
NISTIR 5696

The Effect of Training Dynamics
on Neural Network Performance

Charles L. Wilson
James L. Blue
Omld M. Omldvar

U.S. DEPARTMENTOF COMMERCE
Technology Administration
National Institute of Standards
and Technology
Computer Systems Laboratory
Advanced Systems Division
Gaithersburg, MD 20899

U.S. DEPARTMENT OF COMMERCE
Ronald H. Brown, Secretary

TECHNOLOGY ADMINISTRATION
Mary L. Good, Under Secretary for Technology

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
Arati Prabhakar, Director

The Effect of Training Dynamics
on Neural Network Performance

Charles L. Wilson, Advanced Systems Division
James L. Blue, Applied and Computational Mathematics Division

National Institute of Standards and Technology, Gaithersburg, MD 20899
and Omid M. Omidvar, Computer Science Department

University of the District of Columbia

In this paper, analysis of a simple model of recurrent network dynamics is used to gain
qualitative insights into the training dynamics of multilayer perceptrons (MLPs). These
insights allow the training methods used for MLPs to be modified to significantly improve
network performance. In previous work [1], the Probabilistic Neural Network (PNN) [2], was
shown to provide better zero-reject error performance on character and fingerprint classifica-
tion problems than Radial Basis Function and MLP-based neural network methods. We will
show that performance equal to or better than PNN can be achieved with a single three-layer
MLP by making fundamental changes in the network optimization strategy. These changes
are: 1) Neuron activation functions are used which reduce the probability of singular Jaco-
bians; 2) Successive regularization is used to constrain the volume of the minimized weight
space; 3) Boltzmann pruning [3] is used to constrain the dimension of the weight space; and
4) Prior class probabilities are used to normalize all error calculations so that statistically
significant samples of rare but important classes can be included without distorting the error
surface. All four of these changes are made in the inner loop of a conjugate gradient optimiza-
tion iteration [4] and are intended to simplify the training dynamics of the optimization. On
handprinted digits and fingerprint classification problems these modifications improve error-
reject performance by factors between 2 and 4 and reduce network size by 40% to 60%.

One of the basic difficulties in recognizing images using pattern recognition methods is that
the set of patterns of interest is a small subset of all the possible patterns that can be repre-
sented in the image space. As an example, if characters in an OCR system are represented by
32 by 32 pixel binary images only a small fraction of the 21024 possible images are characters.
If the features used to represent these characters form a complete representation of the image
down to some specified resolution, such as a discrete cosine transform, the feature set is a
dense compact vector space representation of the image. The image training set is a fractal
object in this feature space. This statement of the recognition problem poses it as the inverse

of the fractal image compression problem [5] and shows that the neural network recognition
problem for images retains the "geometry of nature" [6] seen in these images. This paper
explores methods which allow neural networks to accurately classify image based objects
which are sampled from fractal objects in the compact feature space used for recognition.

In previous work on character and fingerprint classification [1], PNN networks were shown
to be superior to MLP networks in classification accuracy. In later work, [7], combinations of
PNN and MLP networks were shown to be equal to PNN in accuracy and to have superior
reject-accuracy performance. These results were achieved by using 45 PNN networks to make
binary decisions between digit pairs and combining the 45 outputs with a single MLP. This
procedure is much more expensive than conventional MLP training of a single network and
uses much more memory space.

When the results of the binary decision network [7] were analyzed for digit recognition
it was found that the feature space used in the recognition process had a topological struc-
ture which locally had an intrinsic dimension [8] of 10.5 but global Karhunen-Loeve (K-L)
transform dimension of approximately 100. The number of features needed to make binary
decisions machines discriminate between digits was larger than the intrinsic dimensionality.
For binary decision machines, typical feature set sizes were 20 to 28 but never approached
the number of features required by the global problem for MLPs, 48 to 52. Similar tests
showed a comparable structure in the fingerprint feature data. This explains the difficulty of
these problems; the MLP is being used to approximate a complex fractal object, the set of
decision surfaces, which has a typical local dimension of 10 embedded in a space of dimension
100. Since the domain of each prototype in the PNN network is local, PNN can more easily
approximate surfaces with this topology. Figure 1 shows a typical PNN decision surface and
figure 2 shows a typical MLP decision surface. See figure 8 of [1] for additional examples of
this type of local structure in PNN -based recognition.

The local nature of PNN decision surfaces also explains why MLPs have better error-
reject performance. In [9], it was shown that the error-reject curve is most rapidly decreasing
when binary choices are made between classes. The decision surfaces in figure 1 are such
that, as the radius of a test region expands, multiple class regions are intersected. This will
decrease the slope of the reject-accuracy curve. Simpler class decision surfaces result in better
reject-accuracy performance, so that the shape of the reject curve can be used to assess the
complexity of decision surfaces.

Neural networks have been proven to be a general nonlinear function approximator [10] so,
in theory, they should be capable of approximating complex decision surfaces. An interesting,
if somewhat simplified, conjecture is that since we are trying to learn a complex surface the
complexity of the training process might provide some insight into the learning problem. To
obtain these insights we study the dynamics of a simple weakly nonlinear recurrent network
model. The model contains both linear and second-order rate-dependent terms which couple
all of the nodal voltages. This model is solved in closed form but still shows several interesting
ways in which the dynamics of feedback signals will influence network behavior.

The MLP networks used in practical recognition problems are too complex to be subject
to direct analysis but the quantitative insights provided by the simple model can be used to
develop better training methods.

