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Abstract. Recognition problems in computer vision often benefit from5 5

a fusion of different algorithms and/or sensors, with score level fusion be-6 6

ing among the most widely used fusion approaches. Score level fusion re-7 7

quires the different data to be normalized before combining. Choosing an8 8

appropriate score normalization technique before fusion is a fundamen-9 9

tally difficult problem because of the disparate nature of the underlying10 10

distributions of scores for different sources of data. Further complica-11 11

tions are introduced when one or more fusion inputs outright fail or have12 12

adversarial inputs, which we find in the fields of biometrics and forgery13 13

detection. Ideally a score normalization should be robust to model as-14 14

sumptions, modeling errors, and parameter estimation errors, as well as15 15

robust to algorithm failure. In this paper, we introduce the w-score, a16 16

new technique for robust recognition score normalization. We do not as-17 17

sume a match or non-match distribution, but instead suggest that the top18 18

scores of a recognition system’s non-match scores follow the statistical19 19

Extreme Value Theory, and show how to use that to provide consis-20 20

tent robust normalization with a strong statistical basis. We cover the21 21

background theory, use this theory to develop the w-score, and present22 22

fusion results for a variety of biometric recognition algorithms and for23 23

content-based image retrieval descriptors.24 24

1 Introduction25 25

For many different recognition problems in computer vision, the ability to com-26 26

bine the results of multiple algorithms and/or sensors brings significant improve-27 27

ment in overall recognition performance. While there are many approaches and28 28

“levels” of fusion, a widely used approach is score level fusion, where scores from29 29

different recognition algorithms are combined. Since score distributions vary as30 30

a function of the recognition algorithms, and sometimes the underlying sensors,31 31

one must normalize the score data before combining it in score level fusion.32 32

The goal of fusion is to improve recognition accuracy, and hence it is im-33 33

portant that the underlying process be robust. Choosing a robust score normal-34 34

ization technique is often a challenge for several reasons. In the literature, the35 35

term robust has been defined as insensitivity to the presence of outliers (noise)36 36

[1] for the estimation of any necessary parameters. While this definition cap-37 37

tures one property of good fusion, there are more issues than just the parameter38 38

estimation. We define the term robust fusion to be a fusion process (including39 39
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normalization) that is insensitive to errors in its distributional assumptions on40 40

the data, has simple parameter estimation, and a high input failure tolerance.41 41

For this work, simple parameter estimation means there is no dependence on a42 42

large sample set for modeling the match and non-match distributions for each43 43

algorithm, and a very small number of parameters must be estimated exper-44 44

imentally. Failure tolerance means that if one or more recognition algorithms45 45

involved in the fusion process is not producing correct matching results, it does46 46

not strongly impact the final result of fusion. Ideally, we would like a score47 47

normalization that is both robust to failure, and is unencumbered by compli-48 48

cated parameter estimation as score distributions vary. Further, if an algorithm49 49

is repeatedly failing, robust fusion should be able to detect this.50 50

Robustness in score level fusion is strongly impacted by normalization in two51 51

major ways:52 52

1. The varying nature of the underlying distribution of scores across different53 53

recognition algorithms often leads to inconsistency in normalization results.54 54

For example, if a normalization technique assumes the algorithms considered55 55

for fusion produce scores that follow a Gaussian distribution, and at least56 56

one of those distributions is not Gaussian, the results will not be optimal.57 57

The distribution of recognition scores is the result of a complex function of58 58

both the algorithm and the actual data being processed, and it is dangerous59 59

to assume too much about the score distribution.60 60

2. Complications are introduced when one or more sensors or recognition al-61 61

gorithms being considered for fusion fail or are deceived. For recognition62 62

problems, failure occurs when an input sample of a class unknown to the63 63

system is recognized as being part of a known class, or when an input sam-64 64

ple that should be recognized by the system is rejected as being unknown.65 65

The scores produced in these failure scenarios become problematic for nor-66 66

malization techniques, especially when they resemble an “expected” (and67 67

often estimated) match distribution.68 68

In this paper, we introduce a new score normalization approach for robust69 69

fusion based on a probability of confidence that a particular score is not drawn70 70

