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The effects of strain on flux pinning in superconductors are

discussed.

Significant differences between the strain scaling law,

temperature scaling law, and the flux-line-shearing model of Kramer

are demonstrated.

The strain scaling law is more general than

current flux-pinning models, and as such, it may serve as a guide to

future work on flux pinning theory.

Flux-pinning measurements at

fields up to 24 T have been made on a series of high-quality Nb,_Sn

samples with third (and fourth) element additions.

The data show

that the usual extrapolation procedures for determining the bulk-
average upper critical field in Nb_Sn lead to significant errors
when additives such as Ti, Ta, Ga, and Hf are present.

INTRODUCTION

The effects of strain on flux pinning in
superconductors were observed to obey scaling
behavior in 1980 and systematized into what is
called the strain scaling law (SSL) [1]. The
practical significance of SSL is two fold.
First, as will be shown, it is more general
than current theories of flux pinning and as
such, it serves as a guide to future work on
flux pinning theory. It is different from the
temperature scaling law (TSL) of Fietz and
Webb [2] and cannot be derived from Kramer's
flux-line-shearing model [3]. Second, it can
be used to calculate the peak (strain-free)
critical-current density (J ) in practical
superconductors from measuréments of J
‘obtained on the conductor in its initiSl
strained state.

This paper describes the differences
between the SSL, the TSL, and the flux~line-
shearing model in an effort to clarify the
successes and deficiencies of our current
understanding of flux pinning. The paper also
shows that the usual extrapolation procedures
for determining the bulk upper critical field
in Nb_Sn conductors with additives can lead to
large”errors in determining this practical
parameter. The technique for using the SSL to
correct J measurements on practical conductors
will be presented in detail elsewhere.

STRAIN SCALING LAW

The strain scaling law (SSL) describes
the strain dependence of the pinning force (F
= J B). Basically, it states that the shape
of fhe curve of the pinning force as a fumc-
tion of reduced magnetic field is mot changed
by the application of strain to a supercon-
ductor. If we let b represent the reduced
magnetic field b = B/B*, (where the star
implies a bulk-average upper—critical field
B: = 11 H*Z’ described in more detail below)
ané if ve Tét £(») represent the shape of the
pinning force curbe, then the SSL may be
expressed as:

’

F = [B%,()17£ (b) (1)

In Eq. (1), the proportionality comstant
bétween F and £(b) is independent of field,
but varies with strain as [B*,(e)]", where v
is a constant independent of®both field and
strain. The value of v changes for differ-
ent superconductor compounds, but has been
empirically determined to be essentially the
same for all types of conductors of the same
compound.[1l] For example, v = 1 for all types
of Nb,Sn conductors, including conductors made

- by "bfonze-process", "in-situ", "jelly-roll™,
Y J

internal-tin, and liquid-tin-infiltration
techniques.
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Fig. 1. Comparison between J ~strain data

and the results of tfie strain scaling
law (SSL) [1], temperature scaling
law (TSL) [2], and flux~line~shearing
model of Kramer [3]. Data are for
the strand material used in the Nb3Sn
LCP coil.
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DIFFERENCES BETWEEN THE SSL, TSL, AND KRAMER
THEORY

The SSL described in Eq. (1) is different
from the temperature scaling law (TSL) observed
by Fietz and Webb [2]. The TSL describes the
effect of temperature on the pinning force in
superconductors. Using the same terminology
as in Eq. (1), the TSL may be written:

2.5

F=[B (D] 7£(b) (2)
where b = B/B _(T) and the proportionality
constant betwéen F and f(b) has a temperature
dependence proportional to [B (T)]Z". Note
the difference between the twé scaling laws.
The power of the prefactor for strain scaling

is about 1 for NbBSn, not 2.5 as for tempera-
ture scaling.

Following the observation of temperature
scaling, a flux-line-shearing model for flux
pinning in superconductors was developed by
Kramer [3] to explain Eq. (2). The model has
met with considerable success in Nb_Sn, but
not in other superconductors (see below). The
flux pinning model of Kramer is often confused
with the empirical temperature scaling law of
Fietz and Webb, and is even sometimes referred
to as the Kramer Scaling Law. Actually this
is a misnomer. The flux pinning theory of
Kramer postdates the temperature scaling law
of Fietz and Webb by four years and is more
restrictive, applying principally to Nb3Sn.

