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Developers of large-scale document processing and image recognition systems are in need of a dynamically robust character seg-
mentation component. Without this essential module, potential turn-key products will remain in the laboratory indefinitely. An
experiment of evolving a biologically-based neural image processing system which has the ability to isolate characters within an
unstructured text image is presented. In this study, organisms are simulated using a genetic algorithm with the goal of learning the
intelIigent behavior required for locating and consuming text image characters. Each artificial life-form is defined by a genotype
containing a list of interdependent control parameters which contribute to specific functions of the organism. Control functions
include vision, consumption, and movement. Using asexual reproduction in conjunction with random mutation, a domain inde-
pendent solution for text segmentation is sought. For this experiment, an organism's vision system utilizes a rectangular receptor
field with signals accumulated using Gabor functions. The optimal subset of Gabor kernel functions for conducting character seg-
mentation are determined through the process of evolution. From the results, two analyses are presented. A study of performance
over evolved generations shows that qualifiers for the natural selection of dominant organisms increased 62%. The second analysis
visually compares and discusses the variations of dominant genotypes from the first generation to the uniform genotypes resulting
from the final generation.

Research in neural classification techniques have shown great potential for improving the accuracy of character recognition
engines. Character recognition, the classification of well formed and cleanly segmented characters, has been studied in great detail
in the past. 1-5 What is often avoided in character recognition research is the study of automated segmentation, the separation of
text images into individual letters, one letter per image. The success of character-based classifiers is directly dependent upon suc-
cessful segmentation of text images into isolated characters. FulI scale document recognition and processing systems must include
an accurate / intelIigent segmentation component.

A model recognition system designed to process handprint written on structured forms has been implemented on a massively par-
alIel computer at NIST.6 This model system has been used to study the effect of segmentation methods on recognition accuracy
and system throughput. Conventional approaches to character segmentation involve algorithms based on spatial histograms, con-
nected-component labeling, and heuristics for resolving ambiguities.? The rules used in conventional approaches depend upon the
intrinsic structure of a specific text, the size and style of machine print, and whether or not the text image contains handwriting.
Studies have shown that methods utilizing traditional image processing techniques such as spatial histograms are only 60% accu-
rate on handprint, and even when implemented on a paralIel computer, require 55% of the system's processing time.6,7 In order
to develop generalized segmentation solutions which are both accurate and efficient, alternative methods are being explored.

The experiment presented in this paper explores an artificial life-form which exhibits the necessary behavior to seek out and isolate
characters, domain independently. The integration of genetic algorithms and evolution-based learning with connection-oriented
models shows great promise for application solutions in the future. Vasant Honavar and Leonard Uhr have introduced the notion
of "Generalized Connectionist Networks."g In their discussion of generalized network solutions, they define a set of functional
subsystems which can apply genetic search and evolution-based learning to build connection topologies, find sets of control
parameters, and select learning strategies which provide optimal solutions.

Experiments involving the integration of evolution with neural learning have been conducted, including work at the Center for
Research in Language at the University of California, San Diego.9, 10 In these experiments, an organism was simulated which,



through the use of natural selection, reproduction, and mutation, exhibited increasingly intelligent behavior. In this case, the
desired behavior was for an organism to strategically move through its grid-oriented environment finding and eating cells of food.

The experiment presented in this paper is similar in that an organism is to be simulated which exhibits intelligent behavior for
locating and consuming text image characters. A domain independent solution for text segmentation is sought by evolving Genetic
Neural Automata for Text Segmentation (GNATS). Using evolution-based techniques for learning, the potential for solving an
engineering application with biologically motivated methods is demonstrated.

A GNAT is fundamentally defined and represented by a genotype. Each control parameter can therefore be thought of as a gene
which contributes to a specific function of the organism and which is interrelated with other genes within the genotype. Control
functions include vision, consumption, and movement. These genotypes are passed from generation to generation through a pro-
cess of natural selection and reproduction including random mutations from parent to child. By monitoring the success of each
GNAT within its lifetime, only the fittest are selected for reproduction. A child GNAT therefore has the potential for performing
as well as its parent, performing better than its parent, or failing to perform altogether. Goal directed behavior, in theory, should
therefore increase as GNATS are selected and reproduce from generation to generation.

In order for a GNAT to sense its environment, a vision system and sensing mechanism is required. For this experiment, the vision
system utilizes a rectangular receptor field which can be used to scan the organism's immediate surroundings. The efficiency of
this vision system will contribute directly to the success or failure of the organism.

