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ABSTRACT  

The relation between macroscopic charge transport properties and microscopic carrier distribution is one 

of the central issues in the physics and future applications of graphene devices (GDs). We find strong 

conductance enhancement at the edges of GDs using scanning gate microscopy. This result is explained 

by our theoretical model of the opening of an additional conduction channel localized at the edges by 

depleting accumulated charge by the tip.  
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MANUSCRIPT TEXT  

Electronic states located at a surface with energies near the Fermi level lying within the bulk band gap 

can significantly contribute to a material’s overall conductance, for example, as in the case of 

topological insulators. Similarly, when extra edge states are present at cut edges of a graphene stripe 

near the Dirac point
1,2

, they may completely alter the existing transport models mostly considering 

carrier scattering in the bulk stripe. A substantial portion of the transport current may flow through the 

edge states without much carrier scattering. The unique properties of edge states have been addressed in 

many theoretical studies. Moreover, unique graphene devices (GDs) that have no analog in conventional 

semiconductor electronics have been proposed, such as a pseudo-spin filter
3
, which depend on the 

graphene edge termination. For narrower graphene strips such as in nano-ribbon devices, the 

contribution of the edge states become even more substantial
4,5

. Central to all these issues is the 

question, “How does the geometric and electronic structure of a graphene edge affect the carrier 

transport?” This problem is barely addressed experimentally through conventional transport 

measurements because it is extremely difficult to isolate the transport current through the edges from the 

bulk in conventional current-voltage (I-V) measurements.  
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Here, we have used a scanning gate microscope (SGM) with x-y positioning motors as an experimental 

tool to probe the impact of the edge effects on the transport properties of GDs. In SGM, a conductive 

atomic force microscope (AFM) tip was used as a local top gate to induce an electrostatic potential and 

alter the Fermi level and the carrier density over the selected area of interest
6-8

. The transport signal 

change (conductance variation (ΔG)) in the presence of the AFM tip-gate revealed how the local 

electronic structure of a sample contributes to its macroscopic transport properties. The utility of SGM 

has been demonstrated in other two-dimensional electron gas (2DEG) systems by probing carrier 

scattering from impurities
9
, single electron charging effects

10
, quantum confinement, and coherent 

electron flows
11-13

. The exposure of the graphene surface and the presence of a back gate have facilitated 

SGM microscopic studies at a density range and with spatial resolution far exceeding those in previous 

SGM studies of semiconductor 2DEG. The required accuracy of tip positioning was achieved using a 

precise sample stage and a high resolution optical microscope equipped for the SGM setup (Fig. S1 and 

Movie S1). All the data presented in this letter is obtained in liquid nitrogen temperature. 

In this study, we present SGM measurements of a single-layer GD fabricated on a Si/SiO2 substrate
14

. 

We observe an unexpected conductance enhancement along the edges of charged GDs dependent on the 

sign of charge carriers and the polarity of the tip-gating bias. Inside the GDs, the effect of gating by the 

AFM tip is qualitatively similar to a back-gate electrode. We attribute conductance enhancements at the 

edge of doped GDs to the opening of an additional conduction channel induced by the charge 

accumulation and the corresponding shift of the local Dirac point at the graphene edges (Fig. 1a) and 

local tip-gating. Our experimental observations are successfully explained by an electrostatic model and 

electronic structure calculations.  

 AFM topographic images were obtained by employing a non-invasive, non-contact frequency 

modulation mode
15,16

. Figure 1b is a topographic image of a GD that shows a clear distinction between 

the underlying SiO2, the graphene layer, and the edges of the graphene flake. The magnified image 

reveals graphene topographic corrugation expected for exfoliated flakes (inset of Fig. 1b). To ensure 

non-invasive SGM measurements at a corrugated graphene surface, the AFM and SGM are performed in 
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sequential scans as illustrated in Fig. 1c. After the first AFM line scan ((a) in Fig. 1c), the tip is lifted by 

a pre-defined height, ≈ 10 nm ((b) in Fig. 1c). Then, in the SGM line scan ((c) in Fig. 1c), the tip follows 

the topography profile recorded in the previous AFM scan with a voltage applied to the tip, while 

monitoring dc conductance (G=I/V) variation across the two-probe source-drain metal contacts. The 

back-gate is used to tune the Fermi energy (EF) with respect to the Dirac point, controlling the carrier 

type, electron or hole, and the carrier density inside the GDs. After finishing the SGM line scan, the tip 

is re-approached to the surface ((d) in Fig. 1c) without a tip-gating bias to prepare for the next AFM line 

scan.  

