Users Manual for Version 2.2.1 of the
NIST DMIS Test Suite
(for DMI1S5.2)

Thomas R. Kramer (thomas.kramer@nist.gov, phone 301-975-3518)
John Horst (john.horst@nist.gov, phone 301-975-3430)

Intelligent Systems Division
National Institute of Standards and Technology
Technology Administration
U.S. Department of Commerce
Gaithersburg, Maryland 20899, USA

NISTIR 7735
October 25, 2010



Users Manual NIST DMIS Test Suite 2.2.1

Disclaimer
No approval or endorsement of any commercia product by the National Institute of
Standards and Technology isintended or implied.

Acknowledgements

Funding for the work described in this paper was provided to Catholic University by
the National Institute of Standards and Technology under grant Number
7ONANB9H9131.



Users Manual NIST DMIS Test Suite 2.2.1

Table of Contents

I Introduction. . . .. ..o 1
Ll OVEIVIBW. .« o oottt ettt e e e e e e e e e e e e e e e 1
1.2 Downloading and Installing the Test Suite. . ................ ... ... ... ....... 4
1.3 Documentation . . .. ....... ittt 4
1.4 Arrangementofthis Manual. .......... .. ... ... ... .. . . . . . 5
1.5 Use of Fonts . .. ..o 5
1.6 Changes from Version 2.1.5. . .. ... . . 6
1.7 ShOrtCOMINGS . . ..o\ttt et e e e 7
2 UtHHES « .o et 8
2.1 What is in the utilities directory? .. ......... . ... 8
2.2 How is the utilities directory arranged? .. ......... ... .. .. ... ... 8
2.3 Which utility should Tuse?. .. ... .. . 9
3 The dmisParser . . ... ... o 9
3.1 How do I use the dmisParser to parse a single DMIS input file?................. 9
3.2 How can I use a single command to parse a whole set of DMIS input files? ...... 10
3.3 How do I modify a command that runs a set of test files so that it tests my parser? . 12
3.4 What does the dmisParser do when it parses a single DMIS input file? .......... 12
3.5 What does the dmisParser do when it parses a set of DMIS input files?.......... 13
3.6 What do the dmisParser’s error and warning messages mean? . ................ 14
4 The dmisConformanceChecker . .......... .. ... .. i 15
4.1 How do I use the dmisConformanceChecker to check that a single DMIS input file con-
forms to a particular DMIS conformance class? ............................ 15
4.2 How can I use a single command to run conformance checks and collect data on statement
usage for a whole set of DMIS input files? . ......... ... ... ... ... ... ... .... 17
5 The dmisConformanceRecorder. .. ....... ... . .. ... . . . . . . 21
5.1 How do I use the dmisConformanceRecorder to put conformance information into a
DMIS input file?. . .. ... . 22
5.2 What does the conformance informationmean? ............................ 24
6 The dmisConformanceTester . .. ... ...ttt e 24
6.1 How do I use the dmisConformanceTester?. .. ....... ... ... ... .. ... ...... 24
6.2 What does the output of the dmisConformanceTester mean? . ................. 26
7 The dmisTestFileReductor .. ... ... .. ... . . . . i 27
7.1 What does the dmisTestFileReductordo? ........... ... ... ... .. ... ...... 27
7.2 How are incoming filesmarked? .. ....... .. ... ... ... .. .. . .. .. ... .. ... 28
7.3 How do I use the dmisTestFileReductor?. .. .............. ... ... .......... 29
8 Parser Test Files . ... ..o o 30
8.1 What are the parsertest fileslike? ............ .. ... ... ... .. ... . ... .. .. .. 30
8.2 What do the “dmi” and “out” filename suffixesmean? ....................... 31
8.3 What is in the parserTestFiles directory? .. .......... ... ... ... ... 31
8.4 For what purposes may the parser test filesbeused?......................... 32



Users Manual NIST DMIS Test Suite 2.2.1

9 System Test Files . ... ... 32
9.1 What is in the systemTestFiles directory? .. ......... ... ... ... ... ... ....... 32
9.2 For what purposes may system test filesbeused? . .......................... 33
10 EBNF .o 34
10.1 Who should read this section? . ......... ... ... ... . i, 34
10.2 Whatis EBNE . .. 34
10.3 Why use EBNE? . ..o 34
10.4 Whatis DEBNFE? . ... . 34
10.5 What is DEBNF Syntax? . ... .. ...ttt 34
10.6 What DEBNEF files are available?. .. ....... ... ... ... ... ... ... .. . ... 37



Users Manual NIST DMIS Test Suite 2.2.1

1 Introduction

1.1 Overview

This manual is a users manual for the NIST DMIS Test Suite, version 2.2.1. The test suite! is
intended to serve two purposes.
* to help users and vendors use version 5.2 of DMIS (the Dimensional Measuring Interface

Standard)
* to provide utilities and test files for conducting conformance tests on
- DMISinput files

- computer systems that generate DMIS input files
- computer systems that execute DMIS input files.