from the non-match distribution. For an overview, we turn to Figure 1. Based71 71

on the match scores produced by multiple recognition algorithms applied to a72 72

particular object, a post-recognition score analysis [2] [3] is performed to predict73 73

the probability of the scores not being from the non-match distribution. For74 74

this work, we introduce a statistical Extreme Value Theory normalization that75 75

draws these probabilities from the cumulative distribution function of a Weibull76 76

distribution (hence “w-score”). The resulting probabilities from the different77 77

algorithms are the normalized w-scores, which can then be fused together to78 78

produce an overall probability of not being a non-match. In Figure 1, the process79 79

is shown for the case of two algorithms, though the process applies to any number80 80

of inputs.81 81

Traditional normalization techniques change the location and scale parame-82 82

ters of a score distribution in an ad-hoc manner or with a distributional assump-83 83

tion. In contrast, our w-score normalization changes raw scores to probability84 84
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Fig. 1. An overview of the w-score normalization process. Based on the match scores
produced by some recognition system for a single input, predictions of the probability
of those match scores not being non-matches are made after a statistical Extreme Value
Theory fitting. These probabilities, drawn from the cumulative distribution function
of a Weibull, are normalized w-scores.

scores based on a strong statistical theory. This is a new paradigm for recognition85 85

score normalization supporting robust recognition fusion.86 86

We organize the rest of this paper as follows. In Section 2, we discuss the87 87

strengths and weaknesses of common recognition score normalization techniques.88 88

In Section 3, we review the post-recognition score analysis based on statistical89 89

Extreme Value Theory (pre-requisite to our new normalization technique) and in90 90

Section 4, we detail the w-score normalization technique. Finally, we present ex-91 91

perimental results for the w-score on a series of biometric recognition algorithms92 92

and content-based image retrieval descriptors in Section 5.93 93

2 Recognition Score Normalization94 94

2.1 Recognition Systems95 95

There are multiple formal ways to define what exactly a “recognition” task is.96 96

For this work, we consider the general definition of Shakhnarovich et al. [4],97 97

where the task of a recognition system is to find the class label c∗, where pk is98 98

an underlying probability rule and p0 is the input distribution, satisfying99 99

c∗ = argmax
class c

Pr(p0 = pc) (1)

subject to Pr(p0 = p∗c) ≥ 1−δ for a given confidence threshold δ, or to conclude100 100

the lack of such a class (to reject the input). We define probe as the input101 101

image distribution p0 submitted to the recognition system in order to find its102 102

corresponding class label c∗. Similarly, we define gallery to be all the classes c∗103 103

known to the recognition system.104 104

Many systems replace the probability in the above definition with a more105 105

generic “score,” which produces the same answer when the posterior class prob-106 106

ability of the identities is monotonic with the score function. In this case, setting107 107

the minimal threshold on a score effectively fixes δ. We call this rank-1 recogni-108 108

tion, because the recognition is based on the largest score. One can generalize109 109

the concept of recognition, as is common in content-based image retrieval and110 110

some biometrics problems, by relaxing the definition of success to having the111 111
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correct answer in the top K responses. Many researchers use a pseudo-distance112 112

measure where smaller scores are better, which is trivially converted to a “larger113 113

is better” approach.
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Fig. 2. The match and non-match distributions for the recognition problem. A thresh-
old t0 applied to the score determines the decision for recognition or rejection. Where
the tails of the distributions overlap is where we find False Rejection and False Recog-
nition. Embedded within the overall distribution is shown a particular set of post-
recognition scores, with 1 match (falsely rejected by the threshold t0) and many non-
match samples.