Figure 1d shows how local tip-gating affects the dc conductance of a GD. For this measurement, the 

AFM tip is positioned at the center of a GD and the back-gate voltage is set at the charge neutrality point 

(VD = –6 V). In a similar way to the back-gating results, the conductance increases with tip-gate voltage. 

With an applied electric field from a biased AFM tip, additional charged carriers are induced locally in 

the graphene channel, resulting in increased conductance. Inside the bulk channel of a GD, the AFM tip 

is acting like a typical top-gate electrode
17

. 

We now focus on how the SGM signal changes at the edge of the GDs in the presence of a local tip-

gating electrode. As shown in a topographic image of the GD in Fig. 2a, the edge of the GD is located at 

the top-left corner. In this device, the charge neutrality point is measured at Vg = –15 V. When VTip = 0 

V (Fig. 2b), the SGM signal is similar throughout the GD. However, the difference between the edge 

and the interior of the graphene becomes dramatic when a negative VTip is applied (Fig. 2c). As shown 

in Fig. 2c, the SGM signal at the edge is enhanced by a factor of 10 compared with those inside the GD. 

Interestingly, there is no such SGM signal enhancement when a positive VTip is applied (Fig. 2d). The 

dependence of the SGM signal on VTip measured with the tip positioned at the edge shown in Fig. 2e is 

very different from the bulk response. When the back-gate is set at VD + 15 V, i.e. Vg = 0 V, the 

conductance should decrease with decreasing tip-gate voltage, indicated by the solid black line in Fig. 

2e. When the tip is located at the edge, however, the conductance increases at negative VTip. This 

suggests that the conductance enhancement at the edge is related to the presence of the graphene edge 



 

5 

and its electronic structure, not to the electrostatically induced charges between the tip and the GDs as 

observed inside the bulk channel. 

To further investigate the origin of the conductance enhancement at the edges, we performed the same 

SGM measurements with varying carrier density and sign in another GD with a charge neutrality point 

of Vg = –4 V. The width and length of graphene channel are 1.6 µm and 2.3 µm, respectively. Figure 3a 

shows the macroscopic conductance as a function of back-gate voltage. Figures 3b-d show VTip-

dependent SGM line profiles measured across the edge with the carrier density corresponding to hole-

doped (Fig. 3b), charge neutrality point (Fig. 3c) and electron-doped (Fig. 3d). For these measurements, 

the SGM signal is recorded at a fixed back-gate voltage and at different tip-gate voltages between –10 V 

and 10 V.     

At the charge neutrality point, Vg = –4 V (Fig. 3c), the SGM signal is similar at the edge and in the 

interior of the GD within the range of VTip from –10 V to 10 V. However, when the GD is hole-doped at 

Vg = –10 V (Fig. 3b), a conductance enhancement at the edge is observed, only at positive VTip. 

Conversely, the same conductance enhancement at the edge is seen at negative VTip for the electron-

doped GD at Vg = 5 V (Fig. 3d). These observations are consistent with those in Fig. 2.  

The spatial variation of the SGM signals shown in Figs. 3e-g reveals that conductance enhancement is 

nearly constant along the edge. Each SGM map in Figs. 3e-g (1.3 µm × 1.3 µm) is obtained at the same 

gate voltages as Figs. 3b-d; hole-doped (Vg = –10 V for Figs. 3b and e), charge neutral (Vg = –4 V for 

Figs. 3c and f), and electron-doped (Vg = 10 V for Figs. 3d and g), and with the tip-gating voltage set at 

VTip = 10 V for both Figs. 3e and f and at VTip = –10 V for Fig. 3g. The conductance enhancement at the 

edge is measured up to 0.3 G0 (= e
2
/h) and shows little dependence on spatial location along the 

graphene edge.  