The test suite and this manual were prepared at the Nationa Ingtitute of Standards and
Technology (NIST). There are also a “System Builders Manual for Version 2.2.1 of the NIST
DMIS Test Suite (for DMIS 5.2)"2 and a “Maintainers Manual for the NIST DMIS Test Suite,
Version 2.2.1". The purpose of the system builders manual isto help system builders use software
provided in the test suite for building systems that implement DMIS. The test suite, which
includes all three manuals, may be downloaded from

http://www.isd.mel.nist.gov/projects/metrology_interoperability/dmis_test_suite.htm

In addition, since the test suite is very large (so that prospective users may want to look at the
manuals before deciding whether to download it), the manuals may be downloaded separately
from the same site.

DMIS isthe only international standard language (1SO 22093) for input files (programs) used for
the control of dimensional measuring equipment, coordinate measuring machines in particular. It
is also approved by the American National Standards Institute (ANSI/DMIS 105.2, Part 1-2009).
The most recent version of DMIS approved by the Dimensional Metrology Standards Consortium
(DMSC), the organization accredited by ANSI that built and maintains DMIS, is DMIS 5.2.
Copies of the ANSI standard on CD are available for purchase at
http://www.dmisstandards.org/store. Copies of the ISO standard version are expected to be
available soon from 1S0O.

Because DMISis avery large language, and only subsets of it need to be implemented for many
applications, subsets called conformance classes have been defined. To conform to a conformance
class, a system using DMIS must fully implement the subset for that class. The DMSC has
defined two “application profiles’, one for Prismatic parts and one for Thin Walled parts. Seven
addenda have also been defined. Each application profile (AP) and addendum may be
implemented at three levels. Level 2 includes everything in level 1, plus additional items. Level 3
includes everything in level 2, plus additional items. This version of the test suite can handle full
DMIS or any combination of an AP and O to 7 addenda at any of the three levels. A *conformance
module” is alevel of an AP or an addendum. With two APs plus seven addenda at three levels,
there are 27 conformance modules. A conformance class may be defined by specifying
conformance modules.

1. In the remainder of this manual “the test suite” meansthe NIST DMIS Test Suite, version 2.2.1.
2. Inthe remainder of this manual “the system builders manual” means the System Builders Manual for Ver-
sion 2.2.1 of the NIST DMIS Test Suite (for DMIS5.2).



Users Manual NIST DMIS Test Suite 2.2.1

EBNF (Extended Backus-Naur Form) is a standard formal language for defining the syntax of a
language (ISO/IEC 14977). Annex C of the DMIS standard is an EBNF definition of the syntax of
the DMIS input language. The term DEBNF (short for DMIS EBNF) is used in this manual to
mean the dialect of EBNF used in DMIS 5.2. Details are given in Section 10.

Asshown in Figure 1, the test suite has eight directories.

NistDmisTestSuite2.2.1

doc

ebnf

generator
linuxSun
windows

parserTestFiles
annexAln
annexAOut
errorin
errorOut
okln
okOut

systemTestFiles
full
prismaticl
prismatic2
prismatic3

tutorials
linuxSun
windows

utilities
linux
sun
windows

utilityComponents
linuxSun
windows

Figure 1. Directory Structure of NistDmisTestSuite2.2.1

Briefly, these contain the following.

The doc directory has this users manual, the system builders manual, the test suite maintainers
manual, and an Excel spreadsheet defining conformance classes.

The ebnf directory includes the DEBNF file for full DMIS.
The generator directory contains a system named debnf2pars for automatically generating much



Users Manual NIST DMIS Test Suite 2.2.1

of the code in the utilityComponents directory. The input to debnf2pars is a DEBNF file. The
generator directory also contains a system named generateMore for automatically generating
more of the code in the utilityComponents directory. The generator directory is not expected to
be of interest to most users. See the Maintainers Manual for details.

The utilityComponents directory has software from which alibrary and five utilities can be built
in the utilities directory for each of three operating systems.