114 114

For analysis, presuming the ground-truth is known, one can define the overall115 115

match and non-match distributions for recognition and the per-instance post-116 116

recognition distributions (see Figure 2) . For an operational system, a threshold117 117

t0 on the similarity score s is set to define the boundary between proposed118 118

matches and proposed non-matches. The choice of t0 is often made empirically,119 119

based on observed system performance. Where t0 falls on each tail of each over-120 120

all distribution establishes where False Rejection (Type I error: the probe has a121 121

corresponding entry in the gallery, but is rejected) or False Recognition (Type122 122

II error: the probe does not have a corresponding entry in the gallery, but is in-123 123

correctly associated with a gallery entry) will occur. The post-recognition scores124 124

in the example yield a False Rejection for the t0 shown.125 125

2.2 Common Normalization Techniques126 126

Traditional normalization techniques change the location and scale parameters127 127

of a score distribution. Jain et al. [5] define two types of normalizations based128 128

on the data requirements for parameter estimation. In fixed score normalization,129 129

which includes machine learning based approaches, the parameters used for nor-130 130

malization are determined a priori using a fixed training set. This means that131 131

the training set must accurately reflect the score distribution for each recogni-132 132

tion algorithm – any deviation will have an impact on the recognition results.133 133

In an approach that is inline with our desire for simple parameter estimation,134 134
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adaptive score normalization estimates parameters based on the scores at hand135 135

for a particular recognition instance. As a further consideration, a normaliza-136 136

tion technique is robust if it is insensitive to outliers. In this section, we briefly137 137

describe various normalization techniques, including the very popular z-score,138 138

which we use for comparison in all of our experiments in Section 5. For each139 139

example, a set of match scores {sk}, k = 1, 2, . . . , n is considered as the data to140 140

be normalized.141 141

z-scores are adaptive score normalizations that are computed in a straight-142 142

forward manner. Referring to Equation 2, the normalized score is produced by143 143

subtracting the arithmetic mean µ of {sk} from an original score, and dividing144 144

this number by the standard deviation σ of {sk}. This parameter estimation145 145

makes z-score normalization an adaptive score normalization, but it is possible146 146

to compute z-score normalization as a fixed score normalization if µ and σ are147 147

estimated for the overall distributions of scores produced by different recognition148 148

algorithms. z-score normalization is not robust in the traditional sense, and, as149 149

we show in this paper, is highly impacted by recognition algorithm failure.150 150

s′k =
sk − µ
σ

(2)

tanh-estimators [6] are fixed score normalizations that are considered robust151 151

to noise, but are far more complicated to compute, compared to the adaptive152 152

z-scores. The normalized score is produced by taking the hyperbolic tangent of153 153

a z-score-like calculation. The robust nature of tanh-estimators comes from the154 154

mean and standard deviation estimates, which are computed from a genuine155 155

score distribution that is itself computed from Hampel estimators, making tanh-156 156

estimators fixed score normalizations. The Hampel estimators are based on an157 157

influence function, which makes the normalization robust to noise by reducing158 158

the influence of the scores at the tails of the distribution being considered. The159 159

tail points for three different intervals from the median score of the distribu-160 160

tion must be defined in an ad hoc manner. These parameters can be difficult161 161

to determine experimentally, and if chosen incorrectly, limit the effectiveness of162 162

tanh-estimators. tanh-estimators are robust to noise, but not parameter esti-163 163

mation. Further, tanh-estimators have been shown to produce good results for164 164

noisy data in verification problems [5], but not recognition problems, where the165 165

underlying score distributions are different.166 166

Other normalization techniques include decimal scaling [5], which simply167 167

shifts the scores when they are on a logarithmic scale; t-scores [7], which have168 168

shown good performance on verification problems when a non-match distribu-169 169

tion can be modeled accurately; the double sigmoid function [8], which is tailored170 170

to fingerprint classifiers; and biweight estimators [9], which are similar in perfor-171 171

mance to z-scores.172 172

3 Statistical Extreme Value Theory173 173

As we saw in Section 2.1, we can map almost any recognition task into the174 174

problem of determining “match” scores between the input data and some class175 175
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descriptor, and then determining the most likely class [4]. Success in a recognition176 176

system occurs when the match is the top score. Failure in a recognition system177 177

occurs when the match score is not the top score (or not in the top K, for178 178

the more general rank-K recognition). With these two definitions in mind, it is179 179

critical to note that the analysis here is done for a single probe at a time, and180 180

this assessment is not based on the overall “match/non-match” distributions,181 181

such as those in [10] and [11], which include scores over many probes. Rather it182 182

is done using a single probe producing at most one match score mixed in with a183 183

larger set of non-match scores.184 184

We can formalize our analysis as score-based accuracy prediction for rank-185 185

