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This article describes an investigation of the transient behavior of a small (2.0 W at 85 K) pulse tube cryo-
cooler operating at 120 Hz with an average pressure of 3.5 MPa, capable of relatively fast cool-down from
ambient to about 60 K. In a series of experiments, the cold end temperature was measured as a function
of time in a complete cool-down and subsequent warm-up cycle, with no heat load and different quan-
tities of excess mass at the cold end. A transient heat transfer model was developed, that considers the
effects of the cooling power extracted at the cold end and that of the heat gain at the warm end on
the cool-down time. The heat gain factor was calculated from warm-up data, and found to be approxi-
mately the same for all experiments. Using the same model with cool-down data enables a determination
of both the gross and net cooling power as functions of time, but more importantly – as functions of the
cold end temperature. An expression was derived for the cold end temperature as a function of time for
any amount of excess mass, including zero. The cool-down time of the ‘‘lean’’ cryocooler (with no excess
mass) was found to be less than 50 s.

This cool-down/warm-up method for evaluating the cooling power of a cryocooler seems simpler than
steady-state experiments with a heater simulating load at the cold end. Use of the heat transfer model
with data from one or two good experiments conducted in the above manner, can yield both the gross
and net cooling powers of a cryocooler as functions of the cold end temperature, and allow the determi-
nation of cool-down time with any amount of excess thermal mass. While the net cooling power during
cool-down differs somewhat from that under steady-state operation, the former can serve as a good mea-
sure for the latter.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Most studies on cryogenic coolers reported in the literature
concentrate on the steady-state performance of these devices,
looking at gross cooling power, net cooling power and the coeffi-
cient of performance (COP). In many applications these are the
important characteristics of the cryocooler. In other cases, how-
ever, the transient behavior, and particularly the cool-down rate,
are of utmost importance, especially where considerations such
as mission readiness are relevant.

This study has concentrated on the transient behavior of a small
(2 W at 85 K) pulse tube cryocooler operating at 120 Hz with an
average pressure of 3.5 MPa, capable of relatively fast cool-down
to about 60 K, following tests of a similar device with a somewhat
different pulse tube component [1]. Experiments with this cryoco-
oler have confirmed the theoretical prediction [2] that by using an
increased fill pressure, reduced hydraulic diameter of the regener-
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ator matrix and reduced regenerator volume, one may be able to
operate at higher than common frequencies and obtain good effi-
ciency while achieving fast cool-down. This particular device was
constructed with two rather large copper and stainless steel
flanges at the cold end, coupling the regenerator and pulse tube
parts of the device, and carrying a heater to simulate a payload.
The objective of the present study has been to evaluate the cool-
down time of this cryocooler with minimum excess thermal mass
at the cold end. As it turns out, this cool-down time was found to
be significantly below the one measured with the built-in excess
mass.

The method originally employed to achieve the above objective
was to conduct a series of cool-down experiments with a varying
amount of excess thermal mass at the cold end. Extrapolation of
the data to zero excess mass was to yield the cool-down time un-
der this condition. As it turned out, this extrapolation could give no
conclusive result, because the cool-down time of the ‘‘lean’’ cryoco-
oler was significantly below that with the built-in and various
added masses, as will be shown below. A physical model was then
developed that was validated against the data and was able to pre-
dict the cool-down time; the same model also predicts other
important operating parameters of the cryocooler, such as the
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Nomenclature

A regenerator cross-section area (m2)
cg specific heat of regenerator matrix (J/kg K)
cm specific heat of excess thermal mass at cold end (J/kg K)
COP coefficient of performance (–)
kg thermal conductivity of regenerator matrix (W/m K)
L regenerator length (m)
mm mass of excess thermal mass at cold end (kg)
Q gross cooling power (W)
q dimensionless gross cooling power, Eq. (8) (–)
Q0 net cooling power (W)
r ratio of heat capacities, excess mass to regenerator, Eq.

(8) (–)
T temperature (K)
t time (s)
t� modified time, Eq. (18) (s)

T0 temperature at warm end (K)
TH, TL upper and lower limits of temperature range in cool-

down and warm-up (K)
Tm temperature at cold end (K)
U heat gain coefficient (W/K)
u dimensionless heat gain factor, Eq. (8) (–)
x axial coordinate (m)
ag thermal diffusivity of regenerator matrix (m2/s)
h dimensionless temperature, Eq. (4a) (–)
hm dimensionless temperature at cold end (–)
n dimensionless axial coordinate, =x/L (–)
qg density of regenerator matrix (considering porosity)

(kg/m3)
s dimensionless time, Eq. (4d) (–)
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net and gross cooling powers at different cold end temperatures. It
also predicts the cool-down time at no-load with any magnitude of
the thermal mass at the cold end.

