [30]. As we will see in the following section, MEMS 

devices have also enabled the most precise measurement of the Casimir interaction 

between metallic objects in vacuum [23].  

 This long list of examples is also an indication of how vulnerable these devices 

are to local forces and to what extent local forces are to be considered in the design of 

MEMS/NEMS devices. In the particular case of the Casimir force, its effects become 

important when the distance between neutral objects is in the order of hundreds of 

nanometers. Fabrication of mechanical devices with features of this size is becoming 

common nowadays. Recently, high-density arrays of NEMS mirrors with critical 

dimensions of about 100 nm have been fabricated to modulate deep ultraviolet radiation 

(DUV) for maskless lithography applications [31]. These NEMS mirrors are separated by 

100 nm gaps and they are supported at the center by 100 nm wide elastic springs 

providing the mechanical restoring forces (see Figure 3). In the absence of electrostatic 

actuation, the Casimir force is the dominant interaction between these miniature objects 

and it needs to be taken into account in their design.  

 In the following section, we will describe the use of MEMS devices as force 

sensors for unambiguous detection of the Casimir interaction between metallic objects. 

 

Experimental aspects on the determination of the Casimir interaction 

  A MEMS torsional oscillator is at the core of the experimental setup developed to 

measure the Casimir interaction between metallic bodies. The attractive force between 

two bodies can be measured by determining the changes induced in a MEMS oscillator 

due the Casimir interaction. These changes could be associated with either an induced 

displacement of the oscillator or a change of its natural resonance frequency due to the 

presence of the interaction between the two bodies. Beyond the requirement of a precise 

determination of the interaction itself, the separation between the two bodies also needs 

to be measured accurately and precisely.  

 Our experimental setup has allowed us to obtain the most sensitive experimental 

determination to date of the Casimir interaction between similar and dissimilar metals.  

The current system consists of a MEMS torsional oscillator and a metal-coated sphere 

and is capable of extremely precise control of their relative position (see Figure 4a). The 

MEMS oscillator and the sphere are independently coated with the materials under 

consideration. By approaching a coated sphere to one side of the coated torsional 

oscillator the attractive Casimir force induces a torque that rotates the MEMS device 

about the fixed supports. This rotation is detected by measuring the angular deflection of 

the plate as a function of the plate-sphere separation. Furthermore, these MEMS 

oscillators can be designed to concurrently have high resonance frequencies and large 

quality factor Q producing important improvements in sensitivity. This experimental 



setup can be operated in both static and dynamic regimes. In the static regime the sphere 

is maintained at a fixed vertical position and the Casimir force is measured directly. In 

the dynamic regime, the vertical separation between the sphere and the plate is changed 

harmonically with time, leading to an improvement of the sensitivity.  

 The MEMS is mounted onto a piezo-driven xyz stage which, in turn, is mounted 

on a micrometer controlled xy stage. This combination allows positioning the metal-

coated sphere over the metal-coated MEMS plate. The separation zi between the sphere 

and the substrate is controlled by the vertical axis of the xyz stage. A two-color fiber 

interferometer-based closed-loop system is used to measure and control zi. 

 Measurements of the Casimir interaction have been performed in two different 

configurations. In the first one, Fig. 4a, the polysilicon oscillator plate was coated with a 

thin adhesion layer (≈ 10 nm of either Cr or Ti) and subsequently a thick (≈ 200 nm) Au 

layer was evaporated. Similarly, the R ≈ 150 mm sapphire sphere was coated with ≈ 10 

nm Cr and ≈ 200 nm Au was thermally evaporated on it. The Au coating in both the plate 

and the sphere is thick enough to ensure that the Casimir interaction can be regarded as 

arising from solid Au bodies, which was checked by calculating the Casimir interaction 

between bodies for a multilayer system [32] and, more importantly, by measuring the 

interaction using a sphere with a thinner (≈180 nm) Au layer. No significant differences 

between both experimental runs were observed. The Au-coated sphere was glued with 

conductive silver epoxy to the sides of an Al-coated optical fiber that is part of an optical 

interferometer. In the second setup, Fig. 4b, the position of the sphere and the plate has 

been interchanged. This new configuration permits easier exchange of samples without 

modification of the fragile MEMS sensor.  