K recognition, determining if the top K scores contain an outlier with respect186 186

to the current probe’s non-match distribution. In particular, let F(p) be the187 187

distribution of the non-match scores that are generated by the matching probe p,188 188

and m(p) to be the match score for that probe. In addition, let S(K) = s1 . . . sK189 189

be the top K sorted scores. We can formalize the null hypothesis H0 of our190 190

prediction for rank-K recognition as:191 191

H0(failure) : ∀x ∈ S(K), x ∈ F(p), (3)

If we can reject H0 (failure), then we predict success.192 192

While some researchers have formulated recognition as hypothesis testing193 193

given the individual class distributions [4], that approach presumes good models194 194

of distributions for each match/class. We cannot model the “match” distribution195 195

here effectively, as we only have one sample per probe, and so the only way to196 196

apply that is to assume a consistent distribution across all probes, which is197 197

questionable. That is the key insight; we don’t have enough data to model the198 198

match distribution, but we have n samples of the non-match distribution —199 199

generally enough for a good non-match modeling and outlier detection. If the200 200

best score is a match it’s an outlier with respect to the rest of the data.201 201

As we seek a more formal approach, the critical question then becomes how202 202

to model F(p), and what hypothesis test to use for the outlier detection. Various203 203

researchers have investigated modeling the overall non-match distribution [11],204 204

developing a binomial model. Our goal, however, is not to model the whole205 205

non-match distribution over the entire population, but rather to model the tail206 206

of what exists for a single probe comparison. The binomial models developed207 207

by [11] account for the bulk of the data, but have problems in the tails, and are208 208

not a good model for a particular probe.209 209

An important observation about the problem we consider here is that the210 210

non-match distribution we seek to model is actually a sampling of scores, one or211 211

more per “class,” each of which is itself a distribution of potential scores for this212 212

probe versus the particular class. Since we are looking at the upper tail, the top213 213

n scores, there is a strong bias in the samplings that impact the tail modeling;214 214

we are interested only in the top similarity scores.215 215

Claiming the tail of a distribution to be an extreme value problem may216 216

appear intuitive. Recent work [12] looking at verification score spaces relies on217 217

this intuition, but does not explain why extrema value theory applies to the218 218
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Fig. 3. Why our score analysis is an extreme value problem. One can view this problem
as considering a collection of portfolios composed of sub-sets of the gallery, each of which
produce scores. One portfolio contains a match-score (red), the rest are non-matching
scores (brown). The best of the best of the portfolio scores are those that show up in
the tail of the post-recognition score distribution — leaving us with an extreme value
problem for the data we consider. The best score in the tail is, if a match, an outlier
with respect to the EVT model of the non-match data.

tails of their score distributions. Just being in the tail is not sufficient to make219 219

this an extreme value problem, as one can take the top N samples from any220 220

particular distribution D, which by definition fit distribution D and not any221 221

other distribution. Just considering tails of data is not sufficient justification to222 222

invoke the extreme value theorem, just like taking a sample from a distribution223 223

does not necessarily invoke the central limit theorem.224 224

We can consider the recognition problem as logically starting with a collection225 225

of portfolios, each of which is an independent subset of the gallery or recognition226 226

classes. This is shown in Figure 3. From each portfolio, we can compute the227 227

“best” matching score in that portfolio. We can then collect the subset where228 228

all of these scores are maxima (extrema) within their respective portfolios. The229 229

tail of the post-match distribution of scores will be the best scores from the230 230

best of the portfolios. Looking at it this way we have shown that modeling the231 231

non-match data in the tail is an extreme value problem. With this formalized232 232

view of recognition, we can invoke the Extreme Value Theorem: [13]:233 233

Extreme Value Theorem 1 Let (s1, s2, . . .) be a sequence of i.i.d samples. Let234 234