2. Experimental method and procedure

Fig. 1 is a photograph of the pulse tube cryocooler showing,
from the base up: the aftercooler, regenerator, cold end flange,
pulse tube and warm heat exchanger. The aftercooler and warm
heat exchanger are water cooled, and water supply tubes are visi-
ble to the right and left of the device. Also visible is part of the iner-
tance tube protruding from the top of the warm heat exchanger.
The cold end in this device is a copper flange, as shown, with a hea-
ter mounted to its back side and a diode for temperature measure-
ment mounted to the front. The picture shows two square-shaped
copper blocks bolted onto the cold end flange, serving as added
mass. Table 1 lists the various excess mass elements employed in
the experiments, with their respective masses and heat capacities.

The experimental procedure was as follows: With different
amounts of added mass at the cold end, the cryocooler was started
Fig. 1. Pulse tube cryocooler with added mass at the cold end.
with no-load (heater off) and the cold end temperature measured
as a function of time during cool-down. The temperatures in the
aftercooler and warm heat exchanger were monitored as well.
The input power was increased gradually as cool-down proceeded
so as to maintain a constant pressure ratio of 1.21 at the warm heat
exchanger. After the minimum temperature was reached, the com-
pressor was turned off and the same temperatures were monitored
during warm-up. Fig. 2 shows a typical cool-down/warm-up plot of
cold end temperature as a function of time. What may look like a
continuous curve is actually a succession of many points: data
were taken every 15 s.

Tests with different amounts of excess thermal mass did not al-
ways start at the same warm temperature, nor ended at the same
minimum temperature. In order to compare the results on a uni-
form basis, a temperature interval indicated in Fig. 2 by TH and TL

was selected and used in the same form to reduce the data from
all tests.

Fig. 3 shows the cool-down time as a function of thermal mass
for six tests with different amounts of excess mass (black dia-
monds). A straight line is drawn through these points in an attempt
to extrapolate to zero excess mass and to determine the cool-down
time at this condition (white square). It is evident that this extrap-
olation is problematic, and a small change in slope of the line
would put the point closer to zero or even at negative time. Statis-
tical calculations based on a small number of points (far from the
point of interest) cannot be accurate. Furthermore, while the
uncertainty in the heat capacity (horizontal axis) at each of the
six points is rather small, the error in the cool-down time (vertical
axis) is not negligible. One of the tests was repeated three times
and showed a 2.5% spread in the cool-down time. It is plausible
that an uncertainty of similar magnitude exists in the other tests.
Table 1
Excess mass elements at the cold end employed in the experiments. The parameters
of the regenerator are given in the bottom row. The integral heat capacity over the
indicated temperature range was calculated taking into consideration the tempera-
ture dependence of the specific heat.

Item Mass
(g)

Integral heat capacity
from 70 K to 270 K (J)

Built-in excess mass (copper + stainless
steel flanges, screws etc.)

26.4 1797.9

Heater + screw and washer 9.2 601.1
Block 1 (copper) 42.1 2721.5
Block 2 (copper) 41.6 2686.0
– – –
Regenerator (Stainless Steel) 6.8 504.9



Fig. 2. Typical cool-down/warm-up plot of cold end temperature as a function of
time.

Fig. 3. Cool-down time from 270 K to 70 K as a function of heat capacity for six tests
with different amounts of excess mass.
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Thus, a different method is in order. The next section will describe
a heat transfer model attempting to obtain a more accurate predic-
tion from the data.

3. Transient heat transfer model

Fig. 4 describes schematically a model of the system under
investigation. It shows a ‘‘lean’’ (no excess mass) cryocooler with
added mass at the cold end. The temperature T in the cryocooler
varies with time and with the axial coordinate x between the warm
and the cold end; the temperature of the added mass Tm is as-
Cr ocooler, T(x,
Heat Gain, 
U(T0-Tm)

Warm 
End, 
x=0 

x 
y

Fig. 4. Model of cryocooler with added mass u
sumed uniform and varies only with time. Heat is removed from
the cold end at a rate Q corresponding to the gross cooling power
of the device. Q will be determined from the experimental data.
Heat gain at the warm end (i.e. heat entering the cryocooler due
to temperature gradient, mainly from the aftercooler, at T0) is as-
sumed proportional to the temperature difference between the
two ends, with a heat gain coefficient U. This assumption remains
to be validated.