The utilities directory contains the five executable utilities for each of three operating systems
(Linux, SunOS, and Windows). For running tests on the utilities, the utilities directory aso
contains scripts, C++ code, executables built from the C++ code, and data files. The utilities are
made from the code in the utilityComponents directory. The utilities are:

* dmisParser - checks that asingle DMIS input file or each of a set of files conforms to the
syntax of full DMIS. The dmisParser prints the number of errors and warnings found in
each file, and pretty-prints the file. Details about the dmisParser are given in Section 3.

» dmisConformanceChecker - runs two ways. If given asingle DMIS input file, it checks
the file against the syntax requirements of full DMIS or any allowed combination of the
27 conformance modules. If given a file containing the names of a number of DMIS
input files, it does the same kind of check for each input file and then prints the number
of times each DMIS statement was used. Details about the dmisConformanceChecker
aregivenin Section 4.

» dmisConformanceRecorder - reads and checks a single DMIS input file, prints the
number of errors and warnings found, and inserts a conformance statement on the
DM SWN or DM SMD line of the file. The conformance statement specifies which
conformance modules are needed to handle the file. Detaills about the
dmisConformanceRecorder are given in Section 5.

» dmisConformanceTester - reads and checks a single DMIS input file the way the
dmisConformanceChecker does, then behaves like the dmisConformanceRecorder
except that it prints the conformance statement only in the command window (not in the
file) and it identifies what DMIS construct first caused each conformance module to be
required. Details about the dmisConformanceTester are given in Section 6.

» dmisTestFileReductor - reads one or more specially marked parser test files for full
DMIS and produces corresponding parser test files for a conformance class of DMIS
(i.e., asubset of DMIS). Details about the dmisTestFileReductor are given in Section 7.

The first four of these utilities use an underlying parser that reads a DMIS input file, reports
syntax errors and warnings, and builds a parse tree if there are no errors.

The parserTestFiles directory has a lot of DMIS input files for testing utilities. These are
syntactically correct but do not necessarily make sense as programs.

The systemTestFiles directory has a modest number of DMIS input files that should be
executable on commercial DMIS execution systems.

Thetutorials directory, which is described in the System Builders manual, contains:
* one tutorial (makeBound) showing how to use the C++ classes for DMIS (given in the
utilityComponents directory) for building asingle line of DMIS code,
* one tutorial (generate) showing how to use the C++ classes for DMIS (given in the
utilityComponents directory) for building a DMIS input file generator, and
* one tutoria (analyze) showing how to use the parser and the C++ classes for DMIS
(given in the utilityComponents directory) for building a DMIS input file consumer.



Users Manual NIST DMIS Test Suite 2.2.1

1.2 Downloading and Installing the Test Suite

The test suite may be downloaded from:
http://www.isd.mel.nist.gov/projects/metrology_interoperability/dmis_test_suite.htm
Select and download the file NistDmisTestSuite2.2.1.zip. Then unzip thefile.

The top level directory that will be created is named NistDmisTestSuite2.2.1. The structure of
this directory is shown in Figure 1 above. It should not be necessary to recompile any of the
executables in the test suite. If you do want to recompile, see the instructions in Section 1.4 of the
System Builders Manual.

1.3 Documentation

The doc directory contains a copy of this users manual, a copy of the system builders manual, a
copy of the maintainers manual, and an Excel spreadsheet defining the DMIS conformance
modules for DMIS 5.2. The doc directory does not contain a copy of the |SO standard for EBNF
(ISONEC 14977), but that may be downloaded free of charge from SO at
http://standards.iso.org/ittf/PubliclyAvailableStandards/index.html.

The Excel spreadsheet isimportant because it is the controlling document for the definition of the
conformance modules. All of the C++ code defining conformance modules was prepared by first
hand-editing C++ files so that they say the same thing as the spreadsheet.