Mn = max{s1, . . . , sn}. If a sequence of pairs of real numbers (an, bn) exists such235 235

that each an > 0 and236 236

lim
x→∞

P

(
Mn − bn

an
≤ x

)
= F (x) (4)

then if F is a non-degenerate distribution function, it belongs to one of three237 237

extreme value distributions.238 238

Thus, a particular portfolio is represented as the sampling (s1, s2, . . .), drawn239 239

from an overall distribution of scores S. Theorem 1 tells us that a large set of240 240

individual maximums Mn from the portfolios must converge to an extreme value241 241
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distribution. As portfolio maxima fall into the tail of S, they can be most accu-242 242

rately modeled by the appropriate extreme value distribution. The assumptions243 243

necessary to apply this for a recognition problem are that we have sufficiently244 244

many classes for the portfolio model to be good enough for the approximation245 245

in the limit to apply, and that the portfolio samples are approximately i.i.d..246 246

The EVT is analogous to a central-limit theorem [14], but with minima (or247 247

maxima) over the data. Extreme value distributions are the limiting distributions248 248

that occur for the maximum (or minimum, depending on the data representa-249 249

tion) of a large collection of random observations from an arbitrary distribution.250 250

Gumbel [15] showed that for any continuous and invertible initial distribution,251 251

only three models are needed, depending on whether you are interested in the252 252

maximum or the minimum, and also if the observations are bounded from above253 253

or below. Gumbel also proved that if a system/part has multiple failure modes,254 254

the failure is best modeled by the Weibull distribution. The resulting three types255 255

of extreme value distributions can be unified into a generalized extreme value256 256

(GEV) distribution given by257 257

GEV (t) =

{
1
λe
−v−1/k

v−(1/k+1) k 6= 0
1
λe
−(x+e−x) k = 0

(5)

where x = t−τ
λ , v = (1 + k t−τλ ) where k, λ, and τ are the shape, scale, and258 258

location parameters respectively. Different values of the shape parameter yield259 259

the extreme value type I, II, and III distributions. Specifically, the three cases260 260

k = 0, k > 0, and k < 0 correspond to the Gumbel (I), Frechet (II), and Reversed261 261

Weibull (III) distributions. Gumbel and Frechet are for unbounded distributions262 262

and Weibull for bounded. Equation 6 gives the CDF of a Weibull.263 263

CDF (t) = 1− e−( tλ )k (6)

If we presume that match scores are bounded, then the distribution of the264 264

minimum (or maximum) reduces to a Weibull (or Reversed Weibull) [16], inde-265 265

pendent of the choice of model for the individual non-match distribution. For266 266

most recognition systems, the distance or similarity scores are bounded from267 267

both above and below. If the values are unbounded, the GEV distribution can268 268

be used. Most importantly, we don’t have to assume a distributional model for269 269

overall match or non-match distributions. Rephrasing, no matter what model270 270

best fits each non-match distribution, be it a truncated binomial, a truncated271 271

mixture of Gaussians, or even a complicated but bounded multi-modal distribu-272 272

tion, with enough samples and enough classes the sampling of the top-n scores273 273

always results in a Weibull distribution.274 274

Given the potential variations that can occur in the class for which the probe275 275

image belongs, there is a distribution of scores that can occur for each of the276 276

classes in the gallery. Figure 3 depicts the recognition of a given probe image277 277

as implicitly sampling from these distributions. Our method takes the tail of278 278

these scores, which are likely to have been sampled from the extreme of their279 279

underlying portfolio, and fits a Weibull distribution to that data. Given the280 280
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Algorithm 1 w-score Normalization Technique
Require: A collection of scores S, of vector length m, from a single recognition algo-

rithm j;
1: Sort and retain the n largest scores, s1, . . . , sn ∈ S;
2: Fit a GEV or Weibull distribution WS to s2, . . . , sn, skipping the hypothesized

outlier;
3: while k < m do
4: s′k = CDF(sk,WS)
5: k ← k + 1
6: end while

Weibull fit to the data, we can determine if the top score is an outlier, by281 281

considering the amount of the cumulative distribution function that is to the282 282

right of the top score.283 283

4 Normalization via w-scores284 284

With the necessary theory covered, we can describe the process for computing285 285

w-scores (Weibull-score, for the statistical fitting that serves as its basis) for286 286

score normalization. The exact process for computing w-score normalization is287 287

given in Algorithm 1. The w-score re-normalizes the data based on its formal288 288

probability of being an outlier in the extreme value “non-match” model, and289 289

hence its chance of being a successful recognition. This is an adaptive score290 290

normalization; we only require the scores from a single recognition instance for291 291

a particular recognition algorithm. w-scores are extremely robust to noise and292 292

failure.293 293

As w-scores are based on the fitting of the Weibull model to the non-match294 294

data of the top scores, an issue that must be addressed is the impact of any295 295

outliers on the fitting. For rank-1 fitting, where the top score is the expected296 296

match data, this bias is easily reduced by excluding the top score and fitting297 297

to the remaining n − 1 scores from the top n. If the top score is an outlier298 298