 When confronted with the measurement of small forces, the isolation of the 

detecting device from external vibrations is of supreme importance. Hence, using a 

MEMS torsional oscillator is preferable, since torsional oscillators are less sensitive to 

vibrations that couple with the motion of their center of mass. Further decoupling from 

external vibrations is achieved by mounting the rigid sample setup by soft springs to a 

vacuum chamber, which in turn is on top of a passive damping air table. The 

incorporation of magnetic damping, along all axes of motion, between the sample setup 

and the vacuum chamber reducing vibrations to a peak-to-peak amplitude zpp < 0.02 nm 

for frequencies above 50 Hz. The small dimensions of the oscillator aids in improving its 

intrinsic quality factor and sensitivity [33]. The high quality Q of the oscillator, however, 

cannot be fully utilized in the presence of a dissipative medium. The effects of energy 

damping of the surrounding air are minimized by working in a vacuum. The vacuum is 

achieved by pumping the system down to 1.3 10
-5

 Pa (10
-7

 Torr) with an oil free 

diaphragm-turbomolecular pump system. While measurements are performed, pumping 

in the sample chamber is stopped and the pump is physically disconnected from the 

system. A low pressure (never higher than 1.3 10
-3

 Pa (10
-5

 Torr)) is maintained by a 

chemical pump made of a cold (≈ 77 K) activated carbon trap located inside the vacuum 

chamber.   

 In both experimental situations the optical fiber can be moved relatively to the 

oscillator assembly by means of a five-axis micrometer driven mechanical stage, and a 

xyz piezo-driven stage.  

 The separation dependent attractive force F(zmetal) between the sphere and the 

plate will cause the oscillator to rotate under the influence of the torque  



 

   (2) 

where ktorsion is the torsional spring constant for the oscillator. Since the torsional angles 

are small, they are proportional to the change in capacitance between the underlying 

electrodes and the oscillator. Consequently,  

 

     (3) 

where Cright (Cleft) is the capacitance between the right (left) electrode and the plate (Fig. 

4). Hence the force between the two metallic surfaces separated by a distance zmetal is 

F(zmetal) = kΔC, where k is a proportionality constant that needs to be determined by 

calibration.  

 Alternatively, the force sensitivity of the oscillator can be enhanced by 

performing a dynamical measurement [22,34,35]. In this approach, the separation 

between the sphere and the MEMS oscillator plate is varied as Δz =A cos( res t), where 

res is the resonant angular frequency of the oscillator, and A is the amplitude of motion. 

The linearized solution for the oscillatory motion, valid for A << zmetal, yields [22,34]  

 

,    (4) 

 

Where, for Q >> 1,  is the natural resonance frequency of the oscillator, I 

is its moment of inertia. It has been shown [36] that there is an optimal value of A which 

is a function of the separation. If A is too small, then the error in the determination of res 

increases due to thermal motion. If A is too large, then non-linearities can not be 

neglected. In general, A is selected to be between 2 nm and 5 nm to satisfy the 

aforementioned constrains. The resonance frequency can also be measured by recording 

the thermal vibration of the oscillator at temperature T, but it was found that driving the 

system with a sinusoidal signal and a phase-lock loop [34] provided a more stable signal. 

 Unlike the static regime where forces are measured, in the dynamic regime the 

force gradient ∂F /∂z is measured by observing the change in the resonant frequency as 

the sphere-plate separation changes. When F is given by the Casimir interaction, the 

gradient of the interaction within the applicability range of the proximity force, is found 

to be  

  

     (5) 

 

where PC(z)=(FC / S) is the force per unit area between two infinite metallic plates at the 

same separation zmetal as the sphere and the plate. In (5) FC has been used to denote the 

Casimir interaction.  

