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ABSTRACT   

We discuss the present state-of-the-art concerning the growth mechanism, optical luminescence and electrical 
properties for GaN nanowires grown with catalyst-free molecular beam epitaxy.  These nanowires are essentially 
defect-free and display long photoluminescence lifetimes and carrier mobilities relative to epitaxially grown GaN 
films.  The exclusion of crystalline defects comes from the ease with which strain-relieving dislocations can reach 
the sidewalls and terminate. The growth mechanism is based on variations in Ga sticking coefficients and surface 
energies of the sidewall planes and end facet planes.  With control of the nucleation process through selective 
epitaxy on patterned substrates, a high degree of diameter, length and position control can be achieved.  Common 
difficulties with interpretation of optical and electrical data with regard to internal quantum efficiency and mobility 
are also addressed.      
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1. INTRODUCTION  
Because of the unique mechanism by which catalyst-free GaN nanowires grow during molecular beam epitaxy 
(MBE), they are among the purest forms of GaN readily achievable, being free of crystalline defects and low in 
chemical impurities.  This condition is achieved with a combination of high purity source materials and growth 
environment and a nucleation mode that excludes lattice mismatch defects to the free surfaces within 10 nm of 
growth.  The continued proximity of the free surface also permits the addition of strained heterojunctions without 
defect formation. This paper will discuss the structural, optical and electrical properties of these nanowires to 
support these assertions. 

 

 
Figure 1. Morphology of GaN nanowires shown in (a) cross-sectional (SEM), (b) plan view SEM, and (c) 
high resolution lattice images generated with TEM.  The latter show that the material is free of disclocations. 
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The morphology of well-separated GaN nanowires is illustrated with scanning electron microscopy (SEM) in Fig. 
1(a) and (b).  The nanowires grow along the [0 0 0 1] crystal direction (c-axis of the wurtzite crystal structure) with 
sidewalls that conform to the {11̄ 0 0} family of m-planes.1-3 The cross-sections are six-sided, and often form nearly 
perfect hexagons as shown in Fig. 1(b). As discussed further below, the growth mechanism prevents the propagation 
of threading dislocations in the nanowires, producing defect-free material, as shown in the high resolution lattice 
image made by transmission electron microscopy (TEM) in Fig. 1(c).  Diameters vary from 30 nm to 900 nm, with 
most falling between 150 nm to 300 nm.  Length is controlled primarily by growth time, though coalescence of 
dense nanowires can prevent the achievement of the > 10 µm lengths seen in Fig. 1(a).    

 

2. CRYSTAL GROWTH MECHANISM 
2.1 MBE Conditions 

GaN nanowires nucleate spontaneously at high substrate temperature (780 ºC to 830 ºC) and high N2 overpressure 
relative to the Ga flux.4, 5  As with any growth of GaN via MBE, the N2 reaction rate is insufficient unless the N2 is 
passed through a plasma, typically maintained with radio frequency (RF) radiation, though electron cyclotron 
resonance has also been used.  Because of the variety of aperture and plasma confinement designs, there is 
considerable variation in the actual species produced by these N2 sources, and this variability is likely to be a major 
source of differences in the exact growth conditions from laboratory to laboratory.  The Ga beam equivalent 
pressure is typically around 2 x 10-5 Pa, leading to growth rates about 200 nm h-1.  

The most widely used substrate is Si(111) with a final cleaning step of HF acid (1:10 HF:H2O for 120 s in our 
laboratory)  to remove native oxides.  The substrates are heated in vacuum to high temperature (~850 ºC) prior to 
growth.  Some workers heat until the Si(111) (7 x 7) reconstruction appears.6  Nanowires grown on Si(111) are well-
aligned azimuthally to the underlying Si planes, allowing x-ray diffraction studies of ensembles of nanowires.  
Nanowire growth has also been demonstrated on Si (100) and on sapphire substrates, 7, 8 but the alignment with the 
substrate is weaker and the cross-sections, while still six-sided, diverge greatly from the equilateral edges that give 
the “perfect” hexagon shape in Fig. 1(b).   AlN buffer layers are frequently used to increase the uniformity of 
nucleation, and these layers have a profound effect on the nucleation process.9, 10   

 
Figure 2. (a) Schematic illustration of growth mechanism for GaN nanowires in MBE. (b) and (c) illustrate 
enhancement of nucleation in pitted regions formed spontaneously in GaN (b) and by etching Si (c). 
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2.2 Growth Mechanism  