(recognition is correct), then excluding it does not impact the fitting. If the top299 299

score was not a match, including this recognition in the fitting will bias the300 300

distribution to be broader than it should, which will produce lower probability301 301

scores for the correct match and most of the non-matches. In addition, we must302 302

address the choice of n, the tail size to be used in fitting. This tail size represents303 303

the only parameter that must be estimated for w-scores. Including too few scores304 304

might reduce accuracy, including too many items could impact assumptions of305 305

portfolio sampling. However, as we show in Section 5, even very small tail sizes306 306

(3 and 5) produce good normalization. That is consistent with work in other307 307

fields [13], where 3-5 is a very common fitting size range for Weibulls.308 308

Once the fitting has taken place, we have all of the information necessary to309 309

complete the normalization. For every gallery class i, let score s′i,j be its nor-310 310

malized score in the collection of scores S for algorithm j. We use the CDF311 311
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defined by the parameters of the fitting WS to produce the normalized proba-312 312

bility score s′i,j (we note that in Algorithm 1, the normalization process follows313 313

the sorted list of scores for a single recognition algorithm; s′i,j is a score-index314 314

representation for fusion). We then define w-score fusion as315 315

fi =
∑
j

s′i,j . (7)

Alternatively, similar to Equation 1, one can consider the sum of only those316 316

items with a w-score (probability of success) above some given threshold δ, or317 317

could consider products or likelihood ratios of the w-scores.318 318

Algorithm 2 w-score Error Detection For Fusion
Require: A collection of w-scores S′n, where n is the number of algorithms to fuse,

and the collection has m different score vectors for each algorithm;
Require: Algorithm FRR/FAR at current settings or ground-truth for each recogni-

tion instance;
Require: A significance threshold ε and an error percentage threshold T ;
1: while i < m do
2: while j < n do
3: f1 ← f1 + s′i,j,1.
4: end while
5: if not a match then
6: if f1 ≥ n× ε then
7: PossibleMatches ← PossibleMatches +1
8: end if
9: end if

10: i← i+ 1
11: end while
12: if PossibleMatches ≥ mT then
13: return System Error Detected
14: end if

The w-score fusion possesses a unique robust property, providing built-in319 319

error detection. An inverse Weibull allows us to estimate the “confidence” of320 320

particular measurement (refer to the hypothesis test of Section 3). Considering321 321

the probabilities for the top score for each algorithm, we can determine if it is322 322

highly likely that the final fused score f1 is not a non-match; if a particular323 323

algorithm consistently fails (or the ground-truth shows it is not failing), we have324 324

evidence of a possible error, most probably some type of data misalignment.325 325

Algorithm 2 describes the process of the error detection. A count of the possible326 326

matches is kept, and if it exceeds T percent, we declare system error.327 327

We have found this error detection property to be useful for indicating three328 328

possible errors: (1) the Weibull fitting is inaccurate for valid score data (due to329 329

a mis-estimated tail size) (2) invalid score data (from parsing errors) produced a330 330

CDF that returns an improbably large number of high w-scores; (3) an error is331 331
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present in alignment or the ground-truth labeling (off-by-one errors due to bad332 332

pre-processing). To our knowledge, no other fusion technique has this property.333 333