The strain scaling law cannot be obtained
from either the TSL or the Kramer model, even
for the case of binary Nb_Sn. The model

developed by Kramer to explain the TSL states
that:

- 2.5,0.5

c k2 (8%, (1-»? 3

where K| is the Ginzburg-Landau parameter and

C_ is a number that depends on the density of
strong line pins. No consideration is given
to strain in the TSL and Kramer model.
Furthermore, if the temperature-dependent

B _(T) is simply replaced by a strain-dependent
B 2(8), as has been tried in the past [4], the
résulting expression does not agree with the
data. An example is shown in Fig. 1. Data
obtained on a practical Nb,Sn conductor are
shown by open circles. Thé lower solid curve
is obtained when values of the strain-dependent
B: () measured on this conductor are substi-
tu%ed into the TSL and Kramer model, expres-—
sions, Eqs. (2) and (3). The upper solid
curve, on the other hand, is obtained from the
SSL, Eq. (1). The discrepancy between the
data and the results of the TSL and Kramer
model expressions is significant; the discrep-
ancies are even greater for materials other
than binary Nb_Sm. On the other hand, the

results of the”SSL agree quite well with the
data.

The SSL has been observed to show agree—
ment similar to that in Fig. 1 for many
materials other thah Nb_Sn where the Kramer

model clearly does mnot apply, such as V3Ga
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[5], NbTi [6], or Nb,_Sn-with-additiveg (see
discussion below). %n these materials, the
field dependence of the pinning force £f(b) is
significantly different from that given ig Eq
(3). An example of strain scaling in such a )
material is shown for V,Ga in Figs. 2a and 2p
Note in Figs. 2 that tha flux Pinning force )
approaches zero linearly as (1-b), not quadra-
tically as (1-b)? given by the Kramer mode]
Yet the data show precise strain scaling ovér
2 wide range of uniaxial strain and magnetic
field (i.e. the shape of the flux pinning
curve with applied strain is invariant) .
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2a. Pinning-force density F vs. magnetic
field at different intrinsic tensile
strains € in V_Ga. Curves are
drawn usiﬁg Eqg.”(4) and the values
of p and q shown in the figure.
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Fig. 2b. Normalized plot of the data in Fig.

2a, demonstrating strain scaling in
a superconductor that does not fit
the flux-line-shearing-model
expression, Eq. (3). F has been
normalized by its strain-dependent
maximum value F , and the field has
been normalized by the strain-
dependent bulk-average upper
critical field Bzz.




Information on flux pinning can also be
obtained from the details of the
‘:strain-scaling parameters in each of these
materials, when compared with Nb_Sn. Im
materials such as Nb_ Sn~with~additives or
V,8i, the SSL has exactly the same form as for
binary Nb3Sn. In V,Ga, the power of the
prefactor;, v, is enhanced slightly, with v =
1.4. In NbTi where the pinning mechanism is
" not the same as in compound superconductors,
the value of v is considerably higher than 1.
However, in all these superconductors, the
power of the prefactor for strain scaling is
significantly different from that for
temperature scaling in the same material.
Also the value of v in the strain scaling law
does not change for different types of
conductors of the same material (e.g. bromze
process, in—situ, powder metallurgy, etc.).

Thus, the scaling of the pinning force
with strain is a very general law, applicable
"to many superconductors for which the Kramer
model does mnot apply. It is also significantly
different from the TSL and Kramer model, and
as such, it may serve as a guide for future
work on flux-pinning theory.

For example, the SSL suggests that there
are terms in the prefactor of the flux pinning
model expression other than B _ which depend
on strain. This is necessary in order to
account for both the temperature and strain
scaling laws with the same model expression.
Such a strain dependence may arise from strain
being concentrated locally at the grain
boundaries, increasing the strength or spatial
extent of the grain-boundary pinning interactiom.
The presence of such a term that increases
with strain could compensate the decrease in
“the B , term in the prefactor and account for
the smaller power law of the prefactor inm the

SSL compared with the TSL.
could also enter through «.

Strain dependence

Another point to consider when modeling
the pinning interaction is the similarity of
the strain scaling law in V,Ga and Nb_Sn.
Apparently the terms in the prefactor™do not
change drastically between these two materials
although the form of f(b) is significantly
different, (l1-b) compared to (1-b)2.

SHAPE OF HIGH-FIELD PINNING CURVE IN Nb3Sn
WITH ADDITIVES

We now turn from the subject of the
differences between the strain and temperature
scaling laws and focus on the details of the
shape of the flux-pinning-versus-field curve,
£(b), in Nb,Sn. The following discussion
applies equally to both the SSL and the TSL.
Specifically, it is shown that even Nb_Sn does
not conform to the Kramer expression for £(b)
when additives are present.