 

Calibrations 
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 The characterization of the system and the determination of the calibration 

constants are performed by applying a known electrostatic force between the sphere and 

the MEMS plate, i.e, by applying a known potential difference, Vb , between them. In this 

case, the electrostatic force can be approximated by the force between a sphere and an 

infinite plate [37]: 

 

 

 (6) 

 

                                                 

                                              (7) 

 

 In Eqs. (6) and (7) o is the permittivity of free space, Vo is a residual potential 

difference between the plate and the sphere, u = 1 + t, t= zmetal/R, and Bm are fitting 

coefficients. While the full expression (6) is exact, the series is slowly convergent, and it 

is easier to use the approximation developed in Refs. [38] and [39]. The values of the Bm 

parameters are 0.5, -1.18260, 22.2375, -571.366, 9592.45, -90200.5, 383084, and -

300357. Using these values, errors smaller than 1 part in 10
5
 are obtained. In  (6) it has 

been assumed that the contact potential Vo is independent of separation. If this is not the 

case a more involved analysis where the Vo(zmetal) dependence is taken into account 

would be needed [40].  

 To complete the electrostatic calibration (as well as to perform the measurement 

of the separation dependence of the Casimir interaction) it is necessary to determine zmetal. 

This variable can be determined precisely by using the following geometrical relationship 

(see Fig. 4a):  

 

  (8) 

 

 In equation (8), zg is the distance between the top of the MEMS oscillator and the 

substrate. This distance is measured interferometrically with an error of zg ≈ 0.1 nm. The 

distance b is measured optically ( b ≈ 2 µm),  is determined through the change in 

capacitance between the oscillator and the underlying electrodes (  ≈ 10
-7

 rad) and zi is 

measured with a two-color interferometer where the light reflected at the end of the fiber 

is combined with the light reflected at the reference platform. The two-color 

interferometer, which operates with a low coherence source (superluminescent diode, 

coherence length ≈ 20 µm) at 1310 nm and a stabilized laser at 1550 nm, is a fiber 

version of the one developed in Ref. [41]. The distance zo is not known a priori and the 

electrostatic calibration is also used to determine it [42]. 

 The electrostatic calibration is done at zmetal large enough such that the Casimir 

interaction does not have a measurable contribution. For a fixed (Vb – Vo), zi is measured. 

With the best estimate for zo (optically measured with an error of ≈ 2 µm), an iterative 

method is then used. As a function of measured separations zi, the change in capacitance 

between electrodes and the plate is found [35] and from here the corresponding values of 

are obtained. This is repeated for up to 150 different (Vb – Vo). With the measured 

values of  and the estimated value for zo, a set of zmetal values is obtained from (8). Using 

(zmetal ) 2 o Bm
m 0

7

tm 1



 

                                       (9) 

 

ktorsion/b and zo are used as fitting parameters. The improved value of zo is used in (7) and 

the procedure is repeated until no further changes are obtained. The sensitivity of this 

approach is shown in Fig. 5. When all the errors are combined, it is found that zmetal can 

be measured to within zmetal = 0.6 nm [36].  

 The electrostatic interaction is also used to obtain b
2
/I. Typically for the first 

configuration (sphere on the fiber) b
2
/I ≈ (1.2500 ± 0.0005) mg

-1
. When the sphere is 

attached to the oscillator the values of b
2
/I are reduced by up to an order of magnitude 

(and vary significantly depending where the sphere is attached).  

  Once the electrostatic force has been used to calibrate the system, selecting Vb = 

Vo makes the effect of the electrostatic interaction undetectable in our experiment. This is 

accomplished by applying a potential difference between the sphere and the plate Vb = 

VDC + Vcos( t), where the amplitude of the oscillatory component V ≈ 1 mV. The 

response of the oscillator is then proportional to , and Vo is obtained when the 

derivative of the force equals 0, as shown in Fig. 6.  

 

Determination of the Casimir interaction 

 Upon completion of the calibration procedure, the Casimir interaction can be 

determined. The electrical potential between the sphere and the plate is adjusted as to 

obtain a null Fe, Vb = <Vo>, where <Vo> is the average potential for zmetal in the 160 nm to 

5000 nm range, found as described in the previous section. The position of the fiber is 

then changed in ≈ 2 nm increments, as measured by the two color interferometer. The 

actual zmetal is obtained using Eq. (8) with previous determination of the corresponding . 

