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Abstract. The Fire Dynamics Simulator (FDS) and Smokeview (SMV) are compu-
tational and visualization tools specifically designed for large-eddy simulations (LES) of
low-speed, thermally driven flows. FDS Version 6 will offer improvements in the tur-
bulence model (dynamic Smagorinsky), the wall model (Werner Wengle), and the scalar
transport scheme (Superbee, CHARM). These features are already in the testing phase.
In this work we discuss further developments related to complex geometry, embedded (or
nested) mesh methods, and LES quality assessment. In FDS 6, we are developing two
new approaches to handling complex geometry that take us beyond the limitations of the
current stair-step method. For grid-resolved objects we are developing a complex geometry
module with a second-order immersed boundary method capable of utilizing LES wall stress
models. For subgrid objects, such as electrical cables or vegetation in wildland fires, we are
developing a particle-based approach, similar to a multi-phase droplet formulation, where
the gas phase subgrid sources of mass, momentum, and energy are governed by empirical
laws for pyrolysis, drag, and heat transfer, respectively. Since LES quality is principally
tied to grid resolution, in FDS 6 we introduce an embedded (or nested) mesh strategy which
utilizes a staggered grid framework and a fast direct Poisson solver on each mesh block.
We are also developing three strategies for quality assessment. The first is to compute
local metrics of resolution such as the local fraction of resolved kinetic energy. A second
strategy is to use local wavelet-based error estimators. Finally, with the latest release of
Smokeview we have bundled a new executable called Smokediff. With this tool the user
can compare results at different grid resolutions or with different model parameters and
easily visualize the results.
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1 INTRODUCTION

The Fire Dynamics Simulator (FDS) and Smokeview (SMV) are computational and
visualization tools specifically designed for large-eddy simulations (LES) of low-speed,
thermally driven flows.1 FDS Version 6 will offer improvements in the turbulence model
(dynamic Smagorinsky2,3), the wall model (Werner Wengle4), and the scalar transport
scheme (Superbee,5 CHARM6). These features are already in the testing phase. In this
work, we discuss further developments related to complex geometry, embedded (or nested)
mesh methods, and LES quality assessment.

In FDS 6, we are developing two new approaches to handling complex geometry that
take us beyond the limitations of the current stair-step method. For grid-resolved objects,
we are developing a complex geometry module with a second-order immersed boundary
method capable of utilizing LES wall stress models.7 This is presented in Section 3.1. For
subgrid objects, such as electrical cables or vegetation in wildland fires, we are developing
a particle-based approach, similar to a multi-phase droplet formulation, where the gas
phase subgrid sources of mass, momentum, and energy are governed by empirical laws
for pyrolysis, drag, and heat transfer, respectively.8 The particle method is described in
Section 3.2.

Since LES quality is principally tied to grid resolution, in FDS 6 we introduce an
embedded (or nested) mesh strategy which utilizes a staggered grid framework and a fast
direct Poisson solver on each mesh block. The embedded mesh method is outlined in
Section 4.

We are also developing strategies for LES quality assessment. The first is to compute
local metrics of resolution such as the local fraction of resolved kinetic energy.9 This is
presented in Section 5.1. A second strategy, presented in Section 5.2, is to use a local
wavelet-based error estimator.10 Finally, as highlighted in Section 5.3, with the latest
release of Smokeview we have bundled a new executable called Smokediff. With this
tool the user can compare results at different grid resolutions or with different model
parameters and easily visualize the results.

2 GOVERNING EQUATIONS

Details of the full FDS formulation may be found in the Technical Reference Guide.1 It
is useful, however, to briefly list the basic equations so that we may reference specific terms
as we develop the methods later in the paper. FDS solves transport equations for density
ρ, mass fraction of species Yα, and momentum ui (see (1)-(3)). The equation of state
and energy equations are combined with conservation of mass to provide a constraint on
the velocity divergence (4).20 Taking the divergence of the momentum equation provides
an elliptic constraint on the pseudo-pressure H ≡ p/ρ − K, where p is the fluctuating
hydrodynamic pressure and K = 1

2
uiui is the kinetic energy per unit mass. (Unless

explicitly stated, Cartesian tensor suffix notation, e.g. contraction of repeated indices,
applies throughout this paper.) Note that the momentum equation has been formulated
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so that the Poisson equation for H is separable. This permits the use of an extremely fast
direct solution algorithm for (5).