1.3.1 How isthe Excel spreadsheet defining conformance classes arranged?

alli L A B ¢ D[ E[F|e[HI[J][K[L N[OTF

1] L1 |Essential to meeting the Profile's goals A 5 .
. - Prismatic [ Thin Walled T':;:'IP
2| L2 |Important to meeting the Profile's goals Appllcatlon Appllcatlon Kddeads
3 L3 |Beneficial to meeting the Profile's goals. r r
- g 9 Profile Profile .
1| N/ A |Not applicable to this Profile
5
!"a_ " [COMMAND PARAMETERS FEEEIDE EEEEEDE
| 7 |aCLRAT ACLRAT/ var_1 % X %
B | war_1 [MESACLvar 2 X x
9 POSACL,var_2 % X
= |10} ROTACL,var _3 a a X
N EIN war_2 [MPmMM,n ® x
142 MMPSE, N X X
S RER 1PMM, % %
- [14] IPS5,n * "
- |15 war_d ® %
|16 var_3 [RPMMN a a %
- |47 war_d a a ®
+ (18] war_4 |PCENT,n # = x
- |19 HIGH % ® )
« | 20 LOW ® x ®
- [3 DEFALILT ® % %
-/ | 22 ALGDEF vA{label)=ALGDEF/var_1 X %
[ - [ 23] war_1 |CODE,n x P
- |24 ] name’ var_2 % %
= |25 var_2 | parameter var_2 x x
. 26 | doss not exist % %
= | 27 ASSIGN vamame =ASSIGN/ expr ® X % %
| 28 BADTST BADTST var_1 ® o ® ®
- [ 20} var_1 [oN x | = % | %
[ « |30 |OFF = ] ] ®
= | 31 BOUND BOUND/ var_1 var_2 var_3 ¥ X | % ¥ %
[l EFE var_1 |Fllabeli) % | % x [

Figure 2. Excel SpreadSheet




Users Manual NIST DMIS Test Suite 2.2.1

The arrangement of the Excel spreadsheet defining conformance classesis largely self-evident, so
it isonly summarized here. Figure 2 shows the left side of the beginning of the spreadsheet.

The spreadsheet has amain row for each subsection of section 6 of DMIS5.2. Each row is divided
into subrows that follow the structure of the syntax described in the corresponding subsection of
DMIS 5.2. Main rows for ACLRAT, ALGDEF, ASSIGN, BADTST, and BOUND are shown on
Figure 2.

The spreadsheet has 11 main columns, the first five of which are shown on Figure 2. The first
main column has the DMIS statement names. For each statement, the second column has a list of
the parameters used by the statement, one subrow for each parameter. The rest of the columns also
have these subrows.

Columns 3 and 4 are for the Prismatic Application Profile and the Thin Walled Application
Profile. These two columns are each divided into four subcolumns. The first three subcolumns are
for the three levels at which the two application profiles may be implemented. An x in a subrow
and subcolumn means the parameter in the subrow must be implemented at the level of the
subcolumn. The meaning of the fourth subcolumn isalittle trickier. An x in the fourth subcolumn
means the parameter does not have to be implemented in any application profile or addendum. An
a in the fourth subcolumn means that the parameter must be implemented in at least one
addendum (and in this case an x will be found in the same subrow for one or more of the
addenda).

The last seven columns of the spreadsheet are for the addenda, and each one is divided into three
subcolumns for the levels. An x in any of these columns means the parameter must be
implemented. The addenda are:

* Rotary Table (RY) - the only one shown on Figure 2

» Multi Carriage (MC)

* Contact Scanning (CT)

* In-Process Verification (IP)

* Quality Information System (QI)

» Measurement Uncertainty (MU)

* Soft Gaging (SF).

1.4 Arrangement of thisManual

Sections 2 through 7 of this manual cover the utilities, how to use them, and how they work.
Section 8 (“Parser Test Files”), and Section 9 (“ System Test Files’) describe the test filesincluded
in the test suite. Section 10 (“EBNF”) describes EBNF, the formal language used to define the
syntax of DMIS unambiguously. The C++ classes for DMIS and the tutorials are covered in the
system builders manual. The software of the test suite is covered in the maintainers manual.

1.5 Use of Fonts

To help make it clear what sort of thing is being discussed, in this manual:
* DMIS code and messages printed by the utilities in the test suite are shown int hi s
font.
* File and directory names (including names of executable files) and internet addresses are
shown in this font.
* EBNF codeisshownint his font.
» Commands typed in acommand window are shown in this font.



Users Manual NIST DMIS Test Suite 2.2.1

1.6 Changesfrom Version 2.1.5

Major changes have been made from the NIST DMIS Test Suite Version 2.1.5 (the most recent
earlier release placed on the web) as follows. Be aware also that Version 2.1.5 made mgjor
changes from Version 2.1.4, most of which have been carried over into Version 2.2.1.

1.6.1DMIS5.2

Version 2.2.1 deals with DMIS 5.2. Version 2.1.5 dealt with DMIS 5.1. Everything in Version
2.2.1 that needed to be updated has been updated.