The cold end temperature Tm may be determined from a heat
balance for the entire assembly:

A
d
dt

Z L

o
qgcgTdxþmmcm

dTm

dt
¼ Q � UðT0 � TmÞ ð1Þ

where mm is the excess mass at the cold end, cm is its specific heat
and U is the heat gain coefficient. The primary component of the
cryocooler where temperature variations exist is the regenerator.
Under steady-state operation this temperature is known to vary lin-
early with x [3]; the situation is different under transient condi-
tions, with operational implications, as will be discussed later.
Neglecting the convective effect of the gas, the temperature distri-
bution in the regenerator is governed by the Fourier heat conduc-
tion equation:

qgcg
@T
@t
¼ kg

@2T
@x2 ð2Þ

with the boundary and initial conditions as follows:

Tðx ¼ 0; tÞ ¼ T0 ð3aÞ
Tðx ¼ L; tÞ ¼ TmðtÞ ð3bÞ
Tðx; t ¼ 0Þ ¼ T0 ð3cÞ

Here A is the cross-sectional area of the regenerator and L is its
length. qg, cg, kg are the density, specific heat and thermal conduc-
tivity of the regenerator matrix, respectively (taking into consider-
ation the porosity and axial contact resistance). These quantities
were assumed constant in the calculations conducted here,
although it is realized that the specific heat and thermal conductiv-
ity can vary significantly over the temperature range of a typical
regenerator. A more accurate but more complicated analysis should
take into consideration this temperature dependence.

Before proceeding with the solution, it is helpful to re-write the
equations in dimensionless form. Let us define:

h ¼ ðT0 � TÞ
ðT0 � TLÞ

ðDimensionless temperatureÞ ð4aÞ

ag ¼ kg=qgcg ðThermal diffusivity of the regenerator matrixÞ
ð4bÞ

n ¼ x=L ðDimensionless axial coordinateÞ ð4cÞ
s ¼ agt=L2 ðDimensionless timeÞ ð4dÞ

Substituting these parameters into Eqs. (1)-(3) yields:

@h
@s ¼

@2h

@n2 ð5Þ
Cold 
End, 
x=L

t)
Added 
Mass, 
Tm(t)

Q=Gross 
cooling 
power

ndergoing transient temperature change.



Fig. 5. Logarithmic plot of dimensionless cold end temperature as a function of
time during warm-up tests.
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hðn ¼ 0; sÞ ¼ 0 ð6aÞ
hðn ¼ 1; sÞ ¼ hm ð6bÞ
hðn; s ¼ 0Þ ¼ 0 ð6cÞ

and

d
ds

Z 1

0
hdnþ r

dhm

ds
¼ q� uhm ð7Þ

where

u ¼ UL=kgA q ¼ QL=kgAðT0 � TLÞ r ¼ mmcm=qgcgAL ð8Þ

An exact analytical solution of Eq. (5) with the boundary conditions
(6) is quite difficult, considering the coupling to Eq. (7). Vanapalli et
al. [4] solved the heat conduction equation for a regenerator under
cool-down with no added mass at the cold end and no heat gain at
the warm end, assuming a constant heat flux at the cold end. A sim-
ilar problem was solved by Reese and Tucker [5] for the case of the
cool-down of a polymer rod, with one end maintained at ambient
temperature and the other dipped in a liquid helium bath, assuming
an initially linear temperature distribution along its length, and
again, with no added mass at the cold end and no heat gain at the
warm end. Johnson et al. [6] considered the problem of a rod ini-
tially at a uniform temperature, with one end maintained at a con-
stant temperature and the other connected to a copper receiver
(added mass), warming up under a constant heat flux. The condi-
tions of this model are probably the closest to those of our problem,
with the main difference being their constant heat flux vs. a time-
varying Q in the present problem, representing the all-important
temperature-dependent cooling power of the cryocooler. Also, none
of the above models has considered a heat gain at the warm end.