∂ρ

∂t
= −∂ρui

∂xi
+ ṁ′′′b (1)

∂ρYα
∂t

= −∂Fα,i
∂xi

+ ṁ′′′α + ṁ′′′α,b (2)

∂ui
∂t

= −
(
Fu,i +

∂H
∂xi

)
(3)

∇· u =
1

ρ

(
ṁ′′′b −

Dρ

Dt

)
(4)

∂2H
∂xi∂xi

= −
(
∂Fu,i
∂xi

+
∂(∇· u)

∂t

)
(5)

3 COMPLEX GEOMETRY

In this section, we address complex geometry by approaching the problem from two
different directions. First, we discuss a method to handle complex shapes that are resolved
by the grid. Then we discuss a way to handle objects which are unresolved by the
fluid mesh, but still significantly influence the flow through sources or sinks of mass,
momentum, and energy.

3.1 Implementation of LES Wall Models in Direct Forcing IBM

In an immersed boundary method (IBM) the influence of geometry enters the formu-
lation through a body force term in the momentum equation. By augmenting the RHS of
the momentum equation (and hence the source term in the Poisson equation) the elliptic
solve is greatly simplified (only external boundaries are considered) and we may still use
fast solvers on block structured domains. To simplify matters further, Fadlun et al.11 in-
troduced the notion of direct forcing IBM in which the body force is formulated to simply
cancel out most of the RHS and directly force a given velocity component to a desired
value. Thus, for a simple explicit time update, the body force term in the momentum
equation becomes

F ibm
u,i = −

[
uibmi − uni

δt
+
δHn

δxi

]
. (6)

When this force is used in the momentum equation (3) the projection scheme drives the
velocity un+1

i toward uibmi . For a purely explicit scheme, in most cases the relative error is
remarkably small (< 1 %). For an implicit scheme, the error may be driven to a desired
tolerance by Picard iteration.
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The direct forcing approach is attractive because it reduces the problem to determin-
ing the value of uibmi . For example, on a Cartesian staggered grid, the impermeability
condition is obtained by simply setting uibmi = 0. This has been and remains the standard
mode of operation in FDS. Fadlun et al. showed that this results in zeroth order errors for
representing curved surfaces. Fadlun et al. go on to develop a second-order interpolation
method for direct numerical simulation (DNS). In this work, we address the problem of
implementing an LES wall model.

The idea presented here is really just an exercise in computational geometry. The
problem we are faced with is that LES wall models supply a formula for the wall stress
based on the streamwise velocity and the normal distance from the wall. So, to use this
model we need to first translate the available data from our original grid system to a
streamwise coordinate system. Once this is done, the wall model is rather simple to
implement (minus a trick to overcome the potential time step limitation). We can then
transfer the information from the wall model back to our original coordinate system.

Formulation Much of the background needed for this section can be found in Appendix
A of Pope.12 Let us denote the orthonormal basis vectors for our grid system by ei where
i = {1, 2, 3}. The basis vectors for the streamwise coordinate system are ēi, i = {1, 2, 3}.
Figure 1 illustrates the relationship between the two systems. The basis ē2 in this 2D case
is the surface unit normal vector which emanates from xsurf and is directed toward the
point xvelo, the storage location for the staggered velocity component. The point marked
by the cross is labeled xint and is twice the distance along the normal line from xsurf .

The elements of the directional cosine matrix are found from the dot product of the
basis vectors:

aij = ei · ēj . (7)

This matrix is the key to simple translation from one coordinate system to another.
Once the directional cosines are obtained, we may rotate the velocity vector, the velocity
gradient tensor, and the stress tensor into the streamwise system via (gij represents a
general tensor element)

ūk = aikui , (8)

ḡk` = aikaj`gij . (9)

Once the system has been rotated, we make an explicit update of the boundary layer
equations. Here, superscript k denotes a time index, subscript w denotes a wall value,
δn indicates a value stored at xvelo, and 2δn indicates a value stored at xint in the grid
system. The wall-normal component is updated by
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Figure 1: Grid and streamwise coordinate systems for the immersed boundary method.

v̄k+1 = v̄w + δn

∇· uk+1 − 1

2

∂ū

∂s

∣∣∣∣∣
k

2δn

 , (10)

and the RHS of the streamwise component is discretized by
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+
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 . (11)

The key point to appreciate is that τ̄sn|w may now easily be evaluated from a wall model
like Werner and Wengle.4