In this paper we will show that four modifications to the conjugate gradient method
discussed in [4] will allow a three-layer MLP to approximate the required decision surface
with zero-reject error similar to PNN and k-nearest-neighbor (KNN) methods, and error-
reject performance better than the best binary decision method discussed in [7], indicating

that the resulting decision surfaces are both the most accurate and simplest approximations
to the character and fingerprint classification problem yet found.

In section 2 a simple dynamical neural network model is presented which is complex
enough to show many interesting dynamic effects but simple enough to be solved in closed
form. In section 3 the relationship between structural stability and optimization is used to
develop qualitative insights into network training. In section 4 we will discuss methods which
the network dynamics suggest for changes in training. In section 5 we will discuss the changes
in training method used to improve network accuracy while simplifying network structure.
In section 6 we will discuss the results of these changes on classification of handprinted digits
and fingerprints.

2 A Simple Dynamical Network Model
To understand the dynamics behind training, it is helpful to analyze a neural network model
that has feedback between the nodes, as the MLP has during training, but is simple enough
to be solved in closed form.

Consider a number of neuron nodes with nodal voltages, U, which can be written either
in matrix form:

Ud = (UIO(t) 0)

o Un (t)

_ (Ul.(t))
U- .

Un (t)
as is required by the linear or quadratic order of interaction.

These neurons are linear and the network is fully recurrent so that the interaction of the
neurons is described by a non-stationary set of first order couplings:

G = (91,I(t)

gn,I(t)

gl,n(t))

.:. gn,n(t)

F = (!I'l (t)

!n,dt)

!I,n (t))
!n,n (t)

The solution of (5) was postulated as (7) and checked using a symbolic mathematics
program to validate the solution terms. Terms generated in this checking process are given
in detail in the Appendix. See [11] page 99 or [12] page 60 for similar linear problems which
were used as clues to the proposed solution. The solution derived and checked in this way is:

U = (I - IF exp(fG dt) dt)-l exp(fGdt)) U(O)

where the matrix exponential is defined by:

In general G will have complex eigenvalues; only in the symmetric case are all eigenvalues
real and the upper triangle of LambdaA zero. This symmetry requirement makes the con-
struction of stable associative memories with symmetric weights very difficult. These issues
are discussed in [13] along with many other aspects of the general network stability problem.
Any iteration carried out with finite precision bn G will result in loss of symmetry and create
oscillations in the dynamic system. These oscillations may decay in a stable system but
intermediate oscillatory components will still exist.

The inclusion of driving factors which are assumed to be independent of time is relatively
straightforward. The G matrix is augmented from a dimension of n to n + q where q is the
number of system independent driving factors. The solution to the corresponding augmented
part of Ud matrix is just the augmented U(O) vector. This results in a stable driving term
from equation (5) and a solution to this part of the equation of the form: Ud = U(Ok The
appendix contains more details.

Why can't we just integrate equation (6) and use the answer for our model? First,
for n nodes there are 2n2 functions which must be evaluated and integrated to fully expand
equation (12). Second, equation (7) is a generalization ofthe dynamic system which generates
the Lorentz attractor [14], which is the source of the "butterfly wing effect" in weather
forecasting. This system has no attainable stable state and has very high sensitivity to
initial conditions. The theory ofthe solution to systems ofthis kinds is treated in [15, 14, 12].
The simplified answer is that small changes in the values of the initial conditions or in the
integration of the coefficient matrices will result in large changes in the functional form of
equation (6) when the matrix exponential and inverse are expanded.

For values F and G that are locally stationary, as during a training iteration, change in
these terms can be neglected and we write the solution as:

where IHijl* is the matrix of ijth cofactors of H, IHI is the determinant of H, Sij are the
elements of the similarity transform of G and Ai are its eigenvalues as given by equation (8)
assuming that G is Hermitian, and the elements of H are given by:

n n Slj Sik eA1t
hij = L Jik L Al

k=1 1=1

For the case of n = 3 appropriate terms are given in the appendix.
The full solution of equation (6) can be expanded using equations (11)-(14), as shown

in the appendix. These equations are much less complex than the approach used in our
training method but show that complex dynamics will evolve even in a network that has
only a quadratic nonlinearity. Even for a symmetric network, obtaining the local linear
solution involves calculating matrices with O(n2) terms for an nth order system. Equations
(11)-(14) involve calculation of O(n8) terms for an nth order system. In addition, each term
in (7) is a product of the form skieAktskj, where each term in the non-linear solution is a
product at least as complex as:

f SljSlk eA1t Apt
ik Al spqe spq'

Each term involves one non-linear factor, components of four eigenvectors (which in general
are complex numbers) and the product of two exponential terms. This increase in complexity
is a direct consequence of the F term in equation (6) being non-zero.

The center manifold theorem, given more concisely in [12] p. 115 and [14] p. 127,
states that the flow of solution to nonlinear system can be divided into three parts based
on the eigenvalue spectrum of the Jacobian of the right hand side of the equation. These
three parts are the stable manifold associated with eigenvalues with negative real part, the
unstable manifold associated with eigenvalues with positive real part, and the center manifold
associated with eigenvalues with zero real part. The stable and unstable manifolds are unique
but the center manifold need not be. The center manifold is tangent to the stable and
unstable manifolds. If any of the eigenvalues in equation (15) has zero real part, the center
manifold theorem must be used to transform equation (5) into stable, center, and unstable
manifold parts, and the solution expansion of equation (7) must be revised accordingly [16]. In
numerical calculations, rounding error and lack of precision in the input data can cause some
solution components of the stable and unstable solutions to approach the center manifold
within the rounding error of the calculation.