The mechanism for the growth of GaN nanowires in MBE is most simply understood by separating growth into two 
stages — nucleation and propagation.    The propagation mechanism, illustrated in Fig. 2, is based on the differences 
in sticking coefficient for Ga on the different crystal planes.8, 9, 11  These sticking coefficient variations in turn are 
correlated with the minimization of total surface energy in the crystal,12 and are likely to play a role in the initial 
seed crystal formation as well.  The sticking coefficient on the end plane, a c-plane, is significantly higher than on 
the m-plane sidewalls.  Ga atoms that impinge directly on the tip are incorporated into the growing crystal, but Ga 
atoms that strike the m-plane sidewalls will either diffuse to the end of the wire and incorporate there (left side in 
Fig. 2) , or they desorb back into vacuum (right side in Fig. 2).  Nanowires rarely terminate with facets other than a 
flat c-plane, but the rare observations of tilted tips do suggest that intermediate sticking coefficient ratios exist for 
such planes.  As will be discussed further below, tilted end facets are the rule rather than the exception in selective 
epitaxy of GaN nanowires.   

This propagation mode is distinctly different from the vapor-liquid-solid (VLS) mode used to grow nanowires in a 
variety of materials systems by use of metal catalysts.  Early in the history of research on GaN nanowires, many 
hypothesized that the growth might proceed through nanoscale Ga droplet formation and subsequent VLS growth.  
As illustrated in Table 1, there are a number of significant differences in the observations of growth morphology and 
structure between these methods.  The absence of even a single observation of a surviving Ga droplet also argued 
against the self-catalysis hypothesis, and more extreme experiments confirmed that the droplets were not present 
even under conditions favorable to their formation and survival.8  Intentionally created Ga droplets were also found 
to have no effect on nanowire growth other than to serve as small reservoirs of Ga atoms.13  Under some conditions, 
thicker nanowires grow more slowly in length than thinner ones, which has been attributed to conditions in which 
the Ga diffusion length on the sidewalls is larger than the diameter of the wire.14, 15  Other workers have found slight 
increases in growth rate as diameter increases, and attribute the variation to chemical potential and surface energy 
driving forces.3  Clearly as the density and length increase, shadowing of the molecular beam and recycling of Ga 
desorbing from sidewalls8 can also become significant factors in the relative growth rates on sidewalls and end tips. 

Early in the formation of GaN nanowires, the strain mismatch is accommodated with dislocations and stacking faults 
that glide to the edge of the nanowire and terminate.16, 17   This exclusion mechanism does not operate for a-axis 
nanowires grown with other methods, for which stacking faults and twin boundaries propagate indefinitely along the 
growth axis.18  

 

Table 1.  Comparison of crystal properties for GaN nanowires grown with catalyst particles and via spontaneous 
nucleation.  The large differences are one indication that spontaneous nanowire growth is not caused by self-
catalysis.     

Property / 
Growth Method 

Catalytic Spontaneous 

Orientation  Typically a-axis, some m-axis, c-axis c-axis only, with m-plane sidewalls 

Cross-section Rough, circular, triangular, belts, etc Smooth facets, six-sided 

Length uniformity Poor, varies with nucleation time Length uniform within 5 % 

Diameter 
uniformity 

Determined by catalyst particle size Varies dramatically; diameter and 
hexagonal uniformity depend on 
nucleation details 

Growth rate 10 – 100 µm/h < 0.1 – 0.3 µm/h 

V:III ratio Not critical High V:III ratio essential 

Growth 
temperature 

Not critical Temperature high, near equilibrium 
with Ga vapor, narrow range (~ 
30 ºC) 
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Transient photoconductivity measurements31, 32 provide valuable insight for narrowing the range of surface potential 
values, particularly for nanowires that are fully depleted in the dark.  For the latter, the surface band bending in the 
dark, Φm, is determined by the maximum number of carriers available from the bulk dopant atoms to fill the surface 
states, rather than the poorly known surface state densities, energy level(s), and capture cross-sections.  Φm can be 
derived from the photoconductivity decay time τ near the restoration of the dark condition, and can be related to the 
carrier concentration as Φm = q Nd Rm

2 / 4ε, where q is the electronic charge, Nd is the donor atomic concentration, 
Rm is the nanowire radius, and ε is the dielectric constant of the nanowire. (See Ref. 31 for a discussion of the 
appropriate approximation for Rm in these hexagonal cross-section wires.)   Because τ = τc exp(Φm /kT), the slope of 
ln(τ/ τc ) vs R2 is equal to  q Nd/4 ε, where τc is the capture time for the electrons entering the charged surface state in 
the absence of a surface band bending barrier, k is the Boltzmann constant, and T is the absolute temperature.   
Because only the slope is needed, τc can be chosen arbitrarily for plotting convenience.  (Conversely, this implies 
data on Φm for depleted nanowires cannot be used to determine the capture cross-section of the surface states that 
produce the band-bending.)  An example is given in Fig. 5 for nanowires from a long undoped run (B992 from Ref. 
31).  More information including treatment of nanowires that are conductive in the dark can be obtained from time-
dependent fits of the photoconductivity decay.31   