A numerical solution of Eqs. (5), (6a)–(6c), (7) is possible, but in-
stead, it is relatively easy to employ an integral solution, as is often
used in boundary-layer problems and various other heat transfer
problems [7,8]. Under the integral method, a temperature profile
h(n) is selected, that satisfies the boundary conditions (6), and is
therefore quite close in shape to the exact profile. This profile is
substituted in the integral Eq. (7), which is then solved for hm.
Eq. (5) is hence satisfied not for every fluid particle, but on the
average; however, the cold end temperature is the parameter of
interest, and here the prediction is expected to be quite good. This
will be confirmed by analysis of the experimental results, as shown
later.

To solve Eq. (7) we select a temperature profile of the polyno-
mial form:

h ¼ hmðsÞ½unþ ð1� uÞn2� ð9Þ

which satisfies the boundary conditions (6), and an additional con-
dition describing the heat gain at the warm end:

@x ¼ 0) �kg
@T
@x
¼ U

A
ðT0 � TmÞ ð10Þ

or, in dimensionless form:

@n ¼ 0) @h
@n
¼ uhmðfor all sÞ ð10aÞ

Substituting the profile (9) in (7) and performing the integration
yields the following differential equation for hm:

dhm

ds
þ 6u
ð6r þ uþ 2Þ hm ¼

6q
ð6r þ uþ 2Þ ð11Þ

Here q is a function of time, to be determined from the cool-down
tests. Once q(s) is known, a solution of (11) may be obtained in
closed form, with the initial condition hm(0) = 0.
4. Heat gain coefficient from warm-up data

The observed behavior of the temperature as a function of time
during warm-up is depicted in the typical plot of Fig. 2. During
warm-up the gross cooling power Q is zero; Eq. (11) may therefore
be solved with q = 0 to give:

lnðhmÞ ¼ �
6u

ð6r þ uþ 2Þ s ð12Þ

Thus, if our model assumption of the heat gain being proportional to
the temperature difference between the warm and cold ends (Fig. 4)
is correct, a logarithmic plot of the dimensionless cold end temper-
ature hm vs. time should yield a straight line. The slope of that line
should enable us to obtain the heat gain coefficient U.

Fig. 5 provides such plots from the six tests. As evident, all the
plots are quite close to perfect straight lines. This validates the
assumption in the model of heat gain being proportional to the
temperature difference between the warm and cold ends. Table 2
lists the values of U calculated from warm-up data for the six tests.
As evident, despite the widely varying values of added mass and
corresponding heat capacity, the heat gain coefficient in all six
tests is quite similar, with an average value of 7.06E�03 W/K and
a standard deviation of 7.32E�04 W/K. Calculation of the steady-
state thermal conductance through the regenerator, taking into
consideration its wall thickness (0.152 mm), outside diameter
(9.525 mm), length (30 mm) and a thermal conductivity degrada-
tion factor (0.13) for stacked screens, yields 4.41E�03 W/K. This
accounts for about 62% of the heat gain. The remaining heat gain
is probably due to radiation and background heat losses. Note also
that during cool-down, the temperature distribution along the
regenerator is not linear, as in steady state. Also, there appears to
be a slight increase in U with increasing excess mass (except for
the largest value of excess mass). There is no definite explanation
for this – it may be a size effect of the excess mass, increasing
the radiation heat load.

5. Cooling power from cool-down data

Having evaluated the heat gain coefficients from warm-up data,
it is now possible to use the heat transfer model to calculate the
cooling power. From Eq. (11):

q ¼ ð6r þ uþ 2Þ
6

dhm

ds
þ uhm ð11aÞ

or, in dimensional form:



Table 2
Heat gain coefficient U calculated from warm-up data.

Excess
mass (g)

Minimum no-load
temperature reached (K)

Integral heat capacity
(70–270 K) of Excess
Mass (J)

Heat capacity ratio
Excess mass/
Regenerator r

Slope of warm-up data plot
according to Eq. (12) (s�1)

Calculated u ¼ UL
kg A

Calculated
U (W/K)

TEST 6 26.36 58.38 1798 3.56 �6.18E�04 2.54E�01 6.04E�03
TEST 1 35.54 58.16 2399 4.75 �4.98E�04 2.67E�01 6.35E�03
TEST 5 68.50 59.2 4519 8.95 �3.04E�04 2.97E�01 7.05E�03
TEST 2 77.68 60.33 5120 10.14 �2.83E�04 3.12E�01 7.41E�03
TEST 4 110.09 60.16 7205 14.27 �2.14E�04 3.29E�01 7.80E�03
TEST 3 119.27 60.05 7806 15.46 �1.96E�04 3.26E�01 7.73E�03