The complexity of even small models, n = 3 with 9 terms in the primary matrix, each
of which has 729 terms similar in form to equation (15) (see Appendix), exceeds the level of
complexity which can be locally analyzed by direct linearization about equilibrium points to
study weight stability during training. We could return to equation (5) and build a numerical
model but this would cause all of the noise present in the training data to be present in a
system of equations which would couple this noise directly to the sensitive initial conditions
and result in various numerical significance problems. The resulting terms are multiplied
to form n8 terms which are summed to form the solution. The noise seen in the resulting
solution is not a numerical artifact but an inherent part of the system.

The situation we face in analyzing even this over-simplified model is one in which the
mechanics of the process are clear and are soluble in the closed form given by equation

(11)-(14), but no direct comparison with real training data is feasible because the expanded
nonlinear solution is too complex to allow the components to be individually analyzed.

3 Dynamics of Optimization and Structural Sta-
bility
The dynamics of neural network training effects the network on two time scales. The time
scales are associated with the calculation of feedback signals within an iteration and a longer
time scale associated with the sequence of optimization iterations. The dynamics can be
used to analyze the sequence of dynamic systems generated as the optimization iteration
proceeds. In any given iteration the structure of the network is fixed and the dynamics
involves the application of the feature vectors as driving inputs. Since the feature vectors
provide a forcing function this is not an equilibrium but a problem where the training data
drives the network, with error correcting feedback, to a steady state. This is the short time
scale.

The second time scale is the time scale of the optimization iteration process. At each
time step of the iteration the structure of the network is changed by weight updates and
Boltzmann pruning. On this time scale structural stability is dominant. The goal of the
iteration process is to approach a steady state where the effect of network changes minimizes
the feedback error over the training set and thus a steady state is achieved.

The link between the study of time dependent network performance and nonlinear net-
work optimization is provided by the analysis of structural stability. The mathematical
correspondence between the structural stability analysis and the linearization used in opti-
mization is a result of both methods being based on a Taylor series expansion of the nonlinear
system about the point of interest. This expansion yields a local linear approximation to the
nonlinear system. The usual analysis of structural stability [12] for:

dd~ = f(U,W)

is performed by a local analysis of the eigenspectrum of D f(Uo, Wo) at the point Uo, Woo
The optimization by gradient-based methods of the nonlinear network is performed by lin-
earization of the nonlinear system:

d(U ~ Ut) = feU, W) - f(Ut, W)

where the Ut are a set of training examples. The expansion of terms in the right hand
side of (16) is used to compute the dynamic change in the error over the training set. The
optimization is performed over the sum of all training examples using the second order term in
the expansion, the Hessian matrix, because near the desired minimum point the first order,
Jacobian, term approaches zero. Similar additional terms are also required for nonlinear
stability analysis when the Jacobian is too small. Both the analysis oflocal dynamic stability
and the analysis of structural stability are based on the expansion of the system of equations
in a Taylor series. When dynamic stability is involved the series is used to provide linear
approximations to the right hand side of equations such as (5). When structural stability
is involved the solution is expanded in terms of the critical parameters. For equation (7)
this requires expansion of (7) in terms of the F and G matrix elements. Details of this type

of analysis are given in [14], chapter 5. This yields insights which can be applied to the
structural stability of the learning process.

We have found that three of the changes in training dynamics are directly related to
insights obtained from dynamics. Regularization has been shown to act as a smoother when
the neural network training process is treated as an approximation problem [17]. We can
qualitatively evaluate the effect of a quadratic regularization term on the dynamics since
such a term acts to constrain the optimization to a region near the origin. In our highly
fractal feature spaces [7], the smaller the dynamic volume the more effective the features
will be in spanning the training space, as is demonstrated from the approximation point
of view in [17]. The local feature dimension of features is about 11. The large networks
used here have 96 K-L features. The undersampling increases roughly as the power of the
difference in the global and the local dimension. For the OCR problem this is 96 -11 so that
the undersampling increases as the 85th power of feature space radius. This indicates that
additional training examples which expand the dynamic volume but do not alter the local
or global dimensionality of the feature set will not produce any significant improvement in
network performance.

The second insight we can obtain from dynamics is that as we expand the Jacobian of
(17), any nonlinear terms which are very small will vanish when compared to the noise in
real training data. The calculation of the K-L transform involves, for the OCR problem,
calculation of a mean image value for every location in the image. Since the values used to
calculate the mean are binary, the mean for an N example training set can only take on N
values and is only known to log2 N bits. Even with perfect training data the K-L features
have this finite precision. Imperfect or ambiguous characters add additional uncertainty that
results in uncertainty throughout the dynamic calculation. Small signal changes in network
dynamics caused by training data noise are indistinguishable from small changes caused by
real but small dynamic terms. For MLPs with sigmoidal activation functions, these small
terms occur for both large positive and large negative values of the sum of the weighted
inputs. For the data used here the K-L transform normalizes the input signals to a uniform
dynamic range; the neural network is not needed to perform this task. This means that very
large or very small signals to the nodes are usually the result of very large or very small
weight values. Using an alternative form of the activation function, a sine function as in
(19), solves this problem by providing hidden nodal signals which have significant even or
odd order derivatives for all signals.