1.6.2 Full Unified Coverage

In Version 2.1.5, only four conformance classes were covered (full DMIS plus prismatic 1, 2, and
3), and there were separate parsers, DEBNF files, and C++ code files for each of the four. In
Version 2.2.1, there is only one DEBNF file, and all 98,305 conformance classes are covered.
Also, there is only one executable for each utility. There is a C++ code file for each of the 27
conformance modules, however.

1.6.3 More Utilities

Version 2.2.1 has five different utilities where Version 2.1.5 had only one kind of utility (parsers).
In Version 2.2.1, the functionality of counting DMIS statements has been moved into the
dmisConformanceChecker. That functionality was included in the parsersin Version 2.1.5.

1.6.4 DEBNF
1.6.4.1 more DMI S statements

In Version 2.1.5, there was one DMIS statement (featStm) for al feature types and one (tol Stm)
for al tolerance types. In Version 2.2.1, there are 28 feature statements and 29 tolerance
statements. Since reporting in the dmisConformanceChecker is done at the DMI S statement level,
this provides for much more detailed reporting from that utility.

1.6.4.2 condensation

In a number of cases, the DEBNF for a DMIS statement has been changed by condensing two
DEBNF productions into one. This leads to a more compact and efficient C++ class hierarchy.

1.6.4.3 naming

A method of specifying meaningful names has been implemented. The names are introduced in
the DEBNF by giving them as DEBNF comments. The names are propagated from the DEBNF
into C++ code by the debnf2pars generator. For example, in Version 2.2.1 the attributes of a C++
doStm are index, init, limit, and incr, whereas in Version 2.1.5 they were a intVar, intVal_3,
intVal_5and intval_7.

1.6.5 Generator
1.6.5.1 debnf2pars

The debnf2pars generator in Version 2.2.1 generates everything that was generated in Version
2.1.5 (except that printing a page or two of fixed code has been removed). In addition, Version
2.2.1 generates C++ code files for three of the new utilities.



Users Manual NIST DMIS Test Suite 2.2.1

1.6.5.2 generateMore

In Version 2.2.1, manual editing of the 27 conformance module C++ filesisrequired after filesare
generated by debnf2pars. Further automatic processing of those files is done after the editing by
the generateMore utility, which produces one more C++ file (assignModuleSubAtts.cc).

1.6.6 Parser Test Files

Version 2.2.1 has parser test files only for full DMIS, whereas Version 2.1.5 had test files for full
DMIS plus the three levels of the prismatic AP. As described in Section 7, however, the
dmisTestFileReductor produces parser test files automatically for any allowed set of conformance
modules. To enable this, every line of every one of the 254 test files in the parserTestFiles/okin
directory has been marked with a DMIS comment indicating the conformance modul es needed to
deal with theline.

1.6.7 Testing
1.6.7.1 cycle testing of conformance information

To check that the dmisConformanceRecorder works properly, a cycle test was devised in which
each of over 300 test files had its conformance information inserted without using the
dmisConformanceRecorder. Then each file was run through the dmisConformanceRecorder,
which replaced the conformance information, and it was checked that the file was unchanged.

1.6.7.2 additional test scripts
Test scripts were written that test the new utilities.

1.7 Shortcomings

The largest shortcomings of the test suite are:

* The current test suite tests only the compliance of DMIS input files to the requirements
for input file syntax. There is no semantic checking whether the input files describe
useful, logical, or realizable measurement operations.

» There is currently no test utility for verifying the compliance of a DMIS execution
system to the requirements for system behavior.

* For testing completeness of a DMIS generator, the dmisConformanceChecker counts
only the number of times each DMIS statement is used. For a comprehensive
completeness test, it would be necessary to implement counting the number of times
every C++ class and attribute in a conformance class is used. The underlying software of
Version 2.2.1 will support that test, but the debnf2pars generator has not been modified
so that it will generate code to implement that test.

* The utilities do not attempt to load files referenced by | NCLUD or EXTFI L, so the
utilities may report errors that would not occur if such files were used as provided by
those DMIS statements.

* The utilities check all file lines sequentially, so if afile uses flow of control statements
(such as| F/ ELSE/ ENDI F or JUMPTO) that cause afile to be executed out of order or
cause some statements not to be executed, the utilities may report warnings incorrectly
or may fail to detect errors for which warnings should be given.

* The utilities do not evaluate variables, so labels that are created or referenced using the
@variable method may cause the parser to report label warnings incorrectly.