The resonance frequency of the oscillator is measured, and by means of Eq. (5), the 

equivalent Casimir pressure PC(zmetal) is obtained. The procedure is repeated for many 

runs (where the measurements are performed at the same set of zmetal within the 

experimental error) and the average of the different runs is reported as PC(zmetal). When 

taking into account the errors in the determination of res, res ≈ 5 mHz, and R, R ≈ 0.3 

µm as determined in a scanning electron microscope, the total error in PC can be 

determined [36,43]. Figure 7 shows the determination of PC obtained by both 

experimental setups, with the sphere attached either to the fiber or to the sensor. Also in 

Fig. 7 the difference between both determinations is plotted. It is worth mentioning that 

these experiments were done with a separation of four years, in different vacuum 

chambers, using different experimental setups, and, more important, with Au deposited 

by different techniques. The data reported in Fig. 7 represent the most precise 

measurements of the Casimir interaction up to date. The error bars represent the 95 % 

confidence level in both the separation and pressure determination.  

 The characterization of the frequency dependence of the dielectric function ( ) 

of the material is required in order to calculate the Casimir force between real metals. 

Figure 8 shows our experimental measurements of the real, ’, and imaginary ” parts of 

the dielectric function of the Au layer deposited on a Si single crystal. The measurements 

were performed between 196 nm and 820 nm. While there are differences between the 

values measured on our samples and the ones reported on standard reference books [45], 

b

ktorsion
(zmetal zo)(Vb Vo)

2

Fe / VDC



it is important to notice that these differences are too small to produce any significant 

difference in [46] the calculation of the Casimir interaction [32]. 

In fact, the calculation of the Casimir pressure at finite temperatures for real samples is 

given by the Lifshitz formula [2,47]  

 

  (10) 

 

where k  is the wave vector component in the plane of the plates, ql
2
 = k 

2
 + 

2
l/c

2
, 

l=(kBTl)h
-1

 are the Matsubara frequencies, and r|| and r   are the reflection coefficients 

for two independent polarization states computed for imaginary frequencies l = i l. The 

prime on the summation in Eq. (10) refers to the inclusion of a factor ½ for the term with 

l = 0. 

 As described in the Refs. [36] and [43], the roughness of the sample also needs to 

be taken into account. By using the atomic force microscope image of the surfaces the 

fraction of the sample a different absolute separations are determined. The Casimir 

pressure between the two surfaces is obtained as the weighted average (weighted by the 

fraction of the sample at a given separation) of the Casimir pressure between samples of 

finite conductivity and at finite temperatures as given by Eq. (10). When the dielectric 

function is used in (10), different results are obtained when the zero order term of the 

Matsubara series is computed using a Drude model or a plasma model. A detailed 

discussion of the comparisons can be found in Refs. [36], [43] and [48]. Here it suffices 

to include the obtained results as a function of separation, as shown in Fig. 9. While the 

plasma model shows an excellent agreement with the data, no agreement within the 

experimental error is obtained when the Drude model is used. This remarkable result is 

still waiting for explanation, and has given rise to numerous problems and controversies 

in the interpretation of the data.  

 

Current discussions in the precise determination of the Casimir force 

 As aforementioned, the discrepancies between experiments and the Drude model 

have resulted in numerous controversies. It is difficult to understand why while the low 

frequency transport of Au is very well described with a Drude model, the effects of 

dissipation on the conduction electrons are absent when performing Casimir pressure 

measurements. Among the arguments brought forward to explain these discrepancies, it 

has been hypothesized that differences in the Au layer could account for them. While this 

has not been completely ruled out, the data showed in Fig. 9 is a strong indication that 

this is not the case. Furthermore the effect of having a poor Au metallic coating would be 

to decrease the strength of the Casimir interaction, making the difference with the 

observed data more pronounced. In a recent experiment [44] we intended to provide an 

answer to this problem by measuring the Casimir pressure at different temperatures, ≈2 

K, 4.2 K, 77 K and 300 K. The idea here was to find out if as the temperature was 

reduced the measured Casimir pressure remained constant (thus supporting the plasma 

model) or changed (as it would be the result expected when dissipation is reduced). 

Unfortunately, while the average of PC(zmetal) remains the same at all temperatures, the 

data shows a significantly larger amount of noise at low temperatures precluding the 

PC (zmetal )
kBT k

0l 0

dkql [r| |
2( l ,k )e

2q l z 1] 1 [r 2( l ,k )e
2q l z 1] 1



exclusion of either model. Other possibilities that have been mentioned is the existence of 

a systematic effect associated with either an improper electrostatic calibration, or the 

presence of patch potentials that provide an extra attractive interaction.  