The third insight provided by dynamic stability considerations involves the dynamics of
those small weights near the origin in weight space. In weight space, the stability analysis
of these variables will involve small real eigenvalues which will be dominated by weight
oscillations. The dynamics of these weights are associated with dynamic processes that have
small real parts and are therefore near the center manifold. Since the training data has a
significant noise component for characters that are nearly well formed, these characters are
readable but have numerous obscuring edge pixels. For example, the dynamics near the
center manifold is in part the result of an attempt by the optimization process to make fine
character distinctions on large signals well above the noise level and in part the result of
small weights interacting with the noise. Since these two effects are indistinguishable and
create very complex dynamics, it is better to set the weights involved to zero and force these
dynamic processes out of the network.

The three ideas combine to yield a training method which is smoothed on the exterior,
large weight, region by regularization. At the same time the weights are smoothed in the

interior, small weight, region by Boltzmann pruning. The combination of these two methods
greatly restricts the active region of weight space. Weight removal simplifies the problem
by reducing the number of degrees of freedom. Restricting the range of weight values to
a spherical shell near but excluding the origin matches the significance of the network to
the significance of the training data. In the region between constraints, dynamic stability is
enhanced by choosing activation functions with nonzero even or odd derivatives through out
the space.

After this extended discussion, one may wonder if this type of recognition problem is
unique to OCR and fingerprint problems. The authors would argue that it is not. The
characters use in this work are normalized to 32 by 32 binary images with 1024 pixels each.
Characters form a very small subset of all 21024 the possible 32 by 32 images. The point
of regularization is to confine the training dynamics to a region of weight space where the
images are near the subset of images which are meaningful characters. At the other extreme,
we argue that the subset of character images is not dense in feature space and that many
noisy images (that are near character images but are not easily recognizable characters) are
found in large training sets. The complex but inconclusive dynamics associated with the
noisy images are pruned away by the Boltzmann process. These properties are not unique
to character recognition. They are even more pronounced for fingerprints because the set
of meaningful images is a much smaller fraction of all 512 by 480 8-bit gray images. This
should not be surprising since patterns generated or identified by an image algebra [18] are
a small subset of the patterns which could be generated with arbitrary generators and links
in any image algebra.

4 Neurodynamics of Learning
The design and implementation of most neural network architectures is based on an analysis
of the size and content of the network training data. The direct form of analysis is suitable
when the size of the training data is small, the class distribution is uniform, and the local
and global dimension of the feature set are approximately equal. In fingerprint and character
classification applications, the training sets are large and the local and global ranks of the
feature data are very different. The complex structure of the training data requires that
large networks, 104 weights and 102 nodes, be used. If the training process is treated as
a dynamical system with the weights as the independent variables this would result in a
Jacobian with 108 terms. Previous pruning studies have shown that these networks contain
at least 50% redundant weights [3] and have confirmed that no more than 12 bits of these
weights are significant. This makes direct analysis of the Jacobian numerically intractable.

To avoid the difficulties in analyzing this type of complex low accuracy system we looked
directly at the qualitative properties expected in systems of this kind [16, 11, 14] and altered
the training procedure to take the expected dynamic behavior into account. This analysis
used the dynamical systems approach to provide us with qualitative information about the
phase portrait of the system during training rather than a statistical representation of the
weight space of the MLP network. For this approach we considered the training process as
an n-dimensional dynamical system [19] where for a given neuron:

duo u·
dr; = - r; + f;(Uj) +Ii (18)

where ri is the decay time for the unit and f; is the input-output transfer function, a sinusoidal

function driven through the Wij interconnection weights,

Ji(Uj) = ~ + ~sin(~Wijuj),
J

and Ii is the initial input. We effectively reduce the dimension of the problem using the center
manifold approach [20]. This approach is similar to the Lyapunov-Schmidt technique [21]
which reduces the dimension of the system from n to the dimension of the center manifold,
which in numerical calculations is equal to the number of calculable eigenvalues. Since the
number of weights in the typical network is approximately 104 and the number of bits in the
feature data is approximately 12, direct numerical methods for calculation of the eigenvalues
from the linearized dynamics are very poorly conditioned. The center manifold method has
the advantage over the Lyapunov method in that the reduced problem still is a dynamical
system with the same dynamic properties as the original system. This reduction in dimension
is implemented using the Boltzmann machine for a scaled conjugate gradient (SCG) learning
algorithm.

The reduced problem after application of the center manifold method is still an SCG
system. The SCG requires that at any given point, the performance of the dynamical system
be assessable through a certain error function, E. Then the system parameters are itera-
tively adjusted in the opposite direction of error. The reduction on the size of error can be
approximated as follows:

dWij BE
--=-Tf--,
dr BWij

where Tf is the learning rate or time constant for parameter dynamics, Wij are the weights,
and E is the error.

This approach, unlike most training methods, can reduce the error independent of the
content of the particular sample distribution and the size of training data. This results in a
saving in training time and improvement in performance without analysis of those network
components which make minimal contributions to the learning process.

5 Optimization Constraints
The level of improvement in network performance which is achieved here requires four mod-
ifications in the optimization, each of which must be incorporated in the weight and error
calculations of the scaled conjugate iteration [4]. Each of these constraints alters the dynam-
ics of the training process in a way that simplifies the form of the decision surfaces, which
globally have a dimension of about 100 with a local dimensionality of 10.5. Understand-
ing the topology of this space is useful for developing improved training methods based on
dynamics.

The four modifications all modify the error surface being optimized by changing the shape
or dimension of the error function. All of the modifications take place in the inner loop of
the optimization.