Because δn may become arbitrarily small, a stable explicit time step might also become
too small for practical purposes. To avoid this issue, we rewrite (11) as the following ODE

dū

dt
= aū+ b , (12)

which has the stable solution

ū(t) =
(aū0 + b)eat − b

a
. (13)

Finally, we transform the velocity vector back to the grid system for use in the direct
forcing IBM

uibmi = aikūk . (14)

Summary of the Wall Model IBM Method

1. For a given velocity component, determine whether or not the staggered storage
location is inside (or exactly on) the geometry, purely in the fluid phase, or (more
interestingly) within the “surface layer” and thus needs special treatment.
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2. For velocity cells within the surface layer, based on the current position and orienta-
tion of the geometry, find the line that is normal to the surface and passes through
the staggered velocity component location.

3. Determine the distance δn from xvelo to xsurf and define the point xint as the point
on the normal line 2δn from the surface. This point is marked as the blue × in
Figure 1.

4. Interpolate the additional velocity components, velocity divergence (determined
from (4)), and the density to xvelo. Also, interpolate the turbulent viscosity and
the nine components of the velocity gradient to xint.

5. Compute the pressure gradient at xvelo and, from the interpolated velocity gradient,
compute the stress tensor (including turbulent stress) at xint.

6. Determine the “streamwise” coordinate system: Find the vector in the tangent
plane of the surface that is orthogonal to the relative velocity between the fluid and
the surface, t = n̂ × (u − uw), and normalize, t̂ = t/|t|. Define the streamwise
coordinate by ŝ = t̂× n̂. The new orthonormal basis is now {ē1, ē2, ē3} = {ŝ, t̂, n̂}.
Note that, because of this choice, the relative velocity component in the t̂ direction
will always be zero.

7. Transform the pressure gradient, the velocity gradient, and the stress tensor into
the streamwise coordinate system via (8) and (9).

8. Update the wall normal velocity component and the streamwise relative velocity via
(10) and (11), in that order.

9. Transform back to the grid system via (14) and use the resulting velocity component
in the direct forcing IBM.

Results As proof of concept, we test the approach on a simple geometric object, a
sphere, which is “complex geometry” for a Cartesian grid. Figure 2 shows results for two
cases. On the left we have a 2D calculation of a rotating disk in an enclosed cavity. The
disk rotates at 2π radians per second and the no slip condition applies at all surfaces. The
arrows indicate velocity vectors colored by velocity magnitude. The Reynolds number for
this case is approximately 4. On the right we show a snapshot from a simulation of a 90
mile per hour (40 m/s) fastball rotating at 20 revolutions per second.17 The motion of the
geometry is prescribed, but the geometry does influence the fluid (a one-way coupling).
The Reynolds number for this flow is approximately 2×105. In the future, two-way fluid-
structure interaction is planned together with more rigorous verification and validation
studies.
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Figure 2: (Left) 2D calculation of a stationary rotating disk, Re = 4. (Right) Snapshot of a translating
and rotating sphere (90 mile per hour [40 m/s] fastball), Re ≈ 2× 105.

3.2 Using Lagrangian Particles to Model Complex Subgrid Objects

There are many real objects that participate in a fire that cannot be modeled easily
as solid obstructions that conform to the rectilinear mesh. For example, electrical cables,
dry brush, tree branches and so on, are potential fuels that cannot be well-represented as
solid cubes, not only because the geometry is wrong, but also because the solid restricts
the movement of hot gases through the complex collection of objects. As a potential
remedy for the problem, these objects can be modeled as discrete particles that are either
spheres, cylinders or small sheets. Each particle can be assigned a set of properties in
much the same way as is done for solid obstructions that conform to the numerical grid.
The particle is assumed to be thermally thick, but for simplicity the heat conduction
within the particle is assumed to be one-dimensional in either a cylindrical, spherical or
cartesian coordinate system. The LES filter formalism for this approach is discussed in
Mell et al.8 The basic function of the method is to supply bulk mass, momentum, and
energy source terms in (1)-(4).