Pinning theories suggest that f(b) has
the general form:

£(b) = € bP(1-p)* (4)
where C is a’progortionality constant and b =
B/Bc . For binary Nb,Sn, p = 0.5 and q = 2.0,

‘whicﬁ are the values given by Kramer's flux-
line shearing model, Eq (3).

However, the addition of third (and
fourth) elements to Nb.Sn tends te linearize
the shape of the £(b) Curve at high fields,
reducing the value of q from 2 towards unity.
This was first shown several years ago when q
was reported to be reduced to about 1.% in
NbBSn samples with Hf .and Ga additioms.[7]

Table I. Strain Scaling Parameters for NbBSn with Various Additives (in at%)

F=C[B%,(e) 1" [B/BX,()1P {1 - [B/B%,(c)1}°

Bulk-average Strain Strain
Shape of Upper-critical Sensitivity Sensitivity
JC(B) Field (T) of B* 1 of F
a ln(B:z)/8%|€{ .7) 7 "max
P q BéZm (e0<0) (e0>0) v
NbBSn 0.5 2.0 21 900 1250 1.0
Nb-5Hf /Cn-58n-4Ga 0.4 1.1 25 900 1250 1.1
Nb3Sn+0.6Ti 0.6 1.7 23 900 1250 1.1
Nb38n+l.85Ti 0.5 1.5 25 1100 1450 1.2
Nb38n+0.6Ta 0.5 1.4 24 900 1250 1.0
Nb35n+2.2Ta 0.5 1.7 25 1400 1800 1
- NbssntO.ZH 0.7 2.2 25 1400 1800 —



Here we report a similar reduction in g
to less than 2 for essentially all other
practical additives to Nb,Sn, including Ti,

Ta, Ga, and Hf. The results are summarized in

Table I. As seen in Table I, values of q are
reduced typically to the range 1 to 1.7

depending on the additive, its concentration
(and possibly the heat treatment conditions).
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Fig. 3. Deviation of the high-field flux
pinning curve from the Kramer model
expression in a high-quality (high-n)
Nb,.Sn sample with Ta additions. A
stfaight line extrapclation on this
type of plot overvalues B*, in this
conductor by zbout 4 T. fit to the
general pinninglefpression in Eq. (&)
yields a (1-b)" " high~field
dependence and a Biz of 23.4 T,
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Fig. 4. Masking of the high-field flux-
pinning curve by a wide range of B 9
due to material inhomogeneity ¢

in a low-n Nb3Sn sample with hydrogen
additions.

r

An example of this reduction of ¢ below 2
is shown for Ta additions in Fig. 3. The J
data have been replotted in the usual manne%
using a Kramer plot to illustrate their
deviation from the high-field q = 2 dependence
given in Eq. (3). Such a dependence would be
a straight line on this type of plot and ig
shown by the dashed line in Fig. 3. This type
of plot 1s used for illustration purposes
only; in gemeral, a simple pinning force vs, B
plot is preferred, as discussed below. Notice
in Fig. 3 that at fields above about 18 T the
data deviate below a straight-line (q = 2)
dependence. A least-squares fit to £(b) in
terms of p, q, B*¥_,, and a proportionality
constant, results'in q = 1.4 (p = 0.45 and
B*_, = 23.4 T). Thus, the effect of the
aﬁgitive results not only in an increase in

B#%,_, but also a decrease in q below the

b%nary—Nb3Sn value of 2.

The decrease in q in Fig. 3 is
independent of the criterion used to determine
J . For this sample, the quality factor "n"
(8escribing the sharpness of the take~off of
the V-I curve [9]) had a value of 50 at 18 T,
indicating a relatively homogeneous sample.
This value of n is very high compared with
most Nb_Sn samples at 18 T. As shown in Fig,
3, a re-analysis of the data in terms of a
resistivity criterion instead of an
electric-field criterion resulted in the same
shaped curve, except very near BZZ.

EFFECT OF INHOMOGENEITY OF B , ON THE SHAPE OF
HIGH-FIELD PINNING CURVES 2

Referring again to Table I, note that the
last sample containing H additions was the
only sample we have measured which did not
have a ¢ value lower than 2. This sample,
however, makes an interesting point regarding
how local inhomogeneity of B ., within the
superconducting material can mask the
intrinsic shape of the flux-pinning curve at
high fields.

