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This paper investigates the capabilities of the Bag-of-Words (BWs) method in the 3D shape retrieval field. The contributions
of this paper are (1) the 3D shape retrieval task is categorized from different points of view: specific versus generic, partial-to-
global retrieval (PGR) versus global-to-global retrieval (GGR), and articulated versus nonarticulated (2) the spatial information,
represented as concentric spheres, is integrated into the framework to improve the discriminative ability (3) the analysis of the
experimental results on Purdue Engineering Benchmark (PEB) reveals that some properties of the BW approach make it perform
better on the PGR task than the GGR task (4) the BW approach is evaluated on nonarticulated database PEB and articulated
database McGill Shape Benchmark (MSB) and compared to other methods.

1. Introduction

With recent advances in scanning and modeling technolo-
gies, large number of 3D models are created and stored in
databases. For these databases be used effectively require
methods for indexing, retrieval, and clustering. Therefore,
retrieval and classification of 3D objects are becoming an
increasingly important task in modern applications such
as computer vision, computer aided design/computer aided
manufacturing, multimedia, molecular biology, biometric,
security, and robotics.

Because of its simplicity, flexibility, and effectiveness, the
Bag-of-Words (BWs) method, which originated from the
document retrieval field, has recently attracted large amount
of interests in the computer vision fields. It has been applied
in the applications such as image/video classification [1], 3D
shape analysis, and retrieval [2–5]. We will explore its perfor-
mance especially for the 3D shape retrieval task in this paper.

A typical 3D shape retrieval task can be defined as: giving
a query 3D shape, to obtain a list of 3D shapes ordered by
the similarity between the query object and the one on the
list. Several methods are proposed to solve the problem, such
as Light Field descriptors [6], spherical harmonics descriptor
[7], D2 shape distribution [8], Reeb Graph-based descriptors
[9], Local Feature-based methods [4, 5]. The performance of
the methods varies mainly according to the specific tasks. In

fact, from different points of view, the 3D shape retrieval task
can be further refined as follows.

(1) Differentiated from the object category extent, the
task can be discussed in “specific” and “generic” domain,
which depends on the purpose and interest of the specialists.
The representative benchmarks of the latter one include
Princeton Shape Benchmark [10], NIST 3D Benchmark
[11], while CAD [12], Protein [13], and Biometrics [14]
analysis are several important “specific” domains, which have
their own properties. For example, CAD models have more
complicated structure with holes and other local features.
Only using global information, these subtle details could be
neglected and lead to less ideal retrieval results.

(2) Based on the completeness of the query shape, the
task can be divided into two subtasks as “Partial-to-Global
Retrieval (PGR)” and “Global-to-Global Retrieval (GGR)”.
For the former one, every query shape is regarded as an
incomplete object, which is used to obtain similar complete
objects from the database. This happens in many cases. For
example, when using the 3D range scanners to capture 3D
data in real time, because of the limitation of the view angle,
the occlusion in the scene, and the real time requirement,
only parts of the object can be captured during scanning.
Then this incomplete point clouds may be used as the query
shape to retrieve the corresponding complete model from
an existing database. Solving this problem will also benefit
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several other applications, such as data registration [15] and
model fixing [16]. Most of the global-based shape retrieval
methods [6, 8], which require the complete geometry of a 3D
object, cannot be applied directly to PGR. To our knowledge
there are only a few literature [3, 17] contributions that solve
the PGR problem.

(3) Based on the deformability of the shape, there exist
“Articulated Shape Retrieval (ASR)” and “Nonarticulated
Shape Retrieval (NASR)”. Lots of the natural and man-made
objects are deformable. For instance, in CAESAR [14], each
person is scanned in three different postures: standing,
sitting with arms open, and sitting with arms down. When
performing shape retrieval using a sitting model of person A
as the query model, the preferred result is to obtain the other
two different gestured model of person A than to retrieve
the sitting models of other persons. According to the results
in [4], Light Field method [6], which performs greatly when
dealing with NASR problem, produces poor results for ASR
task.

To some extent, in [3, 4, 17], the above three different
tasks are discussed within the BWs framework, but there still
lacks thorough investigation. Several open problems remain
unsolved, such as how to integrate spatial information
into the BWs framework to improve the performance. In
this paper, we investigate deeply into these three different
cases within the framework of the BWs method with spin
images [18] as the low-level features, and provide profound
experimental results to support the discussion.