Figure 3 shows a recent experiment conducted at NIST on behalf of the U.S. Nuclear
Regulatory Commission. The purpose of the experiment was to measure the heat release
rate of a tray of burning electrical cables when exposed to a heat flux from the radiant
panels overhead. The simulation uses Lagrangian particles to represent 10 cm segments
of the cables. The cables are assumed to be cylindrical objects 1 cm in diameter with an
outer layer of plastic (the cable “jacket”) and an inner layer that consists of a mixture of
copper and plastic (the conductors and insulation material). The random distribution of
the cable segments is intended to mimic the way cables are typically run through ladder-
back trays. Bench-scale experiments are underway to characterize the thermo-physical
properties of the plastic materials. The goal of the modeling effort is to capture the
burning behavior of the cable under the assumption of one-dimensional heat conduction
in the radial direction over a length that is roughly equal to the size of a single grid cell
(δx = 5 cm).
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Figure 3: Cable fire experiment performed for the U.S. Nuclear Regulatory Commission. (Left) Photo
from experiment where radiant panels heat electrical cables to the point of ignition. (Right) FDS calcu-
lation using the subgrid particle method. Color represents particle temperature.

4 EMBEDDED MESHES

Cartesian grids are notoriously poor at optimizing mesh density, especially for LES
where locally cubic cells are required to resolve three-dimensional turbulent motion. As
reviewed in Schneider and Vasilyev,10 the future potentially holds very elegant and sophis-
ticated ways of addressing this problem. Currently, FDS is capable of what is sometimes
called ‘one-way’ nesting or ‘down-scaling’ in the atmospheric community.18 That is, one
mesh may be nested within another and the fine mesh will use the background mesh for
its boundary conditions. However, no information is passed from the fine mesh back to
the coarse mesh. As we move forward in fire modeling, there are many applications where
a dynamic two-way coupling between the coarse and fine mesh would be useful. The fact
that wildfires can actually alter weather patterns highlights the problem.

An example of dynamic two-way coupling between meshes is illustrated in Figure 4
where we are simulating the Sandia 1 m helium plume,15 a case that will be studied
further in the next section on quality assessment. To the left side of the figure we see
the fine mesh (red) embedded within the coarse mesh (black). The outer domain is
2 m × 2 m × 4 m. The coarse mesh spacing is roughly 6 cm and the fine mesh spacing
is 1.5 cm (4:1 ratio). The green dots represent measurement locations which will be
used for data comparisons later in this paper. On the right side of the figure we show
an instantaneous contour plot of helium mass fraction. Note the difference in resolution
within and outside the boundary of the fine mesh.

The methodology employed in FDS is based largely on the framework concepts de-
veloped at Lawrence Livermore National Laboratories19 and Lawrence Berkeley National
Laboratory.20 The basic idea is to consider a mesh hierarchy: a coarse mesh M1 and a
fine mesh M2. The coarse mesh provides boundary conditions for the fine mesh and the
fine mesh provides fluxes and source terms to the coarse mesh through averaging oper-
ators. The staggered grid arrangement actually simplifies these operators substantially
over other AMR schemes.
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Figure 4: (Left) Helium plume embedded mesh: 1 m plume diameter, 4:1 grid ratio. (Right) Instantaneous
contours of helium mass fraction.

Below we provide a brief description of a single forward Euler step in the algorithm
(in the actual code the scheme is a second-order predictor/corrector). The key steps,
which differ from the normal FDS scheme, are Steps 2, 3, 6, 8, and 9. At present,
strong momentum source terms which are “invisible” to the coarse mesh are not properly
handled. This is a topic under current development.

Summary of the Embedded Mesh Method (Forward Euler Version)

1. Given a consistent velocity and scalar field between M1 and M2, compute scalar
fluxes on all faces for both meshes.

2. For all coincident faces, including the boundary of M2, replace the M1 flux with the
average of the M2 fluxes.

3. Compute the RHS of the momentum equation and advance the scalar transport
equation for both meshes (reaction source terms for M1 are obtained from a restric-
tion of M2).

4. Update M2 ghost cell values from M1.

5. Compute the velocity divergence on each mesh.

6. Restrict the divergence from M2 to M1.

7. Build the RHS of the Poisson equation, solve for the pressure, and correct the
velocity on each mesh.
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8. Apply the M1 (coarse mesh) velocity to the boundary of M2.

9. Project the velocity on M2 to satisfy the divergence constraint.

10. Apply tangential boundary conditions to each mesh. End

5 QUALITY ASSESSMENT

As stated in the introduction, the subject of LES quality assessment goes beyond the
issues of verification and validation. One should envision working with a code which
has been subjected to and passed all manner of V&V protocols (e.g.16) and then being
tasked with answering the question of whether or not a given LES result (or set of results)
satisfactorily answers the engineering or design question at hand. And this is to be done
in the absence of experimental data. Assuming the LES code obeys the principle of LES
to DNS convergence (and this is by no means guaranteed), the quality of a particular
result is most directly tied to grid resolution. In the sections to follow we examine ways
to measure mesh resolution quality.