5.1 Regularization
Regularization decreases the volume of weight space used in the optimization process. This
is achieved by adding an error term which is proportional to the sum of the squares of the

weights. The effect is to create a parabolic term in the error function that is centered on
the origin. This reduces the average magnitude of the weights. A scheduled sequence of
regularization values is used which starts with high regularization and decreases until no
further change in the form of the error-reject curve is detected. Constraining the network
weights causes a simplification in network structure by reducing the number of bits in the
weights and therefore the amount of information contained in the network.

The usual form for the activation function for neural networks is a sigmoidal or logistic
function. This function has small changes in all derivatives for large or small value of the
input signal. This results in conditions where the Jacobian of the dynamical system being
optimized is effectively singular [22]. This results in large numbers of near zero eigenvalues
for the optimization process and forces the optimization to be dominated by center mani-
fold dynamics [16, 20]. Changing the activation function to a sinusoidal function creates a
significant change in the dynamics of the training since even and odd higher derivatives of
the dynamical system are never both small. This improves network training dynamics and
results in better reject-accuracy performance and simpler networks [23].

5.3 Boltzmann Pruning
Boltzmann pruning has two effects on the training process. First, it takes small dynamic
components which have small real eigenvalues, and are therefore near the center manifold,
and places them on the center manifold. This simplifies training dynamics by reducing weight
space dimension. Second, Boltzmann pruning keeps the information content of the weights
bounded at values which are equal to or less than the information content of the feature
set. For example, when K-L features are derived from binary images, the significance of the
feature is no greater than the number of significant bits in the mean image value used in the
calculation, log2 N bits for N training examples. Boltzmann pruning forces this constraint
on the weights [3].

In [3], when Boltzmann pruning was used, detailed annealing schedules were used to
insure convergence of the training process. When regularization is combined with pruning,
the need for annealing schedules is removed and pruning can proceed concurrently with
the regularization process. This reduces the cost of pruning to a small computational cost
associated with the weight removal.

5.4 Class Based Error Weights
In problems with widely variant prior class probabilities, such as fingerprint classification, it
may be necessary to provide large samples of rare classes so that class statistics are accurately
represented, but it is important to train the classifier with the correct prior class probabilities.
This is discussed in chapter 7 of [24]. In the conjugate gradient method used here, both the
network errors and error signals used in the control of the iteration must be calculated using
class weights thus:

E EClass Weights X Raw Errorrror = -------------.EClass Weights

This insures that the optimization is performed in a way that produces the best solution to
the global problem but allows reasonable sampling of less common classes. In the digit classi-
fication used here, uniformly distributed classes were available but in a sample of alphabetic
text the classes are not uniformly distributed and class based error weights should be used.

The training method was used on samples of handprinted digits and fingerprints. The digit
sample contained 7480 training and 23140 testing examples equally distributed for classes
"0" to "9". The fingerprint data contained 2000 training and 2000 testing samples from
NIST database SD4 [25]. These training and test samples are identical to those used in [1].
The MLPs used here were three-layer networks with 96-96-10 structure and 10282 weights
for the OCR problem, and 112-112-5 structure and 13221 weights for fingerprints.

Training was carried out by selecting a Boltzmann temperature and successively training
the network at decreasing values of the regularization factor, Rf. Typically the first training
sequence used Rf = 2.0. After each training pass Rf was reduced in a 2, 1, 0.5 sequence
until the regularization had no significant effect on the reject-error performance of the test
sample. As the regularization is decreased the number of weights in the network increases,
as does the size of the average weight. The smallest net will occur at high temperature and
regularization and the largest at low temperature and regularization. The goal of the study
is to find the smallest network that gives the steepest fall in error for a given reject level.

6.1 Distribution of Weights
We have developed various methods for evaluation of network dynamics based on the statisti-
cal properties of the weights. This is necessary both because the number of computationally
identically fully connected nets is very large, 96! and 112! and because there are potentially
more than 10,000 interconnecting weights. To simplify the discussion we will show the weight
analysis for the OCR problem only. Identical arguments would apply to the fingerprint case.

Figure 3 and 4 show the distribution of interconnecting weights for a OCR network trained
at a temperature of T = 0.001 at high and low regularization, Rf = 2.0 and Rf = 0.1.
The original network had 10282 weights, the Rf = 2.0 network has 2365 weights (23%), and
the Rf = 0.1 network has 3139 weights (31%). The vertical axis in figures 3 and 4 is the
input node number. Since K-L features are used, the input nodes with the smallest numbers
have the greatest statistical significance. These nodes are highly connected; the degree of
connectively decreases with increasing node number and decreasing statistical significance.
The hidden layer nodes are always fully connected to the output nodes in these experiments.
This connectivity is not forced but the pruning process does not select these weights for
removal.

The significant topological process seen in the interconnection pattern in going from high
to low regularization is the increase in connectivity of high number K-L features. The 96th
input node (top line of figure 3) is not connected at Rf = 2.0 and has two connections at
Rf = 0.1 (top line of figure 4). The number of connections to input node 30 is 23 at Rf = 2.0
and increases to 37 at Rf = 0.1. The number of non-zero of weights increases by 35% and

the number of connections to input node 30 increases by 61%. Nodes higher than number 30
get a disproportionate part of the increased connectivity.