The organization of the paper is as follows. Several
related works are summarized in Section 2. The performance
measure is discussed in Section 3. In Section 4, we first
introduce the ordinary procedure for BWs framework in 3D
domain. Then take the CAD database [12] as an example,
a Concentric Bag-of-Words (CBWs) approach is proposed
to enhance the discriminative ability of the original BWs
method. Several interesting phenomena are studied for PGR
problem in Section 5. As for ASR task, McGill articulated
shape benchmark [19] is adopted to test the effectiveness of
our approach in Section 6. Finally, we conclude the paper in
Section 7.

2. Related Work

Many efforts have been taken to perform 3D shape retrieval
recently. Among them, the BWs method, which represents
a 3D shape as an orderless collection of local features, has
demonstrated impressive level of performance.

In [2, 3], BWs method is explored to accomplish PGR
task, in which a visual feature dictionary is constituted by
clustering spin images [18]. Then, Kullback-Leibler diver-
gence is proposed as a similarity measurement in [3], while a
probabilistic framework is introduced in [2].

For the ASR task, Ohbuchi et al. [4] apply the SIFT
algorithm to depth buffer images of the model captured
from uniformly sampled locations on a view sphere to
collect visual words. After vector quantization, Kullbak-
Leibler divergence measures the similarities of the models.
It also demonstrates that a) given enough samples, the BWs
method can reach a comparable retrieval result as a vision

based method like Light Field [6], when dealing with NASR
task; b) the BWs method performs better than Light Field [6]
when dealing with ASR task. In this paper, spin images are
used as local features, which can be directly extracted as many
as you want in 3D domain. On the other hand, according to
[1], dense features, such as spin images, perform better than
sparse features, such as SIFT.

Although the BWs method has many advantages, it
suffers from its lack of spatial information. Some methods
focus on integrating the spatial layout information into
the BWs method. Lazebnik et al. [20] proposes a spatially
enriched Bags-of-Words approach. It works by partitioning
the image into increasingly fine subregions and computing
histograms of local features found inside each subregion.
Implicitly geometric correspondences of the subregions are
built in the pyramid matching scheme [21]. In [22], the
object is an ensemble of canonical parts linked together by an
explicit homographic relationship. Through an optimization
procedure, the model, corresponding to the lowest residual
error, gives the class label to the query object along with
the localization and pose estimation. Yuan and Wu [23]
describes a context aware clustering method, which captures
the contextual information between data. For the BWs
method, it means the visual dictionary is constructed based
on both the primitive visual features and spatial contexts.
Li et al. [5] propose to treat the model in two different
domains, named the feature domain and the spatial domain.
The visual word dictionary is built in the feature domain
as in the ordinary BWs method. On the other side, the
whole model is partitioned into several pieces in the spatial
domain. Thereafter, each piece of the model is represented
as a word histogram. The whole model is recorded as several
word histograms along with a geometry matrix which stores
the relative distances between every pairs of the pieces. The
weighted sums of dissimilarity measurements from these
two domains are used to measure the differences between
models.

3. Performance Measure

The performance measure used in this study is the precision-
recall curve. Precision-recall curve is the most common
metric to evaluate 3D shape retrieval system. Precision is
the ratio of retrieved objects that are relevant to all retrieved
objects in the ranked list. Recall is the ratio of relevant objects
retrieved in the ranked list to all relevant objects.

Let A be the set of all relevant objects, and B be the set of
all retrieved objects, then

precision = A∩ B
B

, recall = A∩ B
A

. (1)

Basically, recall evaluates how well a retrieval algorithm finds
what we want and precision evaluates how well it weeds out
what we do not want. There is a tradeoff between recall and
precision, one can increase recall by retrieving more, while
can decrease precision.
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Figure 1: Comparing BWs and CBW representations. (a) Representing shapes with one global Bag-of-Words model. The left and the right
shapes are both composed with 5 different words: a, b, c, d, e. Both feature vectors are [3, 5, 7, 4, 5], which count the occurrences of each
word. That means using BWs representation, the left and the right shapes are regarded as the same. (b) Representing shapes with Concentric
Bags-of-Words model. Even there are the same two shapes as shown in (a), because of the concentric sphere partitioning, the left and the
right shapes are different. Along the arrow’s direction, counting from the outer sphere to the inner one, their feature vectors are [2 3 1 3 3; 1
1 5 1 1; 0 1 1 0 1] and [0 3 3 2 3; 3 1 2 2 2; 0 1 2 0 0], respectively.
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Figure 2: A schematic description of CBW method.
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Figure 3: The demonstration of spin image.
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4. Bag-of-Words and Concentric
Bag-of-Words Methods

We first describe the original formulation of BWs represen-
tation [1, 3], and then introduce the whole procedure of
Concentric Bags-of-Words (CBW) method. Their difference
is demonstrated in Figure 1. Its effectiveness is shown by the
experiment performed on “specific” shape database PEB [12]
to reveal its effectiveness.