In the fire modeling literature, the workhorse metric for assessing grid resolution is the
quantity D∗/δx (note that here we consider implicitly filtered, energy-conserving schemes;
thus the mesh spacing is equal to the LES filter width), where D∗ is the characteristic
length scale of the fire. It is a dimensional quantity obtained from the total heat release
rate Q̇ and ambient density, specific heat, and temperature,

D∗ =

(
Q̇

ρ∞cpT∞
√
g

) 2
5

(15)

As a rough rule of thumb, D∗/δx ≈ 10 has historically been considered adequate grid
resolution.

This rule of thumb is attractive for simple pool fires or well-defined compartment fire
scenarios, but in general is fraught with problems, not the least of which is that it is
based more on what is (or was) computationally affordable than what is demanded by
the physics of the problem. It was developed within codes that were not convergent and
which were basically tuned to make that particular resolution work. As we move forward
toward problems such as fire spread, we need better ways to assess the quality of our
results.

Below we describe output quantities and tools to aid FDS users in quality assessment.
Two output quantities are suggested for measuring errors in the velocity and scalar fields.
Respectively, these measures are: (1) a model for the fraction of unresolved kinetic energy9

(similar to what is often called the ‘Pope criterion’) and (2) a wavelet-based error measure
inspired by the works of Schneider and Vasilyev,10 though our approach is quite simple
at the present time.

While the Pope criterion has a known cutoff for the canonical case of homogeneous
isotropic turbulence (it can be shown that resolving 80 % of the kinetic energy puts the
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grid Nyquist limit into the inertial subrange), in general we do not know a priori what
cutoff should be used. Indeed, some would rightly argue that this completely depends
on what question is being addressed in running the model.16 Here we take the practical
attitude that we want our model results to fall within the uncertainty bounds of the
(perhaps hypothetical) experimental data. However, as stated above, the quality measures
are ultimately only useful if they function without the need for data. To achieve this
state of confidence, the measures must be vetted for a broad range of applications. The
vetting process needs to consider three specific grid resolutions: two showing satisfactory
and converging results, and a third coarser calculation showing unsatisfactory results.
We denote these resolutions as under-resolved, resolved, and over-resolved. Ideally, the
under-resolved case is within a factor of 2 of the resolved case. The point of the exercise is
to delineate satisfactory from unsatisfactory values of the metric. The over-resolved case
is needed to ensure convergence (i.e. that the resolved result is not fortuitous).

To illustrate the process, below we examine mean radial profiles of vertical velocity
and scalar concentration for the Sandia 1 m helium plume experiment.14,15 Details of the
experiment are provided in the references and FDS input files are available in our code
repository.1 Nominally, 0.06 kg/m2/s of a helium/acetone mixture (W = 5.45) issues
from a 1 m diameter source into a quiescent environment. The computational domain
is set at 2 m × 2 m × 4 m in the x, y, z dimensions (z is the vertical dimension). The
calculations are run in parallel with 16 processors with a simple domain decomposition
of 16 1 m3 blocks. Three grid resolutions are run at nominally {1.5, 3, 6} cm resolution
(643, 323, and 163 cells for each 1 m3 block). The results for the mean radial profiles of
vertical velocity and helium mass fraction at 3 downstream locations corresponding to
z/D = {0.2, 0.4, 0.6} are shown in Figure 5. The results are rather insensitive to the grid
resolution, except for the result for vertical velocity at z/D = 0.2 (lower left). Though this
may arguably be related to the uncertainty of the inflow boundary condition (constant
and uniform inlet conditions are specified), we will nevertheless examine the proposed
quality metrics to see what (if any) patterns emerge.