Several scenarios can be considered for the origin of the observed SGM results of the graphene edge.  

First, a suppression of scattering by randomly distributed impurities or local disorder along the edges 

may result in the conductance enhancement. However, that can be ruled out because the charge-transport 

mechanism in our GDs is diffusive and the observed conductance enhancement is homogeneous along 
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the edges over a micrometer scale. Second, the variations in inter-edge scattering in the presence of a 

SGM tip potential can be also ruled out because the width of our GDs is wider than one micrometer.  

Third, from the experimental result that the conductance enhancement at the edge is not observed in a 

neutral GD but only in a doped GD, we can infer that the charge accumulation at the true 2D edges of a 

graphene strip may result in the conductance enhancement. In a doped GD, the excess charge shows 

strong accumulation diverging as x
−1/2

 at the edge
18

 by the diverging electrostatic potential at edge as 

shown in the electrostatic calculation (Fig. S3). From the linear dispersion relation of graphene near the 

K point, the local variation of the Dirac point, ED, referenced to the constant Fermi level, EF, as a 

function of excess electron density, can be approximately deduced as ED(ne)/EF = –sgn(ne) (|ne|/no)
1/2

 , 

where no = 8.225 × 10
13

 cm
-2

, as illustrated in Fig. 1a. However, this effect alone cannot explain the 

observed tip bias dependence. We measured the conductance enhancement at the edges of the GD by 

applying a tip bias which depletes the existing charge. For example, in an electron-doped GD, the 

conductance should decrease while decreasing the negative tip bias but the measured data increases with 

decreasing negative tip bias as shown in Fig. 2e. 

Fourth, one can consider a model in which localized states at the edge
1,19

 and the charge accumulation 

are incorporated together. The localized edge states with a flat dispersion have been recently observed in 

scanning tunneling spectroscopy measurements
19

. In this model, the enhancement mechanism may arise 

from the opening of an edge conductance channel by the tip gating potential. In order to demonstrate 

that this model explains the observed results, the electronic structure and the transport properties are 

calculated using a tight-binding Hamiltonian and quantum scattering theory
2
 with modulation of the on-

site energy of each carbon atom to incorporate the shift of the Dirac point across the device.  

The calculation for GNRs with homogeneous zigzag-shaped edges shows that the overall band structure 

is shifted by ED(ne) since the region with strong charge accumulation is relatively narrow, and there the 

shift of the Dirac point at the edge is ED(ne,GNR(x = wG/2)). However, there is a significant new outcome; 

the states which were originally in a flat band of zigzag-shaped edges (Fig. 4a) now curve downward 

due to the accumulated charge density at the edge (Fig. 4b). Such dispersion change creates two 
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additional degenerate channels curving down as shown in Fig. 4b, or the edge band. The channels are, 

however, below the Fermi level so that no additional conductance is gained at the Fermi level in the GD. 

To understand the origin of increased conductance, we calculated local Dirac point variations across a 

GD, based on electrostatic analysis and the tip gating effect. The calculation of Dirac point variations 

from the Fermi level, ED(ne,tot(x)) - EF, along the lateral distance at the central axis of the GD, shows a 

charge inversion under the tip position with sufficient tip-gating voltage, where ne,tot(x) is the total 

excess electron density by the tip and the GNR. For Vg = 10 V (electron-doped, corresponding to the 

experimental parameter in Fig. 3d) and tip height of 30 nm, we can obtain a protrusion of ne,tot(x) near 

the tip position with VTip = -3 V. However, with VTip= -5 V, the electric field is strong enough to induce 

the charge inversion and a local hole domain under the tip. As the tip moves toward the edge, the 

symmetry of the two GD edges is broken so that the degeneracy of the edge band is lifted. When the tip 

is positioned at the edge, the band structure at the Brillouin zone boundary of the corresponding 

localized edge state is bent upward and crosses the Fermi level as shown in Fig. 4c. The crossover is 

related to the local inversion, from electron to hole-doping at the graphene edge due to the tip potential. 