Users Manual NIST DMIS Test Suite 2.2.1

2 Utilities
2.1 What isin the utilitiesdirectory?

The utilities directory contains executable utilities. For running tests on the utilities, the utilities
directory also contains scripts, C++ code, executables built from the C++ code, and datafiles.

2.2 How isthe utilities directory arranged?

The structure of the utilities directory is shown in Figure 3 below. There is a subdirectory for each
of three operating systems: Linux, SunOS, and Windows XP. Each of these has bin, code, and full
subdirectories.

Each bin subdirectory contains executables for the five utilities (dmisParser,
dmisConformanceChecker, dmisConformanceRecorder, and dmisConformanceTester) plus other
executables used in the test scripts.

Each code subdirectory contains C++ source code for the executables used in the test scripts. For
Windows, the code subdirectory also contains a subdirectory for each of the five executabl es used
in the test scripts. These were built by Visual C++ during the process of compiling the
executables.

Each full subdirectory contains
* a checkLevels script that runs each of 306 DMIS input files through the
dmisConformanceRecorder and verifies that the file did not change even though the
conformance information was replaced
* a testFullParser script that runs 322 DMIS input files through the dmisParser and
verifiesthat for each of those files, the parser output iswhat it is expected to be
 a testFullTester script that runs 306 DMIS input files through the
dmisConformanceTester (but does not test that the conformance information produced
by the dmisConformanceTester is correct)
» arunAllFull file that contains the names of 322 DMIS input files and is intended to be
used for testing the dmisParser and the dmisConformanceChecker
 arunAllFullOut file containing what the dmisConformanceChecker should print when it
processes the runAllFull file using the command
dmisConformanceChecker runAllFull,
 arunAllFullOut3 file containing what the dmisConformanceChecker should print when
it processes the runAllFull file using the command
dmisConformanceChecker runAllFull PM3 RY3 CT3 MC3 IP3 QI3 MU3 SF3,
» arunOKFull file that contains the names of 254 DMIS input files and is intended to be
used with the dmisTestFileReductor as described in Section 7
» arunSomeFull file that contains the names of 143 DMIS input files and is used in the
dmisConformanceChecker examplesin Section 4.2
* an empty outgoing directory.
The full subdirectory in the utilities/windows directory includes four more .bat files used by the
primary scripts.



Users Manual NIST DMIS Test Suite 2.2.1

utilities

linux
bin
code
full

sun
bin
code
full

windows
bin
code
full

Figure 3. Utilities Directory Structure

2.3 Which utility should | use?
If you want to check that DMIS input files conform to full DMIS, use the dmisParser.

If you want to check that DMIS input files conform to a conformance class of DMIS, or if you
want to gather information on the use of DMIS statements in a set of DMIS input files, use the
dmisConformanceChecker.

If you want to have conformance information inserted automatically on the DM SIVN or DM SVD
line of a DMIS input file, use the dmisConformanceRecorder. The conformance information
identifies which conformance modules are needed to deal with thefile.

If you want to know what the dmisConformanceRecorder will do but you don’t want your DMIS
input file changed, use the dmisConformanceTester. The dmisConformanceTester also shows why
each conformance module is required.

If you want to generate a set of test files for a conformance class defined by a set of DMIS
conformance modules, use the dmisTestFileReductor as described in Section 7.

3 The dmisPar ser

The dmisParser checks that DMIS input files conform to full DMIS.

3.1How do | usethe dmisParser to parseasingle DMISinput file?

For all three operating systems, you run the dmisParser by typing a command in a command
window. The same procedure is used for Linux and SunOS. Windows is slightly different.

The dmisParser takes one command argument, which is either (1) the path to aDMIS input file to
parse or (2) the path to afile containing the paths to a number of DMIS input files.

The dmisParser writes its messages in the command window, but output redirection may be used
to send the messages to afile.



Users Manual NIST DMIS Test Suite 2.2.1

3.1.1 Linux and SunOS

Example 1. The following command should be given in the utilities/linux directory if you are
using Linux or in the utilities/sun directory if you are using SunOS. The command parses the
DMIS input file units1l.dmi, writes the messages “O errors” and “O war ni ngs” in the
command window, and reprints the text of the input file in the command window. The reprinting
is done using the parse tree built during parsing. Comments are not reprinted.

bin/dmisParser ..l..IparserTestFiles/okin/units1.dmi

Example 2. The following command should be given in the utilities/linux directory if you are
using Linux or in the utilities/sun directory if you are using SunOS. The command parses the
DMIS input file units1.dmi, writes the messages“0 errors” and“0 war ni ngs” inthefile
ul.out, and aso reprints the text of the input filein ul.out. Comments are not reprinted.