4.1. Bag-of-Words Descriptor. Let us use the ordinary 3D
shape retrieval as an example to give an explanation of the
BWs framework. Denote N be the total number of labels
(“visual words”) in the learned visual dictionary. The 3D
shape can be represented as a vector with length N, in which
the elements count the occurrences of the corresponding
label. The procedure can be completed in three steps.

(1) Local feature descriptors, such as spin image [18], are
applied to the 3D model to acquire low-level features.

(2) Visual words, denoted as the discrete set {V1,V2, . . . ,
VN}, are formed by clustering the features into N
clusters, so that each local feature is assigned to a
discrete label.

(3) The shape of the 3D model is summarized with
a global histogram (“Bag-of-Words”), denoted as
a vector fv = (x1, x2, . . . , xN ), by counting the
occurrences of each visual word.

4.2. Concentric Bag-of-Words Method. Rather than using
only a global histogram, this paper advocates using more
than one histogram along with its related spatial information
to reveal the 3D shape in more detail. Specifically, the model
is partitioned with several concentric spheres, and all the
parts between two neighboring spheres are recorded with
original BWs descriptor, which leads to the name Concentric
Bag-of-Words. A schematic description of the approach is
given in Figure 2.

The first block in Figure 2 represents low-level feature
extraction. Although several local features, such as depth
buffer image, can be adopted to extract low-level features
from 3D models, spin image is the one adopted here.
Compared to using depth buffer image, adopting spin
image has at least two advantages. First, it is quicker to
compute. Second, it can capture the details from the concave
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Partial retrieval
use 1/6 part of the object as query

(a)

Partial retrieval
use 1/6 part of the object as query

(b)

Figure 6: The example to show the difference between GGR and PGR. (a) First example to show the difference between Global-to-Global
retrieval (GGR) and Partial-to-Global retrieval (PGR). The left group shows the GGR result using a complete model (the top-left image) as
the query. The right group shows the PGR result using 1/6 part of the complete model (the small image shown in the bottom-left corner of
the first image) as the query. The top 20 models are listed orderly according to the dissimilarity measurement. (b) The second example to
show the difference between GGR and PGR. The layout of the images is the same as that of (a).

area and the self-hidden area. As shown in Figure 3, it
characterizes the local properties around its basis point p
within the support range r. It is a two-dimensional histogram
accumulating the number of points located at the coordinate
(α, β), where α and β are the lengths of the two orthogonal
edges of the triangle formed by the oriented-basis point p,
whose orientation is defined by the normal n, and support
point q. The final size of the spin images is defined by the
width w and the height h of the spin plane. We uniformly
sample Nb oriented-basis points and Ns support points on
the surface of the model, which satisfies insensitivity to the
tessellation and resolution of the mesh.

After extracting a set of spin images for each model,
we construct a shape dictionary as shown in the second
block, whose size is predetermined as N, by clustering all
spin images acquired from the whole training dataset with
k-means method.

Instead of representing one model with a histogram
of the words from the dictionary, it is partitioned into
M regions by grouping the oriented-basis points with M
concentric spheres as demonstrated in the third block.
Thereafter, the model is recorded as a set of histograms.

Because all the models are scaled into unified scale and
the partitioning is also unified, the correspondence between
the regions of two models is obvious. It can be constructed
from outer sphere to inner sphere, as shown in Figure 1(b),
or reverse. Thus, the CBW feature vector is recorded as

c f v =
(
f v1, f v2, . . . , f vM

)

=
(
x1

1, x1
2, . . . , x1

N , . . . , xM1 , xM2 , . . . , xMN
)
.

(2)

When performing 3D shape retrieval, the CBW repre-
sentation of the query shape is constructed on line, and
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Figure 7: Precision-recall (PR) plots for various descriptors when
applied to the McGill database of articulated shapes [19]. Except
BWs, all of the other results can be found in [25].

compared with those in the database. An ordered retrieval
list is obtained according to the dissimilarity metric, which is

Dist
(
OA,OB

)
=

M∑

i=1

dist
(
c f vAi , c f vBi

)
, (3)

where OA, OB are two objects A and B, respectively;
dist(c f vAi , c f vBi ) measures the dissimilarity between two
feature vectors, which can be KL divergence [3], cosine
distance, L1 and L2 distance. Thus, for every query
object, the objects in the database are all assigned a
metric value based on (3), which results a sorted retrieval
list.