Figure &4 shows a Kramer plot of the data
for this sample. Note that the value of n for
this sample was quite low, only 12 at 18 T
(compared with a value of 50 at 18 T for the
sample containing Ta additions shown in Fig.
3). This low value of n is suggestive of a
wide range of BC2 due to sample inhomogeneity.

If such a range of B due to sample
inhomogeneity exists, it would cause a tailing
effect, or region of positive curvature in the
pinning curve {over the field range where
portions of the sample with the lowest values
of B progressively become normal). This
tail Can mask the true shape of the f(b) curve
and, if extensive enough, can cause a wide
region of positive curvature (q > 2) as is
evident starting at about 18 T in Fig. 4. As
a result, the value of q will appear much
higher than its intrinsic value in samples
with a wide range of Bc2'
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The region where this tailing effect
starts to become significant in Fig. 4 (i.e.,

.. where the curve changes from negative curvature

to positive curvature) is shaded and indicated
as the range of B , due to inhomogeneity that
could cause such a"tail. For comparison, the
relatively narrow range of B that could
cause the small tail for theC%a—additive
sample is also shown as a shaded region in
Fig. 3.

Because of the low n and the suspected
wide range of B 9 in the sample with H
additions, it is quite possible that even this
sample has a significantly reduced q compared
with binary Nb_Sn, similar to the other
Nb,Sn-with-additive samples in Table I. The
start of such a decrease below the q = 2 line
in Fig. & can be seen in the range between 14
and 18 T before the tailing effect starts.
Thus, care should be exercised in drawing
conclusions about intrinsic high-field pinning
characteristics from inhomogeneous samples.

EXTRAPOLATION PROCEDURES FOR OBTAINING Bzz
The deviation of the shape of £(b) from
the Kramer model described in the previous
section has several practical consequences for
determining the bulk-average upper critical
field B%,. B*2 is a significant, practical
parametér. Tfi€ SSL can be used with inhomogen~—
eous superconductors (and most practical
superconductors are inevitably inhomogeneous
to some degree) only if the bulk-average B*2
is used.[1l] Scaling does not work if the ¢
upper limit of the B range is used, i.e. the
value of field wherec%he last remnant of
superconductivity disappeatrs, usually deter-
mined inductively or resistively.[1,10] The
bulk-average B*  also serves as a practical
figure of merit”in evaluating candidate
superconductors for magnet applications.

The usual practice to determine the bulk
average B*, for Nb.Sn is to use a straight-
line extrapolation™on a plot such as that in
Figs. 3 or 4. However, this can lead to
significant errors. In Nb.Sn conductors with
Ti or Ta additioms, B*,_ is typically overvalued
by about 3-5 T, as se&f in Fig. 3. A much more
accurate procedure is to make extrapolations
by fitting the shape of £(b) to a gemeral
pinning function such as that in Eq. (4) in
terms of the four parameters B*Z, P, q, and C,
An equal-weight least-squares £t of this !
function to the pinning-force vs. B character-
istic (such as shown in Figs. 2) de-emphasizes
the tailing region and has proven’useful in

determining intrinsic bulk~average values of
Bx, .
c2

CONCLUSTONS ’ !

1. The strain scaling law is different from
the temperature scaling law. For example, the
power of the prefactor for strain scaling is
about 1 rather than 2.5 for Nb3Sn.

2. Strain effect data fit the strain scaling
law in superconductors like V_Ga, NbTi, or

NbBSn—with—additives, where tge flux~line~
chRawms_ .. T A - - .

- -

apply. Thus, the scaling of the pinming force
with strain is a very general law, more
universal than the current theories of flux
pinning. There is a meed to incorporate
strain as a parameter into present fluxpinning
theory and explain the comsistent scaling
behavior represented by the SSL.

3. Additions of third (and fourth) elements
such as Ti, Ta, Ga, and Hf to binary Nb_Sn
tend to linearize the shape 'of the f(b) curve
at high fields, causing significant deviations
from the Kramer-model expression, Eq. (3). As
a result of this deviation, the usual practice
of determining the bulk-average B* using a
Kramer~type plot such as Fig. 3 184ds to a
significant overvaluation of B%,, typically 3
to 5 T. A much more accurate pFfocedure is to
determine B*,6 by a least-squares fit of J

data (away ffom the inhomogeneous region) to a
general pinning function such as that in Eq.

(4).

4. A range of upper critical fields due to
sample inhomogeneity cam lead to a tailing
effect which masks the intrinsic shape of the
filux pinning curve at high fields. Such
inhomogeneity, if extensive enough, can lead
to artificially high values of q which are
unrepresentative of the bulk material.
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