Fig. 7. Net cooling power calculated from cool-down data for different tests as
function of cold end temperature.
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Q ¼ �ð6r þ uþ 2Þ
6

qgcgAL
dTm

dt
þ UðT0 � TmÞ ð11bÞ

And hence, the net cooling power Q0 = Q � U(T0 � Tm):

Q 0 ¼ � ð6r þ uþ 2Þ
6

qgcgAL
dTm

dt
ð13Þ

Fig. 6 describes the cool-down data from all six tests, showing the
cold end temperature as a function of time. It is evident that cool-
down rates vary significantly for the different cases, as expected
with the varying amount of excess mass at the cold end (Table 2).

To calculate the net cooling power from Eq. (13), the derivative
dTm/dt must be determined from the data presented in Fig. 6. The
derivatives were evaluated at each point by two alternative
numerical methods: a central finite difference and a second-order
spline – both found to be in excellent agreement with each other.
While the temperature vs. time data look quite smooth, the deriv-
ative does not. The ‘‘ripples’’ are attributed in part to our manual
control of input power to maintain a constant pressure ratio; an
automatic, more precise control may have given smoother results.

Fig. 7 shows the net cooling power calculated from the cool-
down data for the different tests using Eq. (13). The variations in
Q0 with time differ significantly for the different tests (as do the
temperatures, Fig. 6). However, when plotted against the cold
end temperature, Q0 results are quite close to each other for all
the tests, over almost the entire temperature range. Another way
to phrase this is that the net cooling power variation with cold
end temperature is practically independent of r; the cryocooler
delivers the same cooling power regardless of the excess mass. This
is expected, on physical grounds; the fact that our model reduces
data from widely different excess mass tests to conform to this pat-
tern lends credibility to the heat transfer model.

The curves from all six tests in Fig. 7 practically coincide with
each other from the no-load condition up to about 270 K. As evi-
Fig. 6. Cool-down data for all six tests (see Table 2 for details).
dent, the net cooling power is close to zero at about 60 K and rises
rapidly with the rise in cold end temperature. It then begins to le-
vel off, and from about 100 K increases almost linearly with the
temperature up to about 6 W at 270 K (but at a considerably lower
rate than at the low temperature range). From 270 K up to ambient
temperature the six curves deviate from each other in a somewhat
random manner, but on the whole show a reversal of the above
trend: a decrease in cooling power with increasing cold end
temperature.

A numerical regression of the data from the six tests shown in
Fig. 7 yields the following empirical correlation (with an R2 value
better than 0.9978):

Q 0 ¼ a0 þ
a1

Tm
þ a2

T2
m

þ a3

T3
m

þ a4

T4
m

þ a5

T5
m

þ a6

T6
m

þ a7

T7
m

ð14Þ

where Q0 is in watts and Tm is in Kelvin. This correlation is valid in
the temperature range 60 K < Tm < 270 K, with the coefficients ai gi-
ven in Table 3:

Fig. 8 shows a plot of the net cooling power from the correlation
(14) over the temperature range 60–270 K (in a solid line). An
Table 3
Coefficients ai in net cooling power
Eq. (14).

a0 7.71940E+00
a1 2.32823E+03
a2 �1.98500E+06
a3 5.31818E+08
a4 �7.16400E+10
a5 5.22552E+12
a6 �1.97180E+14
a7 3.01465E+15



Fig. 8. Cooling power as a function of cold end temperature: cool-down and steady-
state operation.