 Additionally, there has been some controversy regarding the electrostatic 

calibration of the experimental setup. Particularly, the dependence of Vo between metallic 

layers has been significantly studied as a function of position, separation, and time. 

Differently from what other groups have found [40], in our samples Vo was observed to 

be independent of time, position or separation, as shown in Fig. 10, in agreement with 

what has been reported on Ref. [39]. Alternatively, there is an experimental report 

indicating that an electrostatic calibration free of the problems can be obtained even when 

Vo changes with separation [49]. While the results obtained by our group are in good 

agreement with theoretical expectations, the reasons behind the different observations in 

different configurations require further study. This dependence could be associated with 

patch potentials, which would yield a separation dependence of Vo and a residual 

electrostatic force that cannot be counterbalanced [50,51]. In Ref. [36] it was calculated 

that the effect of patch potentials would be undetectable if their extent were to be ≈ 300 

nm (estimated Au grain size in the samples). If, on the other hand, the patches are very 

large, much larger than the effective interacting area, then their effect also would be 

cancelled by the effect of the applied Vb.  

 Finally, to shed more light on the effect of Vo on the interaction measurements, an 

experiment was performed where the applied Vb did not completely cancel Vo, leading to 

an effective “residual potential.” The Casimir pressure was determined for this situation 

and when the optimal Vb was applied, and their difference plotted as a function of 

separation, as shown in Fig. 11. It is worth mentioning that firstly, a “residual potential” 

larger than the error in the average of Vo is needed to observe any effect in the interaction. 

Secondly, the interaction associated with the residual potential is well fitted by Eq. (6) 

with a leading 1/zmetal
2
 term at small separations. It appears from the totality of 

electrostatic measurements performed that the effects of residual potentials can be 

counterbalanced in the precision measurements of the Casimir interaction. 

 

Future directions: improved micromechanical force sensors. 

 Investigations of the Casimir interaction stand to benefit considerably from the 

ongoing improvement in the precision micromechanical sensors and the associated 

position and force measurement techniques. The precision of the current generation of 

micromechanical sensors is significantly limited by the combination of the thermal noise 

of the mechanical sensor itself and the readout noise of the electrostatic or optical 

detector used in the MEMS or AFM based sensors respectively. In the case of MEMS 

sensors in particular, the Casimir force measurement precision has benefitted 

considerably from the stabilization of the measurement apparatus enabling very long 

acquisition times to improve the signal to noise ratio by signal averaging. It is however 

still desirable to improve the force and displacement measurement precision of these 

devices. This would enable the investigation of Casimir force in the regimes that were not 

previously easily accessible.  

 In the regime of large separation distance the Casimir force and its gradient are 

very weak and better force sensitivity would lead to an immediate improvement in that 

regime. In the regime of small separation distances the current limitation is the stability 



of the sensor against the destabilizing effect of the Casimir force gradient – negative 

“Casimir spring” – leading to inability to maintain controlled constant separation. This 

can be counteracted by oscillating the mechanical sensor with large amplitude and 

essentially sampling the Casimir force at small separations only over a short portion of 

the oscillation cycle. This however leads to stringent oscillation amplitude control and 

measurement requirement, as well as a nontrivial relationship between the Casimir 

potential, oscillation amplitude and the measured oscillation frequency shift. A more 

straightforward way to access this regime is to increase the stiffness of the mechanical 

sensor to maintain its stability. However combining the stiffer micromechanical sensor 

(lower mechanical gain) with the decreased oscillation amplitude needed to maintain a 

simple linear measurement leads to a significant reduction in the signal to noise that need 

to be compensated for. 

 Finally, there is a significant recent interest in measuring the forces acting on 

objects that are spatially finite and have micron or even submicron dimensions, in order 

to observe size and shape dependence of the Casimir forces as well as potentially 

spatially inhomogeneous electrostatic forces due to so-called “patch potentials”. To 

realize such measurements, again, dramatic improvements in sensor precision are 

required. 