Within the receptor field, signals are accumulated using a set of incomplete nonlinear functions, the Gabor functions. This receptor
field model is based on known biological data on the structure of vertebrate vision but is implemented using more conventional
numerical methods. 11 Gabor functions reduce random image noise and smooth irregularities in image structure by acting as spa-
tially localized low-pass filters. John Daugmanl2 has used Gabor functions for image compression and image texture analysis.
These functions match the visual receptor field profiles of mammalian eyes and provide the minimum combination of uncertainty
in position and spatial frequency.



Figure I displays several Gabor functions demonstrating the ability to select functions based on position, orientation, and spatial
frequency. The image displayed in the top left quadrant is an example of a Gabor function defined with cosine phase. The image
in the top right quadrant is a similar function defined with sine phase. Both have the same spatial extent and are vertically orient-
ed. The image displayed in the bottom left quadrant of the figure is an example of a Gabor function defined one level down from
the one displayed immediately above it. Levels are discussed later in this section. Notice that this function is half the spatial ex-
tent, both horizontally and vertically, and has been oriented at 30 degrees. The bottom right Gabor function is similar to the one
displayed on the bottom left, only it is being displayed at an orientation of 150 degrees.

Since the Gabor basis functions are an infinite set, it is necessary to select a specific subset to be used as the image reconstruction
elements which cover the character image. This selection process is referred to as tiling and is defined by a set of attributes which
include horizontal and vertical starting levels, the number of extending levels, the number of evenly spaced orientations, and
function symmetry. I I First level functions by definition have a spatial extent the size of the image being reconstructed and share
a common origin at the center of the image. Successive levels represent recursive subdivisions of the original image space spec-
ifying tiles with smaller and smaller spatial extent and with origins at twice the sampling density of the previous level.

Figure 2 illustrates the result of tiling a square image starting at horizontal and vertical levels equal to 0 and extending 2 levels.
Five different tiles are created. The first level contains one tile the size ofthe entire image, do by do, while the second level contains
four tiles, each of size d 1 by d 1, which are 1/4 the area of the tile in level I. Five different function origins are shown in Figure 2,
each centered in the middle of their corresponding tile. Given this pattern of recursive subdivision, level 3 would contain 16 tiles.
Unlike this example, the horizontal and vertical starting levels may differ causing spatial subdivisions to be asymmetrically pro-
portional. In this way, assigning values for the starting levels and the number of extending levels dictates the number of resulting
tiles along with their spatial extent and origin.
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At each tile origin, there may exist one or more Gabor functions rotated at even intervals according to the number of orientations
specified. For example in Figure 2, an orientation value of 4 would define 20 different (origin, orientation) pairs, four different
orientations at each of the five tile origins. The four orientations within each tile would be evenly distributed at intervals of 45
degrees, 180 degrees divided by 4. The range of possible orientations, 360 degrees, is reduced by a factor of two in order to elim-
inate orientation redundancies. The symmetry attribute determines the phase of the selected functions and may specify a single
set of Gabor functions with either sine or cosine phase. Alternatively, the symmetry attribute may be used to specify both sine
and cosine phases resulting in two sets of Gabor functions selected for each (origin, orientation) pair. In our example, specifying
either sine or cosine symmetry would result in 20 selected Gabor functions, whereas specifying both sine and cosine symmetry
would result in 40 selected Gabor functions.

The optimal subset of Gabor kernel functions for conducting character segmentation will be determined by evolving values for
the tiling attributes described above. In this way, multiple topologies of the vision system can be explored and evaluated across
successive generations of GNATS. Using a selected subset of incomplete nonlinear Gabor functions, an image is reconstructed
using a least squares fit. The coefficients resulting from the fit can be accumulated to produce a broad signal for detecting the pres-
ence of significant image information within the view of the receptor field.



The reconstructed image resulting from the least squares fit is used to define the boundaries within which the GNAT is to consume
a sensed character. The grayscale reconstructed image is thresholded to binary and then used as a logical mask for extracting (seg-
menting) the information (characters) from the GNAT's environment. The two images displayed in Figure 3 demonstrate the abil-
ity to isolate words by exploiting the Gabor functions' body detecting capability. Similar results exist for individual characters.
Notice how the individual letters of the digitized word "Constitution" are collapsed into a single mass of black pixels in the Gabor
reconstructed image.