5.1 Measure of Turbulence Resolution

In FDS, the user may output a scalar quantity which we refer to as the ‘measure of
turbulence resolution’, defined locally as

MTR(x, t) =
ksgs

kres + ksgs
(16)

where

kres = 1
2
ūiūi (17)

ksgs = 1
2
(ūi − ˆ̄ui)(ūi − ˆ̄ui) (18)

Here, ūi is the resolved LES velocity and ˆ̄ui is test filtered at a scale 2∆ where ∆ is
the LES filter width (in FDS ∆ = δx). The basic idea is to provide the user with an
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approximation to the Pope criterion,9 M , which is easily accessible in Smokeview (the
FDS visualization tool). In Smokeview, the user may readily time average MTR in a
specified plane. The time average of MTR is a reasonable estimate of M . The measure
falls within the range [0,1], with 0 indicating a perfect resolution and 1 indicating poor
resolution. The concept is illustrated in Figure 6. Notice that on the left the difference
between the grid signal and the test signal is very small. On the right, the grid signal is
highly turbulent and the corresponding test signal is smooth. We infer then that the flow
is under-resolved.

For the canonical case of isotropic turbulence Pope actually defines LES such that
M < 0.2. That is, LES requires resolution of 80 % of the kinetic energy in the flow field
(because this puts the grid Nyquist limit within the inertial subrange). The question
remains as to whether this critical value is sufficient or necessary for a given engineering
problem. Figure 7 shows time averages of MTR for the three resolutions used for this
study. It can be seen that the under-resolved case (δx = 6 cm, far left) shows many
excursions above 0.4, whereas for the resolved case (center) most of the shear layer between
the plume and the ambient surroundings sees an average MTR of roughly 0.2, though there
are small regions with significant deviations. The over-resolved case (right) maintains
average values of MTR below 0.2. It seems, therefore, that the canonical example provides
good insight to buoyant plume problems. And perhaps this is to be expected since plumes
are similar to decaying isotropic turbulence in a Lagrangian frame.

5.2 Wavelet Error Measure

We begin by providing background on the simple Haar wavelet. For a thorough and
more sophisticated review of wavelet methods, the reader is referred to Schneider and
Vasilyev.10

Suppose the scalar function f(r) is sampled at discrete points rj giving values sj.
Defining the unit step function over the interval [r1, r2] by

ϕ[r1,r2] =

{
1 if r1 ≤ r < r2
0 otherwise .

(19)

The simplest possible reconstruction of the signal is the step function approximation

f(r) ≈
∑
j

sjϕ[rj ,rj+h](r) . (20)

By “viewing” the signal at a coarser resolution, say 2h, an identical reconstruction of the
function f over the interval [rj, rj + 2h] may be obtained from

f[rj ,rj+2h](r) = sj+sj+1

2︸ ︷︷ ︸
a

ϕ[rj ,rj+2h](r) + sj−sj+1

2︸ ︷︷ ︸
c

ψ[rj ,rj+2h](r) , (21)
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where a is the average coefficient and c is the wavelet coefficient. The Haar mother wavelet
(Figure 8) is identified as

ψ[r1,r2](r) =

{
1 if r1 ≤ r < 1

2
(r1 + r2)

−1 if 1
2
(r1 + r2) ≤ r < r2 .

(22)

The decomposition of the signal shown in (21) may be repeated at ever coarser res-
olutions. The result is a wavelet transform. The procedure is entirely analogous to the
Fourier transform, but with compact support. If we look at a 1D signal with 2m points,
the repeated application of (21) results in an m×m matrix of averages a with components
aij and an m×m wavelet coefficient matrix c with components cij. Each row i of a may
be reconstructed from the i+ 1 row of a and c. Because of this and because small values
of the wavelet coefficient matrix may be discarded, dramatic compression of the signal
may be obtained.

We are interested in using a wavelet analysis to say something about the local level
of error in grid resolution. Very simply, we ask what can be discerned from a sample of
four data points along a line. Roughly speaking we might expect to see one of the four
scenarios depicted in Figure 9. Within each plot window we also show the results of a
Haar wavelet transform for that signal. Looking first at the two top plots, on the left
we have a step function and on the right we have a straight line. Intuitively, we expect
large error for the step function and small error for the line. The following error measure
achieves this goal:

WEM(x, t) = max
x,y,z

(
|∑j c1j| − |c21|

|a21|

)
(23)

Note that we have arbitrarily scaled the measure so that a step function leads to WEM
of unity. In practice the transform is performed in all coordinate directions and the max
value is reported. The scalar value may be output to Smokeview at the desired time
interval. Looking now at the two plots on the bottom of Figure 9, the signal on the
left, which may indicate spurious oscillations or unresolved turbulent motion, leads to
WEM = 2. Our measure therefore views this situation as the worst case in a sense. The
signal to the lower right is indicative of an extremum, which actually is easily resolved by
most centered spatial schemes and results again in WEM = 0.