 In considering the force measurement by a mechanical sensor we need to 

essentially consider two transduction or “amplification” stages. The first one is 

mechanical, whereby a mechanical force is transduced to a displacement of a linear 

mechanical oscillator. It is characterized by stiffness (gain), effective mass or resonance 

frequency, and mechanical loss (with the corresponding thermal noise). In the second 

stage the mechanical displacement is transduced into an electrical signal, typically 

through either an electrostatic or an optical measurement. This stage can also be 

characterized by its gain and the input referred noise. In an ideal case the gains are such 

that the noise of the first stage is dominant at all frequencies, but this is typically not the 

case. 

 In the first stage the mechanical loss essentially couples the oscillator to a thermal 

bath and introduces a mechanical thermal noise. The input-referred force noise spectrum 

of this Langevin force is white, independent of the frequency of the measurement. 

Consequently if the mechanical thermal noise of the transducer is the dominant noise 

source, the signal-to-noise (SNR) ratio of the measurement is also uniform and 

independent of frequency. The SNR is however inversely proportional to the square root 

of the loss, that is proportional to the square root of the mechanical quality factor Q. Note 

that when we measure the force at frequencies below the mechanical resonance 

frequency, the gain of the sensor is independent of Q, while the mechanical force and 

displacement noises decrease as Q
1/2

. On the other hand, when we measure on resonance, 

the gain increases as Q, the force noise decreases as Q
1/2

 and the corresponding 

displacement noise increases as Q
1/2

. Thus the SNR improves with Q equally for off-

resonance and on resonance measurement when thermal mechanical noise is dominant. 

When this is the case, SNR can only be improved by either increasing the force signal 

being measured, or by decreasing the equivalent temperature of the mechanical mode of 

the transducer during the measurement (see below). 

 In reality, however, there are technical and other noises, often referred to as 1/f 

noise, which can increase the noise floor at low frequencies above the thermal noise. In 



addition, in most practical situations the gain of the mechanical transducer off-resonance 

is too low, resulting in electrical or optical noise of the second stage dominating 

everywhere except the narrow window around the mechanical resonance frequency. To 

take advantage of the high mechanical gain and high SNR around the mechanical 

resonance, the input force should be applied at the appropriate resonance frequency. With 

a force that is constant in time but that is a strong function of the separation gap this is 

achieved by modulating the gap. While the gap can be modulated by an external actuator, 

more often this is achieved by exciting the mechanical vibration of the transducer itself 

by applying an external force to it in parallel with the force to be measured. For example 

this force could be an electrostatic force, or an inertial force applied by vibrating the 

whole transducer in space.  

 Typically the measured transducer position is used in a phase locked loop to apply 

the external excitation force exactly at 90-degree phase shift to the measured transducer 

displacement while maintaining the constant transducer vibration amplitude. This insures 

that the transducer always vibrates on resonance. In turn the interaction force now has a 

component that is AC modulated by the oscillating transducer gap. For a potential force 

that is only a function of the gap, this AC component is in phase with the mechanical 

motion and results in the shift in the resonance frequency of the transducer, which is then 

being detected. For a small oscillation amplitude the measurement is particularly easy to 

interpret, as the frequency shift is proportional to the gradient of the force of interest at a 

given separation, see Eq. (4). However it should be noted that the AC force component 

that is being generated and measured in this way is almost always smaller than the total 

DC force at that gap. The SNR of this measurement is proportional to the vibration 

amplitude for small amplitudes. 

 In both DC and AC measurements the gain of the mechanical sensor is inversely 

proportional to the sensor stiffness. However, making the sensors softer leads to earlier 

onset of instability for small separations. Moreover, as long as the sensor effective mass 

is limited by the need for extended sensor position readout areas, such as the case for 

electrostatic readout, decreasing the sensor stiffness leads to lowering the resonance 

frequency. While dynamic measurement bandwidth is not a concern where a DC force is 

measured and the averaging time is seconds or even minutes, staying above the low 

frequency technical noise and maintaining high Q of the sensor prevents further reduction 

of the stiffness. The issues of the measurement bandwidth indeed come to the foreground 

as one considers scanning probe sensors where the force is measured as a function of 

location. 

 We can thus conclude that the DC and off-resonance force measurement SNR is 

currently limited directly by the mechanical displacement readout, while for on-

resonance measurements with high Q transducers in vacuum thermal mechanical noise 

and the gap modulation amplitude determine the SNR at room temperature. Furthermore, 

decreasing the physical size of the position readout areas without compromising the 

readout precision would be required for more robust and higher bandwidth sensors. 