5 Experimental Results334 334

In this section, we present experimental results for our w-score method on a335 335

series of biometric recognition algorithms and content-based image retrieval de-336 336

scriptors. We compare the w-score approach to the well known z-score normal-337 337

ization. z-score normalization remains one of the most popular normalization338 338

techniques out there (a search for “z-score” using Google scholar returns 102,000339 339

scholarly works), because of its theoretical performance on Gaussian data, and340 340

its straightforward parameter estimation. Fixed score normalizations such as341 341

tanh-estimators or machine learning based approaches are not considered for342 342

the reasons given in Section 2.2.343 343

5.1 Biometric Recognition344 344

For our first set of experiments, we tested a series of biometric recognition al-345 345

gorithms from the NIST BSSR1[17] biometric score set. The data set consists346 346

of scores from 2 face recognition algorithms (labeled C & G) and 1 fingerprint347 347

recognition algorithm applied to two different fingers (labeled LI & RI). BSSR1’s348 348

multibiometric subset contains 517 score sets for each of the algorithms, with349 349

common subjects between each set. BSSR1 also contains individual score sub-350 350

sets for all algorithms, where the scores do not have common subjects between351 351

them. Out of this individual score set data, we created a “Chimera” data set352 352

with 3000 score sets and consistent labeling across all algorithms. This was done353 353

to address the limited nature of the true multibiometric set, where fusion pushes354 354

the recognition rate close to 100% for even weak normalizations.355 355

We performed two different types of experiments on this data. All results356 356

are presented as a percentage of error reduction (improvement) compared to357 357

z-scores, the most popular type of adaptive score normalization, calculated as358 358

%reduction = (%ez −%ew)/%ez (8)

where %ez is the percentage of incorrect rank-1 results for z-score fusion, and359 359

%ew is the percentage of incorrect rank-1 results for w-score fusion.360 360

For the first experiment, we fused a variety of face and fingerprint recognition361 361

algorithms. We note that in normalization and fusion, performance varies as a362 362

function of the data considered. Thus, we only considered the scores equal to363 363

a percentage of the total number of classes, expressed as %c∗. This threshold364 364

is independent of the Weibull fitting, and is applied to both the w-score and365 365

z-score. While we show results for experiments with a consistent percentage of366 366

classes for w-scores and z-scores, we note that in our broader experimentation,367 367

we were always able to achieve better performance than z-scores when choosing368 368

the correct tail size for fitting, and fusing scores within the tail used for fitting.369 369

The tail size used for fitting for all biometrics experiments in this paper is 5.370 370
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Fig. 4. A graphical summary of all of the results presented in this paper. In all cases,
w-scores reduce the margin of error after fusion, when compared to z-scores (baseline),
for a variety of biometric recognition algorithms and CBIR descriptors.

Algorithm Improve %c∗

C & LI 65.9% 2.0%

C & RI 25.0% 2.0%

G & LI 57.7% 2.0%

G & RI 22.2% 2.0%

Chimera C & G 49.1% 0.2%

Chimera C & LI 48.1% 0.2%

Algorithm Improve %c∗

Chimera C & RI 59.1% 0.2%

Chimera G & LI 42.4% 0.2%

Chimera G & RI 54.3% 0.2%

Chimera C & G & LI 38.9% 0.2%

Chimera C & G & RI 35.3% 0.2%

Table 1. Rank-1 fusion results, expressed as the percentage of error reduction com-
pared to z-scores, for the BSSR1 multibiometric and the BSSR1 “Chimera” data sets.

The second experiment tests fusion behavior in a failure scenario, where rank-371 371

1 recognition for at least one of the algorithms is 0%. For biometrics, this may372 372

be thought of as an “impostor” test, where a subject is trying to actively defeat373 373

the recognition system (consider the possibility of a facial disguise that causes a374 374

face algorithm to fail, but has no effect on a fingerprint recognition algorithm).375 375

Results for the BSSR1 multibiometric set and the BSSR1 Chimera set are given376 376

in Tables 1 & 2. w-scores have a clear advantage over z-scores for regular fusion,377 377

and a significant advantage in cases where a recognition algorithm is failing.378 378

5.2 Content Based Image Retrieval379 379

To show the broader applicability of w-score normalization, we also tested a se-380 380

ries of simple CBIR descriptors [18]. Data from the Corel “Relevants” set [19],381 381

containing 50 unique classes, and the INRIA “Holidays” set [20], containing 500382 382

unique classes. Using a variety of descriptors, we generated 1624 score sets for383 383