4.3. Experimental Results. According to the discussions in
[3, 17], several parameters related to the CBW approach are
defined as follows.

(1) The support range r: r = 0.4∗R, where R is the radius
of the model.

(2) The width w and the height h of the spin plane: w =
h = 12.

(3) The number of oriented-basis points for one model
Nb: Nb = 500.

(4) The number of oriented-basis points for one model
Ns: Ns = 5000.

(5) The size of the dictionary N : N = 1500.

(6) The number of the concentric spheres M: M < 10.

The CBW approach can be applied both in “specific” and
“generic” domains. Here we demonstrate it on Purdue

Engineering Benchmark [12], which contains 866 3D CAD
models and is classified into 42 classes such as, “Discs”,
“T-shaped parts”, and “Bracket-like parts”. In Figure 4 we
compare the Precision-Recall curves obtained with CBW
and BWs using L1 as dissimilarity measurement to those
methods defined in [12], such as Light Field Descriptor, 2.5D
Spherical harmonics, 2D Shape Histogram, 3D Spherical
Harmonics, Solid Angle Histogram, 3D Shape Distribution,
Surface Area and Volume. Here, for CBW, M = 9.
Obviously, the concentric sphere partition improves the PR
rate, and makes the local Feature-based method comparable
to the global Feature-based method, such as 2.5D Spherical
Harmonics listed as the second best method in [12].

5. Partial-to-Global Retrieval

In CAD domain, the PGR task is specifically important.
Suppose that the query partial model is a screw, the target
complete model we want to obtain is the same size screw
with screw cap on. Here, we design an experiment on PEB to
simulate the case described above: (1) Represent the models
with BWs method and save the descriptors for the following
usage as block 1 and 2 in Figure 2. (2) When performing
the Partial-to-Global Retrieval, the sampled oriented-basis
points are grouped into Mp regions according to their geo-
metric positions first. Then one of the groups is chosen as the
partial query shape. The BWs representation is constructed
on line and used to compare with the saved BWs descriptors
of the complete models. The requirements for dissimilarity
measure for the partial-to-global retrieval task are quite
different from the global-to-global retrieval problem. As
described in [3], the dissimilarity between the query data and
the target model is not equal to that between the target model
and the query data. It means that the dissimilarity metric
should be asymmetry. An ordinary symmetric distance
measurement, such as L1, L2, is not a suitable choice. KL
divergence is chosen here to satisfy the asymmetric property.
When using one sixth of the model to be the query shape,
the two PR curves in Figure 5 demonstrate the improvement
introduced by KL comparing to L1.

Figure 6 provides two examples comparing the retrieval
results of Global-to-Global Retrieval and Partial-to-Global
Retrieval, in which one sixth of a gear is used as the query
shape. It shows that the PGR is better than the GGR, since
PGR lists more gears on the top of the list than GGR does.
Why does PGR perform better? Recalling the definition of
the feature vector will provide some clues to the answer. The
feature vector describes the frequency of the visual words
appearing in the shape. When using the entire gear model to
be the query data, the plane-kind of visual word overwhelm
the other features. However, using partial of the object to
be the query data, the gear teeth shape dominates the whole
shape. So more gears are picked out and listed on the top of
the list.

6. Articulated Shape Retrieval

The Articulated Shape Retrieval requires that the shape
descriptor should be deformation invariant,which is not
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Figure 8: Some retrieval results from the McGill database [19]: green bold frame defines the query shape, and orange bold frame defines the
false pick up. Three groups show three different shapes, in which from top to bottom they are spider, spectacles, and human.
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satisfied by several previous methods [6–8]. They perform
well when dealing with rigid objects, but manifest poor
performance when dealing with deformable ones [4]. BWs
method can still be used effectively for ASR task. The
descriptors for the models are constructed by following the
procedure shown as block 1 and 2 in Figure 2.

We applied the BWs method for ASR task on McGill
Shape Benchmark (MSB) [19]. The configuration of the
parameters is almost the same as those listed in Section 4.3,
except that (a) the widthw and the height h of the spin plane:
w = h = 16, (b) the number of oriented-basis points for one
model Nb: Nb = 1000. Since all of the models in MSB are
regarded as complete, L1 distance is chosen to measure the
dissimilarity.