Constitution

Primitive motion capabilities are provided to give a GNAT the ability to explore its environment. A GNAT's neighborhood is
defined as its eight immediately surrounding receptor field views. If a GNAT senses significant image information within its neigh-
borhood, then the organism moves a fraction of its receptor field size in the direction of the sensed signal. If no significant signal
is sensed, then the GNAT jumps in a random direction just beyond its current neighborhood.

An external control is required in order to govern how a GNAT is to actually live and grow in its environment. It is within the
environment that the application domain is modeled and success measured. GNATS are placed into isolated environments, one
GNAT per environment. A GNAT, over its lifetime, will have opportunity to explore a predetermined number of consistent and
yet unique environments; consistent in complexity, yet unique in layout. Each environment is defined as a rectangular binary
image containing one or more words randomly distributed throughout the image space. Words found in an environment are syn-
thesized from a database of digitized characters so that the location and content of each word is registered for future reference.
Word synthesis can be thought of as an image-based type setter.

GNATS are required to move about within their environments sensing and locating isolated character images and extracting them
from the environment using the control components described above. A GNAT is permitted to explore a given environment for a
predetermined number of computer clock cycles during which time a qualitative value representing the number of consumed char-
acters is accumulated.

This section lists the internal details of the experiment conducted which was based upon the ideas presented above. For the purpose
of proving feasibility and avoiding unnecessary complexities, this initial study was designed to be complete in terms of theory and
yet simplistic in terms of solution.

Evolution-based learning provides a platform whereby optimal sets of internal GNAT control parameters can be determined. To
initiate this experiment, ranges for each control parameter in the genotype structure were assigned. The limits set by the ranges
are used as guidelines controlling the random initialization of first-generation GNATS and the magnitude of valid mutations occur-
ring during reproduction of generations thereafter. The genotype codes and their associated ranges are listed in Table I.



PARAMETER MIN MAX
GNAT _MOUTH_WIDTH 30 256
GNAT _MOUTH_HEIGHT 30 90
GBR_X_LEVEL 0 3
GBR_Y_LEVEL 0 3
GBR_LEVELS I 2
GBR_SYMMETRY -I 1

GBR_THETAS 1 2
GBR_THRESH 64 192
GNAT _SIGNAL_THRESH 0 100
GNAT_DELTA I 10

Given these minimum and maximum limits, the width of a GNAT's receptor field is permitted to mutate between 30 and 256 pix-
els. This range corresponds approximately to field widths varying from I to 8 characters in size when using machine printed char-
acters digitized at 300 dpi for environment synthesis. The height of the receptor field is permitted to mutate allowing field heights
to vary between approximately I to 3 characters in size. Gabor function tiling is permitted to begin at levels 0 to 3 independently
along both the X and Y axes and will span a maximum of 2 levels from the selected starting levels. The symmetry of the tiled
functions may include sine and / or cosine frequency components. The number of orientations for each tiled function may be hor-
izontal or both horizontal and vertical. Through reproductive mutations across these dynamic ranges, an optimal set of vision
parameters can be determined across evolved generations.

The consumption threshold used to extract the sensed image information from within a GNAT's grayscale receptor field ranges
between 64 and 192. The focused range therefore centers the potential threshold values between 25% to 75% of the full dynamic
range of possible 8-bit pixel values. The signal threshold for sensing significant image information within a GNAT's immediate
receptor field neighborhood is permitted to mutate between 0 to 100. As the selected threshold value increases, a GNAT will be
more and more selective to what it moves towards. If significant information is sensed, then the GNAT will move a fraction of the
receptor field size in the direction of the sensed information. This fractional increment is permitted to mutate in integer multiples
of tenths of the receptor field size.

In addition to genotype ranges, global architecture parameters for environment synthesis and generation control are also necessary.
Table 2 lists the parameters used to control the evolution of GNATS from one generation to the next.

PARAMETER VALUE
GNAT_POP 100
GNAT_GENERATION 15
GNAT_SURVIVE 10
GNAT_CHILDREN 10
GNAT_MUTATE 2

This experiment maintained a stable generation population of 100 GNATS and monitored the performance of 15 successive GNAT
generations. From each simulated generation, the top 10 dominating GNATS were allowed to reproduce. The accumulated qual-
ifier used for natural selection in this experiment was the total number of black pixels consumed across the lifetime of each GNAT.
The GNATS who consumed the greatest quantity of pixels within their lifetime were permitted to replicate their genotypes. Each
of the 10 dominant GNATS was permitted to have 10 children thus maintaining the stable 100 GNAT population across genera-
tions. In this initial experiment, asexual reproduction was conducted so that each child received a replicated genotype from a sin-
gle parent with a small amount of mutation. In each inherited genotype, 2 randomly chosen codes out of the 10 possible codes
(20%) were altered, and those varied within the ranges dictated in the Table I.