Corel Relevants and 1491 score sets for INRIA Holidays. In total, we tested 47384 384

different combinations of descriptors across all experiments, but due to space385 385

constraints, we only show four different representative combinations. The exper-386 386



Robust Fusion: Extreme Value Theory for Recognition Score Normalization 13

Algorithm Improve %c∗

*C & LI 63.6% 2.0%

*C & RI 71.8% 2.0%

*G & LI 60.6% 2.0%

*G & RI 63.6% 2.0%

Chimera *C & LI 57.2% 0.3%

Chimera *C & RI 71.3% 0.3%

Algorithm Improve %c∗

Chimera *G & LI 57.5% 0.3%

Chimera *G & RI 70.1% 0.3%

Chimera LI & *RI 54.4% 0.3%

Chimera RI & *LI 46.2% 0.3%

Chimera *C & *G & LI 55.8% 0.3%

Chimera *C & *G & RI 68.9% 0.3%

Table 2. Rank-1 fusion results, expressed as the percentage of error reduction com-
pared to z-scores, for the BSSR1 multibiometric and the BSSR1 “Chimera” data sets,
fusing with failing algorithms (marked with *). Note the significant reduction in error.

iments are identical to those of the biometric sets in Section 5.1. Results for the387 387

Corel Relevants set and the INRIA Holidays set are given in Tables 3 & 4. We388 388

note that in all of our fusion experiments with CBIR descriptors, w-scores out-389 389

performed z-scores when the appropriate tail size was chosen for Weibull fitting,390 390

which is consistent with our biometric results. The tail sized used for fitting for391 391

all CBIR experiments is 3.392 392

CBIR Algorithm Improve %c∗

Relevants csd & gch 20.8% 6.0%

Relevants csd & jac 27.5% 6.0%

Relevants cwhsv & cwluv 14.9% 6.0%

Relevants cwhsv & jac 17.5% 6.0%

CBIR Algorithm Improve %c∗

Holidays csd & gch 8.9% 0.6%

Holidays csd & jac 6.1% 0.6%

Holidays cwhsv & cwluv 7.6% 0.6%

Holidays cwhsv & jac 9.3% 0.6%

Table 3. Rank-1 fusion results, expressed as the percentage of error reduction com-
pared to z-scores, for the Corel Relevants and INRIA Holidays data sets. We note that
fusion performance here is relative to data set difficulty.

CBIR Descriptor Improve %c∗

Relevants *csd & gch 40.3% 6.0%

Relevants csd & *jac 35.5% 6.0%

Relevantscwhsv & ∗cwluv 29.8% 6.0%

Relevants cwhsv & jac 39.1% 6.0%

CBIR Descriptor Improve %c∗

Holidays *csd & gch 11.1% 0.6%

Holidays csd & *jac 13.9% 0.6%

Holidays cwhsv & ∗cwluv 11.0% 0.6%

Holidays ∗cwhsv & jac 12.3% 0.6%

Table 4. Rank-1 fusion results, expressed as the percentage of error reduction com-
pared to z-scores, for the Corel Relevants and INRIA Holidays data sets, fusing with
failing algorithms (marked with *). Note the significant reduction in error for this
experiment, which is consistent with the biometric results presented in Table 2

6 Conclusion393 393

In this paper, we have taken a look at popular score normalization techniques394 394

used before fusing sore data from multiple algorithms in recognition systems.395 395

Based upon the strengths and weaknesses of the existing techniques, we went on396 396

to define our criteria for “robust fusion,” which includes the need for simple pa-397 397

rameter estimation that is adaptive to the scores for the recognition instance at398 398
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hand, as well as a high tolerance for algorithm failure. We then introduced a the-399 399

ory of post-recognition score analysis based on statistical Extreme Value Theory,400 400

and used this theory to develop our new w-score adaptive score normalization.401 401

The w-score normalizes scores to a probability score reflecting the confidence402 402

of the score not being a non-match. Results on a wide range of biometric and403 403

CBIR data show that the w-score is superior to the z-score, the most popular404 404

type of adaptive score normalization, especially when one or more recognition405 405

algorithms fail or when there are impostor scores.406 406
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