 While electrostatic readout has been widely used for MEMS sensors due to its 

relative simplicity of implementation in a MEMS transducer, it has significant 

limitations. It does not scale well with decreasing sensor size, as the capacitance derived 

signal is proportional to the area of the sensor. Even when the stray capacitance of the 



cables connecting the sensor is eliminated, the input capacitance of the readout transistor, 

together with the electronic Johnson noise, limits this readout scheme.  

 Optical readout, however, has been shown to achieve much lower mechanical 

displacement noise levels, while requiring the minimum interaction areas only of the 

order of the wavelength of light used. The fundamental noise limit is in this case imposed 

by the quantum optical shot noise, and is generally independent of temperature as the 

energy of a photon in the visible to near-IR range of the spectrum is much larger than 

kBT, where kB is the Boltzmann’s constant.  

 To realize the full benefit of the optical readout scheme one needs to use an 

optical interferometer that has as high finesse as possible and is modulated as strongly as 

possible by the mechanical motion of the sensor. In one recent example of a comparably 

low finesse (≈ 20) cavity using a gold-coated micromechanical cantilever as one of the 

mirrors, the mechanical noise level of the order of 10
-15 

m/Hz
1/2

 was achieved [52] with 

incident optical power of 1mW and the readout spot on the cantilever of only 3 µm in 

size. In another remarkable example using a high finesse cavity (≈ 30000), spot size of ≈ 

60 µm and incident power of 1.5 mW the noise level of 4x10
-19  

m/Hz
1/2

 was achieved 

[53]. In both cases the optical cavities were of the order 1mm in size, external to the 

mechanical devices, and in the high finesse case the mechanical device was fairly large, 

1mm x 1mm x 60µm, and included a high reflectivity coating. 

 The next step in the transducer evolution is to integrate the high finesse optical 

interferometer on the same chip, optomechanically coupled to the mechanical transducer 

for optical readout (and even possibly excitation with an all-optical force). The optical 

resonators with optical Q of over 10
5
 and as small as a few microns in size can be 

realized on chip via appropriate microfabrication processes. Planar structures such as 

photonic crystals and disk and ring resonators are some of the possible candidates, 

combining compactness and high mode confinement with excellent Qs and the ability to 

integrate with connecting waveguides as well as mechanical sensors. 

 Such an integrated device coupling a MEMS transducer with an optical 

interferometer has been recently realized [54]. The concept is shown schematically in 

Figure 12. A high optical Q 10 µm diameter Si microdisk resonator is mechanically fixed 

to a substrate. The light can be coupled in and out of the resonator via a fixed 

microfabricated Si waveguide (WG) on a side of the resonator. A movable dielectric 

membrane (blue), made from low stress silicon nitride (LSN), is fabricated above the 

resonator. The membrane is attached to a MEMS transducer such as an electrostatic 

actuator and is capable of mechanical motion in the vertical direction. The optical mode 

in the microdisk is evanescently coupled to the membrane and as the membrane moves 

toward and away from the microdisk, never touching it mechanically, the motion 

significantly shifts the resonance frequency of the mode. While this is still work in 

progress, given the observed parameters of the current devices we estimate the shot noise 

limit of the mechanical motion readout to be below 10
-15 

m/Hz
1/2

. With the evanescent 

field coupling approach the optical and mechanical devices are fabricated side by side 

and can be optimized essentially separately. No compromises are required such as 

integrating complicated and heavy coatings on micromechanical devices. Another 

advantage is the potential for completely fiber-pigtailed simplicity, without need for 

maintaining external optical alignment. 