binldmisParser ..l..IparserTestFiles/okinlunits1.dmi > u1.out

3.1.2 Windows

Example 1. The following command, given in the utilities\windows directory, parses the DMIS
input file units1.dmi, writes the messages “0 errors” and “O war ni ngs” in the command
window, and reprints the text of the input file in the command window. The reprinting is done
using the parse tree built during parsing. Comments are not reprinted.

bin\dmisParser.exe ..\..\parserTestFiles\okin\units1.dmi

Example 2. The following command, given in the utilities\windows directory, parses the DMIS
input file units1.dmi, writes the messages“0 errors” and“0 war ni ngs” inthefileul.out,
and also reprints the text of the input filein ul.out. Comments are not reprinted.

bin\dmisParser.exe ..\..\parserTestFiles\okin\units1.dmi > u1.out

3.2How can | use asingle command to parse a whole set of DMISinput files?

There are two ways to run a set of DMIS input files through the dmisParser, as described in
Section 3.2.1 and Section 3.2.2. In both methods, you type a command in a command window.

3.2.1 First method for running a set of DMIS input files through the dmisParser

In the first method:

» A new dmisParser processis used for each file.

» The message output of the dmisParser is compared with the expected message outpui.

* If no error messages are given by the dmisParser, the parsed file is printed back out
again, the input file is reformatted so that it is in the format used by the dmisParser’s
printer, and a check is made that the file printed by the dmisParser is identical to the
reformatted file.

» The test stops at the first file for which there is a difference between the actua and
expected message output or between the printed and reformatted files, if there is any
input file for which that happens.

This method is implemented using an executable script file. The name of that file,
testFullParser, implies that the dmisParser is being tested. This is correct when you have
downloaded the test suite and are testing to see if it runs on your computer. However, once you are
satisfied that the dmisParser is working on your computer, you can make a copy of

10



Users Manual NIST DMIS Test Suite 2.2.1

testFullParser and edit the names of the directories and the files, so that the copy can be used
for testing whatever set of DMIS input files you want to test.

3.2.1.1 Linux and SUnOS

When using Linux, get into the utilities/linux/full directory. When using SunOS, get into the
utilities/sun/full directory.

Give the command:

.ItestFullParser

The testFullParser script processes 322 DMIS input files. It takes 15 seconds or so to run on a
Dell Precision 670 PC running Linux and about 27 seconds on a Sun Fire V215 running SunOS.

3.2.1.2 Windows
In Windows get into the utilities\windows\full directory.
Give the command:

testFullParser.bat

The testFullParser.bat batch file processes 322 DMIS input files. It takes about 110 seconds to
run on a Dell Dimension 8300 PC running Windows XP.

3.2.2 Second method for running a set of DMIS input files through the dmisParser

In the second method:

* Only one dmisParser process runs (so the test is faster), and it parses all thefiles.

» Thetest stopsif atest file cannot be found but does not stop if there is a parse error.

* No comparison is done.
You can make afile listing the names of the DMIS input files you want to test and use this method
to test them. The file names must include the path (either arelative path starting from the directory
containing the dmisParser or an absolute path).

3.2.2.1 Linux and SUnOS

To run a set of DMIS input files through the dmisParser in Linux, get into the utilities/linux/full
directory; in SUnOS, get into the utilities/sun/full directory.

Example 1. Give the command:

..IbinldmisParser runAllFull

The command runs 322 DMIS input files through the dmisParser. Output printing goes to the
command window. The runAllFull file contains the names of the 322 DMIS files. The names of
the DMIS files must end in .dmi. On a Dell Precision 670 PC running Linux, this takes about 3
seconds. On a Sun Fire V215 running SunOS, this takes about 6 seconds.

3.2.2.2 Windows

To run a set of DMIS input files through the dmisParser in Windows, get into the
utilities\windows\full directory.

Example 1. Give the command:

\bin\dmisParser.exe runAllFull

11



Users Manual NIST DMIS Test Suite 2.2.1

The command runs 322 DMIS input files through the dmisParser. Output printing goes to the
command window. The runAllFull file contains the names of the 322 DMIS files. The names of
the DMIS files must end in .dmi. In Windows, it does not matter whether or not you include the
.exe suffix in the name of the command. On a Dell Dimension 8300 PC running Windows XP, this
takes about 5 seconds.