Table 3 lists the parameter values used to synthesize and initialize the environments used in this experiment. GNATS were per-
mitted to explore five unique but consistently complex environments. The width and height of each environment was 608 by 608
pixels containing 20 registered words. For initial simplicity, all words were the single character word "a" randomly distributed
through the environment space. Every GNAT across the 15 generations of this experiment explored the same 5 environments, each
in isolation. An image of one of the 5 environments used in the experiment is displayed in Figure 4.

PARAMETER VALUE
ENV_NUM 5
ENV_WIDTH 608
EN V_HEIGHT 608
ENV _WORD_COUNT 20
ENV_WORD "a"
ENV_LSPAN 7200
ENV_STRT_X 300
ENV~STRT_Y 300

a a
a a

a a
a aa

a

a

a a a a a
a a

a a
Figure 4. One of 5 environments used in the experiment.

A GNAT was permitted to live 7,200 CPU clock cycles, 2 minutes, within each of its 5 environments totalling an overall life-span
of 10 minutes of CPU time. Due to GNATS having equal life-spans, each one had equal potential for exhibiting successful behav-
ior. Simulating a generation of 100 GNATS required no less than 1,000 CPU minutes. This experiment ran at a low priority for
approximately 20 days on a scientific workstation with only minimal interruptions. Each GNAT was initially placed in the center
of each environment at pixel coordinate (300, 300) and then permitted to explore based on its ability to sense and move.

This section discusses the results of conducting the experiment outlined in Section 4. First, the performance of the GNATS evolv-
ing over time is examined, and then an analysis of how well evolution-based techniques promoted the convergence of genotype
codes across generations is presented.



The accumulated qualifier used for natural selection in this experiment was the total number of black pixels (text pixels) consumed
over a GNAT's lifetime. Figure 5 plots the consumed pixels for the top 10 performers from each generation. The solid line charts
the average number of accumulated pixels across the 10 GNATS whereas the dotted line charts the maximum number of black
pixels eaten by a single GNAT within each generation. In both instances, the overall performance of the dominant GNATS over
generations increased leveling off about the 8th generation.
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Table 4 lists the genotype possessed by the GNAT which consumed the greatest number of pixels over all 15 generations. This
GNAT was a member of generation I0 and consumed 18,163 black pixels over its lifetime. Studying the individual code values
shows that maximum consumption was achieved through a relatively simplistic control structure. This demonstrates that efficient
control parameters can be derived from a set of potentially complex solutions through the techniques of evolution. This GNAT
has a minimal size receptor field, a computationally inexpensive vision system, and a very low signal threshold which causes it to
be non-selective about sensed image information.

PARAMETER VALUE
GNAT _MOUTH_WIDTH 40
GNAT _MOUTH_HEIGHT 31
GBR_X_LEVEL 0
GBR_ Y_LEVEL 0
GBR_LEVELS I
GBR_SYMMETRY 0
GBR_THETAS 2
GBR_THRESH 180
GNAT _SIGNALTHRESH 1
GNAT_DELTA 5



The first 20 bites taken by the GNAT described in Table 4 are displayed in Figure 6. Notice how the small receptor fields have
fragmented characters into pieces. This GNAT exhibits extremely primitive behavior; it has a vigorous appetite and is non-selec-
tive about what it consumes. Therefore, this GNAT consumed the greatest number of text pixels, but does not exhibit the originally
desired behavior of isolating complete characters of text.

Compare the GNAT described above with the GNAT whose genotype is listed in the Table 5. This GNAT consumed 16,947 black
pixels, which was the maximum within generation 9. Its code values are quite similar to the GNAT in Table 4 with only the size
of the receptor field differing significantly. The first 15 bites of this GNAT are displayed in Figure 7. These images illustrate a
more desired behavior than those bites shown in Figure 6. The bites made by the second GNAT contain a greater percentage of
whole characters minimizing the amount of fragmented character pieces.