Fig. 9. Cold end temperature as a function of modified time t�, per Eq. (17).
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extension of this curve (in dashed line, and circled) represents the
temperature range from 270 K to ambient, with the rather peculiar
behavior of decreasing cooling power with increasing cold end
temperature, exhibited by all six tests in Fig. 7. An alternative
way of looking at this is that when starting to cool-down from
ambient temperature, the net cooling power begins from some
medium value (about 4 W) and increases over a certain time inter-
val as the cold end temperature decreases, perhaps building up to
its maximum of 6 W; then it begins to decrease as the cold end
temperature decreases. In order to confirm that this is indeed a real
phenomenon, another test was conducted with cool-down starting
not from ambient but from an intermediate low temperature
(about 123 K). The cryocooler cold end was maintained at stea-
dy-state at this temperature using the heater, and was then al-
lowed to cool-down to the minimum no-load temperature. The
net cooling power, derived from the data using Eq. (13), is plotted
in Fig. 8. The same behavior as in the cool-down from ambient is
evident here: Starting from about 2.6 W at 123 K, the cooling
power increases up to 3.6 W while the cold end temperature de-
creases to 114 K; then the power decreases with cold end temper-
ature up to the same no-load value of 60 K. The reason for this
behavior is not fully understood at this time. It may be a result
of a transient effect related to the initial cooling of the Pulse Tube
cryocooler from ambient. The time scale of this effect varies and
seems to be affected by the magnitude of the excess mass. Consid-
ering the two extremes, it varies from 15 s for Test 3 to 165 s for
Test 6. Further investigation is required for more complete under-
standing of this effect.

The gross cooling power may now be determined from

Q ¼ Q 0 þ UðT0 � TmÞ ð15Þ

The calculated gross cooling power for the present case is plotted in
Fig. 8 for the temperature range 60–270 K. As evident, it increases
with increasing cold end temperature, as does the net cooling
power.
Fig. 10. Cool-down time from 270 K to 70 K as a function of the heat capacity ratio r
between the excess mass and the regenerator, per Eq. (17). The data points
corresponding to the six tests are indicated by the diamonds.
6. Extrapolation of cool-down rate

Having developed an expression for the net cooling power as a
function of cold end temperature for our cryocooler, it is now pos-
sible to extrapolate the cool-down data beyond the range of the
measurements. Note that the Q0 expression (14) is independent
of r, the heat capacity ratio of the excess mass to that of the regen-
erator. We are interested particularly in the cool-down time for
r = 0, namely with no excess mass at the cold end.
Substitution of Q0 from Eq. (14) into Eq. (13) yields a differential
equation for the cold end temperature as a function of time:

dt ¼ � r þ u
6
þ 1

3

� �
2:5247dTm

a0 þ a1
Tm
þ a2

T2
m
þ a3

T3
m
þ a4

T4
m
þ a5

T5
m
þ a6

T6
m
þ a7

T7
m

ð16Þ

where a value of 2.5247 W/K has been entered for qgcgAL character-
izing the volumetric heat capacity of our regenerator. The expres-
sion on the right-hand side of Eq. (16) has the dimensions of
time. Integrating this equation yields

t ¼ � r þ u
6
þ 1

3

� �Z Tm

TH

2:5247dT
a0 þ a1

T þ
a2
T2 þ a3

T3 þ a4
T4 þ a5

T5 þ a6
T6 þ a7

T7

ð17Þ

t in (17) is the time (in seconds) required for cool-down from an ini-
tial temperature TH to a lower temperature Tm. Note that in many
cases t is essentially proportional to r (r� u/6 + 1/3 for the entire
range of our tests, see Table 2). This proportionality is no longer va-
lid at small values of r, that is, with little or no excess mass.

The integral in (17) has been calculated numerically for the
range of temperatures from 270 K down to 60 K. Fig. 9 shows the
cold end temperature Tm as a function of a modified time t�, where

t� ¼ t
ðr þ u=6þ 1=3Þ ð18Þ

It is evident that this temperature vs. time curve has a shape similar
to those of the cool-down data (Fig. 6). It is, however, more general:
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any one of the six specific curves in Fig. 6 may be represented by Eq.
(17) with the corresponding value of r, as well as others, for values
of r outside the range of measurements.

From the results of the integration in (17), the time interval for
cool-down from 270 K to 70 K corresponds to t�=120 s. It is now
possible to re-plot Fig. 3 in a slightly different manner. Fig. 10
shows the cool-down time from 270 K to 70 K for different values
of r. The six data points shown in the original Fig. 3 are indicated by
the black diamonds. The extrapolated cool-down time for zero ex-
cess mass is found to be 45.96 s.
7. Cooling power at cool-down vs. steady-state

Having found the expression (17) for the cold end temperature
Tm as a function of time, it is now possible to determine the tem-
perature distribution inside the regenerator from Eq. (9). Fig. 11
is a plot of the normalized temperature as a function of the normal-
ized axial coordinate n = x/L, for different values of the dimension-
less time s, for the case of no excess mass (r = 0). Similar plots may
be obtained for any value of r, using Tm from (17) to determine hm

and substituting it in (9). Note the temperature gradient at x = 0
corresponding to the heat gain at the warm end. An important fact
to note is that the temperature gradient increases with x, and has a
rather large value near the cold end. This is quite different from the
behavior at steady-state, where the gradient is uniform over the
length of the regenerator [3].