6.1.2 Weight Distribution

In addition to altering the topology of the network, the training process changes the distribu-
tion of the weights. The distribution of weight on intervals of 0.05 is shown in figures 5 and
6 for temperatures of 10-3 and 10-5• The change in the magnitude of the weights is more
sensitive to regularization than to temperature. While the number of weights changes by a
factor of 2.76, 8653 to 3134, the distribution peak changes by a factor of 6.0 from 3369 to
565. Reducing the regularization doubles the mean weight size at both temperatures. At the
lower temperature, regularization created large numbers of small weights on low order K-L
features. These weights are no more effective in the classification process than the reduced
numbers of larger weights produced at higher temperature.

6.1.3 Reject Error Performance

Figures 7 and 8 show the reject error performance of ten different networks at two tem-
peratures, T = 10-3 and and T = 10-5 and at five values of Rf. This study involved eight
temperatures and an average of six regularization values, 48 networks, for OCR. These values
are sufficient to illustrate the process. The significant factor here is that the best error-reject
performances for the two temperatures are very similar. Both Rf = 0.1 networks reach 0.1%
error after rejecting about 17% of the characters despite having different topology, mean
weight sizes different by a factor of 2.17, and weight counts different by a factor of 2.76.
Since the total information content of the network is proportional to the log base 2 of the
product of the weight size and the number of weights, the information content decreases by
only 23%, which is fully compensated for by improved network topology.

6.2 Digit Recognition
Figure 9 compares the results of digit recognition using MLP networks with sinusoidal and
sigmoidal activation functions and a PNN network. Both MLPs were trained using successive
regularization and Boltzmann pruning. The zero reject error rates are 3.34% for the sigmoidal
MLP, 2.54% for the PNN, and 2.45% for the sinusoidal MLP. The sinusoidal result is the
best yet achieved on this data and is comparable to human performance [26]. The slope of
the curves is initially proportional to their accuracy, but at higher reject rates the sinusoidal
MLP has substantially better performance, indicating simpler decision surfaces.

6.3 Fingerprint Classification
Figure 10 compares the results of fingerprint classification using MLP networks with sinu-
soidal and sigmoidal activation functions and a PNN network. Both MLPs were trained
using successive regularization and Boltzmann pruning. The zero reject error rates are 9.2%
for the sigmoidal MLP, 7.2% for the PNN, and 7.8% for the sinusoidal MLP. The sinusoidal
result is not as low as PNN at zero rejection, indicating that the decision surfaces required
for this problem are more complex than the less difficult digit recognition problem. The slope
of the reject-error curves is not proportional to the accuracy initially nor at any other point.

However, at higher reject rates the sinusoidal MLP has substantially better performance, in-
dicating simpler decision surfaces are providing better confidence estimates used to generate
the error-reject curve. At 10% reject the error rates have changed to 5.45% for the sigmoidal
MLP, 4.96% for the PNN, and 3.43% for the sinusoidal MLP. This again demonstrates that
the decision surfaces generated by the dynamically optimized MLP are simpler than those of
the other networks.

In this paper we have shown that some relatively low cost modifications to the MLP training
process based on training dynamics can result in lower error and better error-reject perfor-
mance on difficult classification problems. The changes in training strategy are motivated
by an analysis of a simplified recurrent model which illustrates the complexity of a network
with feedback signals. These improvements yield less complex decision surfaces. The digit
recognition problem was solved with consistently better performance at all reject rates. The
more difficult fingerprint classification problem was solved in a way which still showed some
advantage for complex PNN decision surfaces at zero reject, but which yielded better perfor-
mance than PNN after a small percentage of the low confidence classifications were rejected.
In all cases the sigmodial MLPs had more error at all levels of rejection than MLPs with
sinusoidal hidden-nodes.

Appendix
Given a network containing n neurons with nodal voltages U,

U = (I - JF exp(JG dt) dt)-l exp(JG U(O)dt).

then for a general 3 neuron network with no driving signal, time independent internal inter-
connections and G with real eigenvalues, a symmetric network, a similarity transform Sand
eigenvalues Ai:

(h12 h33 - h13 h32 - h12) (831 832 eA3 t + 821 822 eA2 t + 811 812 eAl t)
IHI

((h22 - 1) h33 - h23 h32 - h22 + 1) (851 eA3 t + 8~1 eA2 t + 8~1 eAl t)
+ IHI (A - 6)

(h12 h23 - h13 h22 + h13) (832833 eA3 t + 822823 eA2 t + 812813 eAl t)
a12 = IHI

(h12 h33 - h13 h32 - h12) (852 eA3 t + 8~2 eA2 t + 8~2 eAl t)
IHI

((h22 - 1) h33 - h23 h32 - h22 + 1) (831 832 eA3 t + 821 822 eA2 t + 811 812 eAl t)
+ IHI

(h12 h23 - h13 h22 + h13) (853 eA3 t + 8~3 eA2 t + 8~3 eAl t)
a13 = IHI

(h12 h33 - h13 h32 - h12) (832833 eA3 t + 822823 eA2 t + 812813 eAl t)
IHI

((h22 - 1) h33 - h23 h32 - h22 + 1) (831 833 eA3 t + 821 823 eA2 t + 811 813 eAl t)
+ IHI

((hl1 - 1) h23 - h13 h21) (831833 eA3 t + 821823 eA2 t + 811 813 eAl t)
a21 = - IHI

((hl1 - 1) h33 - h13 h31 - hl1 + 1) (831832 eA3 t + 821 822 eA2 t + 811 812 eAl t)
+ IHI

(h21 h33 - h23 h31 - h21) (851 eA3 t + 8~1 eA2 t + 8~1 eAl t)
IHI

((hl1 - 1) h23 - h13 h21) (832833 eA3 t + 822823 eA2 t + 812813 eAl t)
a22 = - IHI