 This type of device would in principle allow one to exploit various effects 

observed in cavity optomechanical systems [55]. One particular possibility is to excite the 

resonant vibration of the mechanical mode with an optical force by blue-detuning the 

optical excitation from resonance and use this as an alternative to the phase locked loop 

of the frequency sensing scheme described above. An even more exciting possibility is to 

use the position sensing for cooling the mechanical mode. This can be done either 

through feedback, or even directly by red-detuning the excitation light. For example, 

cooling factor of 60 from room temperature was achieved by using feedback approach 

[53]. While the cooling feedback is turned on, the effective mechanical Q is dramatically 

reduced, however as soon as the cooling is completed and the feedback is turned off, the 

Q is high and the thermal noise in sensor displacement is still low, while it takes the time 

of order Q/fres for the mechanical mode to thermalize back to room temperature. If the 

cooling rate with the feedback turned on (in principle limited just by the opto-mechanical 

position sensing bandwidth and noise) can be made much faster than 1/Q, the sensor can 

in principle be operated at the effective temperature much lower than room temperature. 
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Figure 1. Schematic representation of the photonic modes confined between two metallic surfaces. The 

Casimir force between these two metallic surfaces arises due to the dependence of the energy spectrum of 

the confined electromagnetic modes on the separation between the surfaces. 

 

   

 

 
Figure 2. Comparison of the characteristic object’s size and interaction range (gap) of experiments 

performed in the last decades to measure the Casimir force between bodies.  

 

   

 



 
Figure 3. Ultra dense array of NEMS mirrors for maskless lithography: a) schematic representation of the 

array showing the mirror and spring layers and SEM images of the fabricated devices showing the mirrors 

array (b) and springs (c). Each mirror is 3 µm x 3 µm, the gap between them is around 100nm. In (c), the 

spring’s width and spacing is also ≈ 100nm.  

 

 

 
 

Figure 4: Schematic of the two configurations used for the experimental setup. a) sphere attached to the 

optical fiber. All the relevant dimensions are included. zmetal is the separation between the bodies, zo is the 

distance between the end of the fiber and the end of the sphere, b is the lever arm,  is the angular deviation 

of the oscillator, and zg (not shown in the graph) is the distance between the top of the oscillator and the 

reference plate. b) Plate attached to the optical fiber assembly. All the dimensions have the same meaning, 

except for zo which represents the distance between the end of the fiber and the bottom of the plate.  

 
Figure 5: (a) Absolute value of the electrostatic force as a function of separation determined using the 

procedure described in the text and Eq. (6). (b) Difference between the measured values and Eq. (6) for 
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when either the best zo (open circles) or zo
*
 = zo + 1.5 nm (full circles) are used in Eq. (6). Data shown was 

obtained for (Vb – Vo) = 322.0 mV. 

 
Figure 6: Magnitude of the derivative of the force  as a function of VDC. The plot was obtained 

at zmetal = 3.5 µm when VDC = Vo. Data do not fall in a straight line due to the increase of the electrostatic 

force (and ) when |VDC – Vo| increases. 

 

 
Figure 7: (a) Absolute value of the measured Casimir pressure as a function of separation for the setup 

from Fig. 4a, sample from Ref. [43] (open circles), and Fig. 4b, sample electrodeposited on a Si single 

crystal, Ref. [44] (closed circles). Both data sets are indistinguishable at this scale. (b) Difference between 

the data sets in (a). The difference was obtained at the separations measured in the newest sample. The 

pressure at these separations for the older sample was determined by linear interpolation. Error bars 

represent the 95% confidence level in both the separation and pressure determinations.  
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Figure 8: Filled circles show (a) ellipsometrically measured values of ’ and (b) ’’ as a function of 

wavelength. Tabulated data from Ref. [45] are displayed as open circles. 

 

 
Figure 9: Measured and calculated Casimir pressure as a function of separation, for the closest (a) and 

furthest separations (b). The crosses represent the 95% confidence levels in the measured values. The dark 

gray band is the calculation (with the error represented by the thickness of the band) using the Drude 

model. The light gray is the same when the plasma model is used, see Ref. [48]. 
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Figure 10 : Measurement of the residual potential Vo using the method shown in Fig. 3 as a function of (a) 

separation, (b) time, and (c) lateral position.  
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Figure 11: Difference between the determined Casimir pressure when the optimal Vb has been used and the 

determined pressure when (Vb – Vo) = 5 mV has been used. The difference is well fitted by the electrostatic 

interaction. The error bars are obtained at the 95% confidence level. 

 

  

  
 

Figure 12: Schematic (A and B) and Scanning Electron Microscope images (C and D) of an integrated 

opto-mechanical transducer. Membrane is microfabricated from low stress silicon nitride (LSN). Actuator, 

microdisk optical resonator (µdisk), and waveguide (WG) are single crystal silicon. 
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