A series of tests has been conducted to determine the net cool-
ing power of the cryocooler under steady-state operation. The sys-
tem was allowed to cool-down to its lowest, no-load temperature;
then, using the heater, increasing amounts of heat were added at
the cold end and the corresponding steady-state temperature mea-
sured, from the lowest up to ambient temperature. The tests were
then repeated in the reverse direction – gradually reducing the
heat input and measuring the steady-state temperature from
ambient to no-load. The results of these tests are plotted in Fig. 8
along with the cooling power under cool-down. The circles indicate
the experimental points; the two separate dashed lines connecting
them show the up- and down-series. The apparent ‘‘hysteresis’’ in
the curve is probably due to experimental error owing to the diffi-
culty in estimating when full steady-state was reached.

It is evident that the net cooling power at steady-state opera-
tion differs from that under cool-down. At the higher temperature
range (about 140 K to ambient) the former exceeds the latter. This
may be attributed to the fact that the temperature distribution in
the regenerator under cool-down (Fig. 11) has not yet reached
Fig. 11. Temperature distribution in regenerator at different times, for the case of
no excess mass (r = 0).
the steady-state linear profile, causing the cryocooler to be less
efficient. However, the trend reverses itself at the low temperature
range (60–140 K) where the net cooling power under cool-down
exceeds that under steady-state. The reason for this is not quite
understood at this time.
8. Conclusions

In a series of experiments with the 120 Hz pulse tube cryocool-
er, the cold end temperature was measured as a function of time in
a complete cool-down and subsequent warm-up cycle, with no-
load and different quantities of excess mass at the cold end. The
cool-down time of a ‘‘lean’’ cryocooler (with no excess thermal
mass) was found to be extremely low relative to that with any,
(even the built-in) excess mass. Hence, extrapolation of the mea-
sured cool-down time to zero excess thermal mass fails to yield
the cool-down time of the ‘‘lean’’ cryocooler.

A transient heat transfer model was developed for a system
consisting of the ‘‘lean’’ cryocooler with excess thermal mass at
the cold end, which considers the effects of the cooling power ex-
tracted at the cold end and that of the heat gain at the warm end on
the cool-down time. The heat gain was assumed proportional to
the temperature difference between the warm and cold ends. This
assumption was validated against the data from the warm-up
tests, and the heat gain factor was calculated and found approxi-
mately the same for all experiments. Using the same model with
cool-down data enables the determination of both the gross and
net cooling powers as functions of time, but more importantly –
as functions of the cold end temperature. While the different
experiments employed widely varying amounts of excess mass,
with varying cool-down rates, the cooling powers were found
essentially independent of excess mass. Thus, it was possible to de-
rive an expression for the cold end temperature as a function of
time for any amount of excess mass, including zero. The cool-down
time of the ‘‘lean’’ cryocooler was found to be less than 46 s.

The net cooling power of the cryocooler under steady-state
operation measured in a separate series of tests shows some devi-
ation from that under cool-down. The steady-state cooling power
exceeds that under cool-down at the high range of cold end tem-
peratures, but is lower at the low range. The difference between
the net cooling power under steady-state operation compared to
that under cool-down is smaller than 10% over most of the temper-
ature range, but reaches almost 30% at some point of the low tem-
perature range (Fig. 8). The reason for this is not fully understood
at this time.

This cool-down/warm-up method for evaluating the cooling
power of a cryocooler seems simpler than steady-state experi-
ments with a heater simulating load at the cold end. Using the heat
transfer model with data from one or two good experiments con-
ducted in the above manner, can yield both the gross and net cool-
ing powers of a cryocooler as functions of the cold end
temperature, and allows the determination of cool-down time with
any amount of excess thermal mass. What matters for the design of
typical systems is the power that can be extracted under steady-
state working conditions. While the net cooling power during
cool-down differs somewhat from that under steady-state opera-
tion, the former can serve as a good measure for the latter.
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