((hl1 - 1) h33 - h13 h31 - hl1 + 1) (852 eA3 t + 8~2 eA2 t + 8~2 eAl t)
+ IHI

(h21 h33 - h23 h31 - h21) (831832 eA3 t + 821 822 eA2 t + 811 812 eAl t)
IHI

_ ((hl1 - 1) h23 - h13 h21) (853 eA3 t + 8~3 eA2 t + 8~3 eAl t)
a23 - - IHI

((h11 - 1) h33 - h13 h31 - h11 + 1) (832 833 eA3 t + 822 823 eA2 t + 812 813 eAl t)
+ IHI

(h21 h33 - h23 h31 - h21) (831 833 eA3 t + 821 823 eA2 t + 811 813 eA1 t)
IHI

((h11 - 1) h22 - h12 h21 - h11 + 1) (831 833 eA3 t + 821 823 eA2 t + 811 813 eA1 t)
a31 = IHI

((h11 - 1) h32 - h12 h31) (831 832 eA3 t + 821 822 eA2 t + 811 812 eA1 t)
IHI

(h21 h32 + (1 - h22) h31) (8~1 eA3 t + 8~1 eA2 t + 8r1 eA1 t)
+ IHI (A - 12)

((h11 - 1) h22 - h12 h21 - h11 + 1) (832833 eA3 t + 822823 eA2 t + 812813 eA1 t)
a32 = IHI

((h11 - 1) h32 - h12 h31) (852 eA3 t + 8~2 eA2 t + 8r2 eA1 t)
IHI

(h21 h32 + (1 - h22) h31) (831832 eA3 t + 821822 eA2 t + 811 812 eA1 t)
+ IHI (A - 13)

((h11 - 1) h22 - h12 h21 - h11 + 1) (8~3 eA3 t + 8~3 eA2 t + 8r3 eA1 t)
a33 = IHI

((h11 - 1) h32 - h12 h31) (832833 eA3 t + 822823 eA2 t + 812813 eA1 t)
IHI

(h21 h32 + (1 - h22) h31) (831833 eA3 t + 821 823 eA2 t + 811 813 eA1 t)
+ IHI (A - 14)

where:

IHI = (1 - hn) ((1 - h22) (1 - h3,3) - h23 h32)

+h12 (-h21 (1 - h33) - h23 h3d - h13 (h21 h32 + (1 - h22) h3d
To add driving terms the G matrix must be augmented with n additional terms, Vim

which are coupled to the system through n new terms, G, where each term is a n by n
matrix.:

G= (~ Gin) (A - 25)Vin
For an uncoupled n = 3 case, such as a conventional isolated neuron MLP, this takes the
form:

0 0 0 gl 0 0
0 0 0 0 g2 0

G=
0 0 0 0 0 g3

(A - 26)0 0 0 u1 0 0
0 0 0 0 u2 0
0 0 0 0 0 u3

u3 0 0 0 0 0
0 u2 0 0 0 0

A=
0 0 u1 0 0 0

(A - 27)0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

0 0 Igl 1 0 0
u12+g12

0 Ig21 0 0 1 0
y'u22+g22

Ig31 0 0 0 0 1
Sr =

y'u32+g32
(A - 28)

0 0 Igllul 0 0 0
gl y'u12+g12

0 Ig2 u2 0 0 0 0
g2 u22+g22

0 0 0 0 0

0 0 0 0 0 g3Vu32+g32

Ig31u3

0 0 0 0 g2Vu22+g22
0Ig21u2

51= 0 0 0 gl VU12+g12
0 0Igllul

1 0 0 -~ 0 0ul
0 1 0 0 -~ 0u2
0 0 1 0 0 _E

u3

etu3 0 0 0 0 0
0 etu2 0 0 0 0

exp(At) = 0 0 etu1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

1 0 0
gl(etu1_l)

0 0ul

0 1 0 0 g2 (etu2_1)
0u2

exp(Gt) = 5r exp(At) 51= 0 0 1 0 0 g3 (etu3_1)
u3

0 0 0 etu1 0 0
0 0 0 0 etu2 0
0 0 0 0 0 etu3

For general G the eigenvalues will be complex so that the full inverse of a complex 5 will
be required and the system will be still more complex.

Acknowledgement
The authors would like to acknowledge Patrick Grother and Jerry Candela for helpful

discussions of the digit and fingerprint classification data and for providing the PNN calcu-
lations in figures 3 and 4.

[1] J. L. Blue, G. T. Candela, P. J. Grother, R. Chellappa, and C. L. Wilson. Evalua-
tion of Pattern Classifiers for Fingerprint and OCR Applications. Pattern Recognition,
27(4):485-501, 1994.

[2] D. F. Specht. Probabilistic neural networks. Neural Networks, 3(1):109-118, 1990.

[3] O. M. Omidvar and C. L. Wilson. Information Content in Neural Net Optimization.
Journal of Connection Science, 6:91-103, 1993.

[4] J. L. Blue and P. J. Grother. Training Feed Forward Networks Using Conjugate Gradi-
ents. In Conference on Character Recognition and Digitizer Technologies, volume 1661,
pages 179-190, San Jose California, February 1992. SPIE.

[5] Michael F. Barnsley and Lyman P. Hurd. Fractal Image Compression. AK Peters,
Wellesley MA, 1993.

[6] B. Mandelbrot. The Fractal Geometery of Nature. W. H. Freeman and Co., San Fran-
cisco, 1982.