In Figure 7, the BW-based retrieval result is compared
with several methods described in [25]. BWs method is
comparable to the best method EVD. However, except
BWs, all the other methods are based on geodesic distance
computation, which is computational expensive. On the
contrary, our method is constrained on local area and can
be applied for on-line retrieval.

Figure 8 shows three visual results of articulated shape
retrieval. Only the top 18 results are listed here, in which the
green bold framed shape is the query shape, and the orange
bold framed shapes are the false recall. Figure 8(a) shows
the results of retrieving a spider shape from the database.
Among these 18 retrieval shapes, only two shapes do not
belong to the spider class but the ant class. Figures 8(b) and
8(c) are the results using a spectacles and a human shape as
query model, respectively. Even though there are quite large
amount of bending in the shapes, the performance is quite
good.

7. Conclusion and Discussion

In this paper, we explore the BWs framework to solve several
different tasks in 3D shape retrieval field, which are classified
as specific versus generic, partial-to-global versus global-to-
global retrieval, and articulated versus Nonarticulated. For
each type, the effectiveness of BWs method is discussed
in detail. First, CBW method is introduced to improve
the discrimination ability of original BWs representation.
Second, BWs is applied on PEB to perform partial-to-global
retrieval task. And several results revealed, for some shape
(gear-like shape), that PGR performs better than GGR.
Finally, we compared the results of BWs to several other
methods on McGill articulated shape database. Our results
are comparable to the best results in [25]. More experiments
need to be done to verify the influence of the parameters
listed in Section 4.3.
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Preliminary call for papers

The 2011 European Signal Processing Conference (EUSIPCO 2011) is the
nineteenth in a series of conferences promoted by the European Association for
Signal Processing (EURASIP, www.eurasip.org). This year edition will take place
in Barcelona, capital city of Catalonia (Spain), and will be jointly organized by the
Centre Tecnològic de Telecomunicacions de Catalunya (CTTC) and the
Universitat Politècnica de Catalunya (UPC).
EUSIPCO 2011 will focus on key aspects of signal processing theory and
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Honorary Chair
Miguel A. Lagunas (CTTC)

General Chair
Ana I. Pérez Neira (UPC)

General Vice Chair
Carles Antón Haro (CTTC)

Technical Program Chair
Xavier Mestre (CTTC)

Technical Program Co Chairsapplications as listed below. Acceptance of submissions will be based on quality,
relevance and originality. Accepted papers will be published in the EUSIPCO
proceedings and presented during the conference. Paper submissions, proposals
for tutorials and proposals for special sessions are invited in, but not limited to,
the following areas of interest.

Areas of Interest

• Audio and electro acoustics.
• Design, implementation, and applications of signal processing systems.
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Technical Program Co Chairs
Javier Hernando (UPC)
Montserrat Pardàs (UPC)

Plenary Talks
Ferran Marqués (UPC)
Yonina Eldar (Technion)

Special Sessions
Ignacio Santamaría (Unversidad
de Cantabria)
Mats Bengtsson (KTH)

Finances
Montserrat Nájar (UPC)• Multimedia signal processing and coding.

• Image and multidimensional signal processing.
• Signal detection and estimation.
• Sensor array and multi channel signal processing.
• Sensor fusion in networked systems.
• Signal processing for communications.
• Medical imaging and image analysis.
• Non stationary, non linear and non Gaussian signal processing.

Submissions

Montserrat Nájar (UPC)

Tutorials
Daniel P. Palomar
(Hong Kong UST)
Beatrice Pesquet Popescu (ENST)

Publicity
Stephan Pfletschinger (CTTC)
Mònica Navarro (CTTC)

Publications
Antonio Pascual (UPC)
Carles Fernández (CTTC)

I d i l Li i & E hibiSubmissions

Procedures to submit a paper and proposals for special sessions and tutorials will
be detailed at www.eusipco2011.org. Submitted papers must be camera ready, no
more than 5 pages long, and conforming to the standard specified on the
EUSIPCO 2011 web site. First authors who are registered students can participate
in the best student paper competition.

Important Deadlines:
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Industrial Liaison & Exhibits
Angeliki Alexiou
(University of Piraeus)
Albert Sitjà (CTTC)

International Liaison
Ju Liu (Shandong University China)
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Tamas Sziranyi (SZTAKI Hungary)
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Webpage: www.eusipco2011.org

Proposals for special sessions 15 Dec 2010
Proposals for tutorials 18 Feb 2011
Electronic submission of full papers 21 Feb 2011
Notification of acceptance 23 May 2011
Submission of camera ready papers 6 Jun 2011