PARAMETER VALUE
GNAT _MOUTH_WIDTH 40
GNAT _MOUTH_HEIGHT 72
GBR_X_LEVEL 0
GBR_ Y_LEVEL 0
GBR_LEVELS I
GBR_SYMMETRY -I
GBR_THETAS 2
GBR_THRESH 180

GNALSIGNAL_THRESH 2

GNALDELTA 5



The behavior of the GNAT in Table 5 did not perpetuate itself through successive generations because of two primary factors.
First, as the size of a receptor field increases, the computational expense of the Gabor-based vision system also increases. There-
fore, a vision system such as the one defined in Table 4 will have the opportunity, within a GNAT's lifetime, to take many more
bites than one which is more computationally complex. This type of competition is required to derive solutions which are not only
effective, but also efficient. The second factor deals with the accumulated qualifier used for natural selection. In this experiment,
this qualifier was the number of consumed black pixels. Notice that this criterion contains no intrinsic rewards for bites which
consume whole characters nor are there intrinsic penalties for bites which consume partial characters. This over-simplified qual-
ifier in conjunction with a small receptor field will therefore win the right of reproduction over a GNAT such as the one in Table 5.

In this section, the convergence of genotype codes across generations is analyzed. The graph in Figure 8 contains a plot of 9 nor-
malized genotypes belonging to the 9 GNATS from generation Iwhich consumed the greatest number of pixels. The unit points,
I through 10, along the X-axis correspond in order to the genotype codes listed in Table I.The values plotted along the Y-axis
represent the normalized values associated with each of the codes. Code values were normalized in the range 0.0 to 1.0 according
to the parameter limits listed in Table I.The graph in Figure 8 is a 2-dimensional representation allowing visual inspection of the
10-dimensional genotype.

Compare the large variations among the genotypes in the graph above to the genotypes plotted in Figure 9. The second plot shows
the normalized genotypes belonging to the 9 GNATS in generation 15 which consumed the greatest number of pixels. These gen-
otypes are much more uniform, demonstrating that the genetic search converged to a small number of solution sets from what was
originally an extremely large number of potential solutions. A breakdown of the genotypes displayed in Figure 9 is given below.



Upon simulation of generation 15, the size of the 9 receptor fields represented by codes I and 2 in Figure 9 are minimal in size
similar to the GNAT described in Table 4. Codes 3,4, and 5 correspond to the tiling levels used in the Gabor-based vision system.
All 9 GNATS contained the same 3 parameter levels with the exception of one GNAT which deviated on code 4. The symmetry
switch for selecting frequency components of the Gabor functions is represented by code 6. The dominant GNATS chose one com-
ponent or the other with none choosing both. The 9 GNATS split on values for code 7 with 5 GNATS using horizontal orientations
and 4 GNATS using both horizontal and vertical orientations oftheir selected Gabor functions. All the GNATS had a consumption
threshold which was relatively large represented by the values plotted for code 8. Code 9, the signal threshold, is consistently very
low implying that the GNATS were non-selective. The last code in the right graph represents the percentage of receptor field size
used to move in the direction of sensed information. This code remains below 50% of the receptor field size. In light of these obser-
vations, this analysis clearly demonstrates the converging power of genetic search.

This experiment examines the potential for using genetic algorithms and artificial life-forms for segmenting images of text. By
design, the initial study was simplistic therefore limiting the usefulness of the solution sets derived. None the less, much can be
gained from the results.

Two general observations can be made from the analyses in Section 5. First, the extent to which desired behavior is evolved is
directly dependent upon the criterion used for natural selection. In the case of this study, the accumulated number of eaten black
pixels did not reward GNATS which ate whole characters nor did it penalize GNATS which ate pieces of characters. This allowed
extremely efficient but primitive GNATS to dominate more sophisticated GNATS which exhibited more desirable behavior.

The second observation deals with the problem of predeterminism. Unlike traditional artificial neural models, the genetic model
presented here evolved the parameters governing the control of the organism. This allowed the control structure to be dynamically



derived. However, predeterminism is not completely avoided. If the codes within the genotype are not designed properly, then the
organisms being evolved will be fundamentally handicapped.

In conclusion, this study has successfully shown that genetic algorithms can be used to derive efficient solution sets from a large
collection of complex and dynamic control parameters. The results from the initial experiment demonstrate the feasibility of
evolving an artificial life-form capable of segmenting text images. The experiment also demonstrates great potential for further
research and development. Future work will include the refinement of the natural selection criterion and the integration of neural
learning for dynamic sensing and focusing into the genetic platform established here.
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