This crossing at the Fermi level provides an additional conduction channel and shows the basic physics 

of the conductance enhancement at the edge of the GD.  

To illustrate the mechanism for the conductance enhancement, we calculate the conductance through the 

GD based on the Landauer formula including the thermal broadening of the Fermi-Dirac distribution. 

This calculation is meant to illustrate the mechanism and the order of magnitude of the enhancement. 

Figure 4d shows the simulated conductance enhancement for different atomic edge structures. The 

conductance enhancement caused by the additional channel formed at the edge is insensitive to the 

detailed atomic configurations along the edges. We note that the conductance enhancement is predicted 

with small portions of ‘zigzag’ structure at the edge with the single exception: the perfect armchair-

edged GNR shows no conductance enhancement because the flat band at the Fermi level (shown in Fig. 

4a for ‘zigzag’ structure) does not exist for a perfect armchair-edged GNR, which cause electrons to 

delocalize away from the edges so that the localized electric field from the conducting tip does not affect 
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transport as much. The robustness of the enhancement and the homogeneous response along the edge is 

dictated by the crossover of the single channel; the cross-over occurs exactly “once” independent of the 

width of the flat band. We have observed this conductance enhancement in all measured GDs, 

suggesting that there are different atomic structures at the edges including the zigzag structure. In this 

model, a two-dimensional extension of a one-dimensional model is used to find the physical origin that 

produces the conductance enhancement. Further study is needed to obtain quantitative agreement with 

the experimental data. 

The magnitude of the observed conductance enhancement can be used to estimate the approximate 

lateral extent of the tip gating field. The lateral extent is strongly dependent on the tip potential. The 

extent is certainly larger than the apparent peak width of the SGM signal at the edge. As the tip is moved 

away from the edge into the bulk, the signal drop is affected by the shrinking of the inverted channel 

along the edge.  From Fig. 3, the maximum conductance enhancement is ≈0.3 G0, which is about an 8 % 

change in total conductance.  For the estimate, we assume that the conductance is mainly determined by 

the two device edges and that the inverted channel is perfectly conducting yielding the extent of the 

channel to be ≈370 nm, or 16 % (the factor of 2 arises since other edge is unaffected) of the device 

length, at the highest tip potentials of ±10 V. The same estimate at lower tip potential yields the lateral 

extent of the gating to be ≈100 nm at VTip = –2 V. This is consistent with another estimate based on the 

maximal amplitude of the SGM signal in the bulk (Fig. S2) indicating an effective length scale of ≈100 

nm at a tip potential of 2.5V. Therefore, the effective length scale by the tip can be extended to 400~500 

nm at the tip voltage of ±10 V and it is compatible to the estimated length scale in the experimental data.  

Therefore as the gating tip moves 250~250 nm away from graphene edges at  ±10 V, the SGN signal 

should decrease to the bulk value as shown in Figs.  3(b) and (d).  

In conclusion, our SGM measurements demonstrate that the edge of a graphene sheet contributes to the 

transport properties very differently compared to an edge in a more conventional semiconductor 2DEG. 

The difference is caused by the band structure of graphene and by the atomic sharpness of the edge. The 

edge transport is significant even in a wide GD at high charge density, which is typical for many 
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potential applications. In narrow devices, such as a GNR, the edge transport becomes even more 

important for the proper understanding of its transport properties and the design of devices.  
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Figure 1. Graphene device and SGM measurement. (a) Schematic view of Dirac point (ED) variation 

from the center to the edge of electron-doped graphene device. The local Dirac point is bent near the 

edge of doped-graphene due to the accumulated charge at the edge. (b) AFM topography image of the 

graphene device. The step edge between graphene and SiO2 are located at both top-right and bottom-left 

corners. Inset: Magnified image of graphene area showing corrugation from the SiO2 substrate. (c) 