Time averages of WEM for the helium case at three resolutions are shown in Figure
10. The under-resolved case (left) sees a large region near the base of the plume where
WEM > 1. The average value along the shear layer is near 0.75. For the resolved
case (center) we still see small excursions above unity near the base, but the majority
of the shear layer remains near 0.5. Though, within the downstream distances we are
examining (z/D ≤ 0.6) we see WEM near 0.75 in places. Even the over-resolved case sees
excursions above unity near the lip of the plume. These are areas of the flow where given
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perfect economy of grid points (nonuniform grids) we would choose to concentrate our
resolution. However, it is evident a posteriori that small excursions of WEM near unity
may be permissible for statistically stationary flows such as the helium plume. From these
images and comparison with the data, it seems that a value of WEM near 0.5 is optimal
(minimum cost to achieve desired accuracy).

5.3 Smokediff

Smokediff is a new package bundled with the latest release of Smokeview, the FDS
visualization tool. Further details are provided in the Smokeview User’s Guide.1 With
Smokediff the user may easily compare the outputs of two different FDS runs using differ-
ent model parameters or different mesh resolutions, for example. In the case of comparing
runs with different resolutions, the output from Smokediff may be viewed as a signed er-
ror, taking the finer mesh as the true value. Though the chaotic nature of the flows
often makes the instantaneous errors look large, the time average of the differences can
be insightful.

6 CONCLUSIONS

In this paper, we have presented a novel approach to implementing wall models in a
direct forcing immersed boundary method. We have demonstrated proof of concept of
the approach spanning five orders of magnitude in Reynolds number. The ODE solution
for the streamwise velocity component gracefully handles the small cutcell problem. At
the opposite end of the mesh resolution spectrum, we have demonstrated the feasibility of
applying convective and radiant heat transfer models to subgrid particle methods for fire
dynamics. The method wide applicability in residential, industrial, and wildfire scenarios.

A method for two-way coupling between coarse and fine meshes is outlined and demon-
strated. For the problem considered in this work, the 1 m helium plume, a node reduction
of more than a factor of four is realized for the embedded mesh case. The method greatly
simplifies the problem of multi-resolution 3D mesh generation in FDS. Several practical
issues remain to be solved before the embedded mesh method is ready for general use.
These issues include the proper treatment of grossly under-resolved momentum sources
(e.g., jets) which are invisible to the coarsest background mesh.

Lastly, we have developed and demonstrated two methods for assessing LES quality.
One method provides a measure of turbulence resolutions (MTR) based on the idea of
Pope’s criterion.9 By comparing with experimental data at three different grid resolutions,
we conclude that the theoretical value of 〈MTR〉 = 0.2 (brackets indicate a time average)
provides a good target for assuring LES quality for buoyant plumes. Additionally, we
present a new idea for estimating errors in the scalar field based on a simple local Haar
wavelet analysis. The method looks at a sample of four points in a given direction and
from the wavelet coefficients infers an error level. Based on the chosen scaling for the
WEM metric, we find that a value of 〈WEM〉 = 0.5 provides a good target error level for
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optimal mesh resolution in stationary buoyant plumes.
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Figure 5: (Left) Mean profiles of vertical velocity. (Right) Mean profiles of helium mass fraction. Un-
certainty in the data is taken from the root mean square velocity fluctuations reported in O’Hern et
al.15
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Figure 6: (Left) Resolved signal, MTR is small. (Right) Unresolved signal, MTR is close to unity.

Figure 7: A 10 second time average of MTR (measure of turbulence resolution) for the He plume case at
three grid resolutions, from left to right: δx = {6, 3, 1.5} cm. The effect of the mesh domain boundaries
in the parallel calculation is noticeable because of the way Smokeview draws cell centered data.

18



Randall J. McDermott, Glenn P. Forney, Kevin McGrattan and William E. Mell

−1 0 1 2

−1

0

1
ψ

[0
,1

]

Figure 8: Haar mother wavelet on the interval [0,1].
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Figure 9: Averages and coefficients for local Haar wavelet transforms on four typical signals.
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Figure 10: Ten second time averages of wavelet error measure (WEM) for the 1 m helium plume case at
(from left to right) 6, 3, and 1.5 cm resolution.
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