These methods indicate that for MBE-grown GaN nanowires, the mobility as a function of carrier concentration 
varies from 500 cm2 V-1 s-1 (Nd = 3 x 1016 cm-3) to 700 cm2 V-1 s-1 (Nd = 1 x 1016 cm-3) for n-type nanowires with low 
residual doping, and from 300 cm2 V-1 s-1  (Nd = 1 x 1018 cm-3)  to 600 cm2 V-1 s-1 at (Nd = 6 x 1017 cm-3) for 
intentionally doped nanowires.  These mobility values are somewhat higher than for typical epitaxial material, but 
do not exceed the best values reported for such films.33  The mobility is also independent of diameter for the range 
explored (> 70 nm).   

Early work explored the use of field effect transistor (FET) transconductance and threshold voltage measurements to 
separate mobility from carrier concentration.   Because of the extreme difficulty in fabricating gate contacts on 
nanowires and in measuring contact or gate capacitance, typical sample geometry consisted of a nanowire dispersed 
onto an oxidized Si substrate with source and drain contacts fabricated at the two nanowire ends.  The Si substrate 
itself was biased to form a “back-gate,” and the capacitance between the nanowire and the substrate was modeled as 
an ideal conducting wire embedded in a dielectric material far above a conducting plane.  There are a number of 
systematic errors introduced by this approach,34, 35 and we have also observed hysteresis with light exposure and 
bias30, 36 that point to influence by trapped charge in the nearby dielectrics (typically SiOx).  The systematic 
modeling errors have a dependence on nanowire diameter that can erroneously confer diameter dependence to the 
mobility determination where none actually exists.  Although back-gated measurements can perhaps provide an 
estimate on carrier concentration to within one or two orders of magnitude, they cannot be relied on for accurate 
determination of absolute values or for relative measurements when the geometry of nanowires or dielectric varies.  

 
Figure 5.  Graphical solution of photoconductivity decay time data vs. the square of nanowire radius to extract 
carrier concentration.  This method applies only to nanowires that are fully depleted of free carriers in the dark. 
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A major unsolved difficulty for MBE-grown GaN nanowires is the clear demonstration and characterization of 
p-type doping.  This difficulty is not surprising given that p-type doping in films has only been demonstrated with 
one dopant species, Mg, for which the electrical activation is so poor that practical application was not possible until 
the 1990s.  Although bright nanowire light-emitting diodes have been made from MBE-grown GaN nanowires,37 the 
p-type region of these devices were grown with lower substrate temperatures such that the diameter increased 
rapidly with length and a coalesced top surface was produced.  In our laboratory we have observed indications of 
low free hole concentration and Mg incorporation in electroluminescence, PL, SIMS and SEM contrast. Data 
demonstrating a linear dependence of current vs. voltage (i. e., ohmic behavior) through a single p-type GaN 
nanowire, however, have yet to be published by any group working in this field.  This step is a precursor to actual 
free hole concentration measurement.  Our current hypothesis is that the difficulties come from a combination of 
incorporating sufficient Mg at the high growth temperatures required for nanowire growth and the three-dimensional 
nature of a nanowire contact.   

 

4. SUMMARY 
Catalyst-free growth of GaN nanowires is shown to produce material of exceptional quality, often exceeding what 
can be obtained in thin films and bulk crystals.  The unique growth mechanism allows lattice mismatch strain with 
growth substrates to be relieved within a few nanometers of nucleated growth, and these defects terminate at the 
nanowire walls. Unlike growth via the VLS mechanism, catalyst-free GaN nanowire growth derives from variations 
in surface energies and sticking coefficients among the wurtzite crystal planes.  Excellent control of diameter, length 
and position are possible with selective epitaxy based on patterned masks of TiNx and SiNx.  MBE-grown GaN 
nanowires are defect free with low background carrier concentration, enabling doping with the intentional addition 
of Si for n-type and Mg for p-type.  Measurements of n-type free carrier concentration show excellent mobility; 
work on p-type material has been limited due to the inability to establish ohmic contacts with what may be only 
lightly doped material.  The optical properties show that the nanowires should make efficient luminescence sources, 
having long minority carrier lifetime and low surface recombination velocity.  The surface recombination velocity 
limits optical efficiency at room temperature.  The major challenges ahead for this technology include demonstration 
of free hole concentration measurement and electrical contact formation. 
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