Schematic diagram of SGM measurements. The basic principle of SGM operations from (a) to (d) are 

explained in the main text. The blue dot under the conductive AFM tip indicates the area strongly 

affected by the electrostatic field from the tip. (d) Conductance as a function of tip-gating voltages 

measured across two Au-contact electrodes (Fig. 1c). The back-gate voltage is set at the charge 

neutrality point (VD) and the tip position is fixed at the center of graphene device.  
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Figure 2. Conductance enhancement at the edge of a graphene device. (a) AFM topography image of 

graphene device showing corrugation in the graphene area and the step edge with SiO2 located at top-left 

corner. (b-d) SGM maps obtained at the same location as Fig. 2a with different tip-gating voltages of 

VTip = 0 V (b), VTip = −3 V (c), and VTip = 3 V (d). The back-gate voltage is set at Vg = 0 V, at which 

graphene is doped with electrons at a density of 1.22 × 10
12

 cm
–2

. Conductance change is represented by 

color scale from purple (low) to light-blue (high): the plot range of each SGM map is (b) (4.93 to 4.96) 

G0, (c) (4.95 to 5.23) G0, and (d) (4.95 to 4.98) G0. Conductance enhancement at the edge of graphene 

device with negative tip-gating voltage is clearly shown in Fig. 2c. (e) Conductance as a function of tip-

gating voltage at the edge of graphene-SiO2 interface. The data is averaged over the values along the 

edge and uncertainties represent one standard deviation. The back-gate voltage is set at Vg = 0 V, which 

is shifted away by 15 V from the charge neutrality point (electron doped). A solid black line shows an 

expected conductance behavior with the tip positioned at the center of the GD. 
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Figure 3. Carrier density-dependent conductance enhancement at the edge of a graphene device. (a) 

Conductance as a function of back-gate voltage without tip-gating. The charge neutrality point of the 

device is measured around Vg = −4 V. The width and length of the graphene channel are 1.6 µm and 2.3 

µm, respectively. The red, green and blue dots indicate back-gate voltages for each SGM measurement 

in Figs. 3b and e (Vg = −10 V, hole doped), 3c and f (Vg = −4 V, charge neutral), and 3d and g (Vg = 5 

V, electron doped), respectively. (b-d) SGM measurements as a function of tip-gating voltage across the 

edge of the graphene device. The back-gate voltage is adjusted to modulate the doping-level inside the 

device from hole-doped (Vg = −10 V, Fig. 3b), charge neutral (Vg = −4 V, Fig. 3c), and electron-doped 

(Vg = 5 V, Fig. 3d). Two-probe conductance at a fixed tip-gating voltage is recorded while the 

conducting tip scans across the edge. The conductance shift (ΔG) is obtained from the value at the 

farthest position of SiO2 from the edge and is plotted at different tip locations. (e-g) SGM maps across 

the edge of the graphene device. Scanning parameters: (e) Vg = −10 V, VTip = 10 V, (f) Vg = −4 V, VTip 

= 10 V and (g) Vg = 5 V, VTip = −10 V. The location of the graphene flake, the SiO2 and their boundary 

are indicated in Figs. 3e and 3f. The black arrows in Fig. 3e represent the length scale of 1.3 µm. The 

same color scale as Figs. 2b-d is used. The range of conductance shift for each map is (e) 0.53 G0, (f) 

0.05 G0, and (g) 0.69 G0. 
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Figure 4. Theoretical model for the conductance enhancement at the edge of a graphene device. (a-c) 

Band diagrams of a zigzag-edged graphene device with half-width of 17 nm in the cases of charge-

neutral (a), electron-doped (b), and electron-doped with a biased-tip positioned at the edge (c). In Fig. 

4b, the flat band existed at the Fermi-level (Fig. 4a) is bent toward the valence band since the energies of 

localized states at the graphene device edge follow the Dirac point shift. In Fig. 4c, the degeneracy of the 

curved flat band is lifted due to the electric field from the conducting tip and eventually one of them 

crosses the Femi-level resulting in an additional conduction channel at the Fermi-level. (d) Conductance 

variation as a function of tip location from the edge to the center of the device at various graphene edge 

configurations. A Gaussian tip width of 0.75 nm is used for the calculation. The ratio between the 

number of zigzag (zz) and armchair (ac) chains does not affect the conductance enhancement. 
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