[7] C. L. Wilson, P. J. Grother, and C. S. Barnes. Binary Decision Clustering for Neural
Network Based Optical Character Recognition. Technical Report NISTIR 5542, National
Institute of Standards and Technology, December 1994.

[8] K. Fukunaga. Introduction to Statistical Pattern Recognition. New York: Academic
Press, second edition, 1990.

[9] L. K. Hansen, C. Liisberg, and P. Salamon. The error-reject tradeoff. computer reprint,
1995.

[10] E. J. Hartman, J. D. Keeler, and J. M. Kowalski. Layered neural networks with Gaussian
hidden units as universal approximations. Neural Computation, 2:210-215, 1990.

[11] M. W. Hirsch and S. Smale. Differential Equations, Dynamical Systems, and Linear
Algebra. Academic Press, New York, NY, 1974.

[12] Lawrence Perko. Differential Eqiations and Dynamical Systems. Springer-Verlag, New
York, NY, 1991.

[13] M. A. Cohen. The construction of arbitrary stable dynamics in nonlinear neural net-
works. Neural Networks, 5(1):83-103, 1992.

[14] J. Guckenheimer and P. Holmes. Nonlinear Oscillations, Dynamical Systems, and Bi-
furcations of Vector Fields. Springer-Verlag, New York, NY, 1983.

[15] M. W. Hirsch, C. Pugh, and M. Shub. Invarient Manifolds, volume 583 of Lecture Notes
in Mathematics. Springer-Verlag, New York, NY, 1977.

[16] J. Carr. Applications of Centre Manifold Theory. Springer-Verlag, New York, NY, 1981.

[17] F. Girosi, M. Jones, and T. Poggio. Regularization theory and neural networks archi-
tectures. Neural Computation, 7(2):219-269, 1995.

[18] Ulf Grenander. General Pattern Theory. Oxford University Press, Oxford, 1993.

[19] M. A. Cohen and S. Grossberg. Stability of global pattern formation and parallel memory
storage by competitive neural networks. IEEE Trans. on Systems, Man and Cybernetics,
13:815-826, 1983.

[20] J. Sijbrand. Properties of center manifolds. Transactions of the American Mathematical
Society, 289(2):431-469, June 1985.

[21] S. N. Chow and J. K. Hale. Methods of Bifurcation Theory. Springer-Verlag, New York,
Heildberg, Berlin, 1982.

[22] S. Saarinen, R. Bramley, and G. Cybenko. ill-conditioning in neural network training
problems. SIAM J. Sci. Comput., 14(3):693-714, 1993.

[23] James L. Blue. Sine activation in neural networks. NIST IR.

[24] T. Kohonen. Self-Organization and Associative Memory. Springer-Verlag, Berlin, second
edition, 1988.

[25] C. I. Watson and C. L. Wilson. Fingerprint database. National Institute of Standards
and Technology, Special Database 4, FPDB, April 18, 1992.

[26] J. Geist, R. A. Wilkinson, S. Janet, P. J. Grother, B. Hammond, N. W. Larsen, R. M.
Klear, M. J. Matsko, C. J. C. Burges, R. Creecy, J. J. Hull, T. P. Vogl, and C. 1. Wil-
son. The Second Census Optical Character Recognition Systems Conference. Technical
Report NISTIR 5452, National Institute of Standards and Technology, May 1994.

Figure 1: The diagram shows digit classifications generated by a PNN classifier using the first two
K-L components in a region centered on (0,0) with an extent large enough to contain the feature
vectors.

Figure 2: The diagram shows digit classifications generated by a MLP classifier using the first two
K-L compenents in a region centered on (0,0) with an extent large enough to contain the feature
vectors.

40 50 60
hidden units

0 0090
<$)

<00& 0
00

80

70

60

input 50
units

40

30

20

00
o

o 00
o 8

gooo 0
o

o
o <»

o
o70 o

o
60 0o

o 0o

input 50
units

40 50 60
hidden units

700
Rf = 0.1 ~

600 Rf = 2.0+-

500

400
count

300

200

100

0.2 0.3 0.4
weight value range

Figure 5: Distribution of weight magnitudes for sinusoidal MLP as a function of the regularization
factor, Rj, for classification of digits at T = 10-3•

3500
Rf = 0.01~

3000 Rf = 2.00+-

2500

2000
count

1500

1000

500

0.2 0.3 0.4
weight value range

Figure 6: Distribution of weight magnitudes for sinusoidal MLP as a function of the regularization
factor, Rf, for classification of digits at T = 10-5.

Rf = 0.01 <>
Rf = 0.02 +
Rf = 0.05 0

Rf = 1 X
Rf = 2 !:::,.

0.1
o 15

% rejected

Figure 7: Error reject graph for sinusoidal MLP as a function of the regularization factor, Rj, for
classification of digits at T = 10-3.

Figure 8: Error reject graph for sinusoidal MLP as a function of the regularization factor, Rj, for
classification of digits at T = 10-5•

10
pnn 0
sig +
sm 0

=t-++8',
% 1 ~++error o ++

ooo'-++-t:o =t-
O 0 ° -l+t+-l=i-+

o ++
0 +++

+ + +ODD 0 +DO +
0

0.1
0 5 10 15 20 25 30

% reject

Figure 9: Error reject graph for sigmoidal MLP, sinusoidal MLP, and PNN for classification of
digits.

pnn <)
sig +
sin 0

%
error

20
% reject

Figure 10: Error reject graph for sigmoidal MLP, sinusoidal MLP, and PNN for classification of
fingerprints.