3.3 How do | modify a command that runsa set of test filesso that it testsmy parser?

Thisis possible only if your parser is an executable that takes arguments and can be run from a
command window. If you are using Linux or SunOS you need to know how to write a script file;
on Windows you need to know how to write a batch file.

3.3.1 Linux and SunOS

In Linux or SunOS, if you have a DMIS parser, start by copying the testFullParser script file to
testMyFullParser (or a name you prefer). Edit testMyFullParser by deleting the “runOut”
function defined near the beginning of the file and editing the “runOK” function so that:

* It calls your parser instead of dmisParser.

* It takes the arguments your parser takes.

* It performs the output test(s) you want.

Several other items may be need to be changed, particularly near the beginning of
testMyFullParser where variables are defined and in the last section where files with syntactic
errors are tested.

3.3.2 Windows

In Windows, if you have a DMIS parser, start by copying the testFullParser.bat batch file to
testMyFullParser.bat (or a name you prefer). Edit testMyFullParser.bat by replacing the
TESTOK=cal | par seOneCK. bat line near the beginning with TESTOK=cal |
par seMyOneX. bat . Also, delete the TEST=cal | par seOne. bat line. Then write a
parseMyOneOK.bat file that:

» calls your parser instead of dmisParser.

» takes the arguments your parser takes.

» performs the output test(s) you want.

Several other items may need to be changed, particularly near the beginning of
testMyFullParser.bat where variables are defined and in the last section where files with
syntactic errors are tested.

3.4 What doesthedmisParser do when it parsesasingle DMISinput file?

If the first argument to the command to run the dmisParser ends in .dmi, it assumes the fileis a
DMIS input file and does the following.

When the dmisParser runs, it runs in two stages: preprocess and parse. Wherever there may be an
error in the DMIS input file, an error or warning message is printed preceded by the line number
(in the input file) of the line that caused the problem. In the parse phase, the text of the line that
caused the problem is also printed, up to the point at which the problem occurred. See Section 3.6
for further details and examples.

12



Users Manual NIST DMIS Test Suite 2.2.1

3.4.1 Preprocess

The preprocessor reads the DMIS input file and writes the file PrEpRoCeSsDmis. In general,
one line of input becomes one line of output, except that comments and blank lines are deleted,
continued lines are concatenated together (with the continuation signs removed), and CALL
statements are modified as described below.

The length of every line of the input file is checked. If aline is more than 65536 characters long,
the dmisParser prints an error message and quits.

Each line of the input fileis checked to be sure there is a carriage return followed by aline feed at
the end. If one of those characters is found but the other is missing, an error message is printed,
but the missing character isinserted where it belongs and processing continues.

If a comment line (one starting with $$) follows a continued line (one ending with $), an error
message is printed, and processing continues.

The line number from the input file is inserted at the beginning of each output line. Where there
are blank lines or continuation lines in the input, those line numbers do not appear in the output.

In order to check MACRGs, when the preprocessor reads a DMIS MACRQ, it reprints the MACROINn
the preprocessed file and saves the text of the MACRO. At the point where the MACROis CAL Led,
the text of the MACRO is inserted in the preprocessed file with the arguments to the CALL
substituted for the MACRO arguments. This creates a callBlock starting with the CALL statement
and ending with the ENDMAC statement copied in from the MACRO. For more details, see the in-
line documentation in utilityComponents/linuxSun/source/dmis.y of the functions isMacro,
isCall, findMacroArgs, findCallArgs, insertCalledM acro, doCall, and doMacro.

3.4.2 Parse

In the parse phase, the dmisParser reads and parses the PrEpRoCeSsDmis file. While the
dmisParser parses, it builds a parse tree in terms of the C++ classes that represent DMIS. Details
of parse tree structure are given in the system builders manual.

Some of the error and warning messages reported in the parse phase were written by a
programmer and identify a very specific error (such as “variable reused”). Many of the error and
warning messages, however, are generated automatically by automatically generated software.
These tend to be generic and are often not intuitively clear.

When the dmisParser parses the preprocessed file and reads a DMIS MACRO, the dmisParser
makes no attempt to parse it (the dmisParser cannot parse it because the types of the arguments
are not specified). But when the dmisParser parses a CALL to the MACRO, it does parse it (in the
CALL, the types of the things that replaced the MACRO arguments are known). If an error occurs
while a CALLed MACRO is being parsed, the line number given is the line number of the CALL,
not the line number of the MACRQO.

At the end of the parse phase, two summary messages of theform“N err or s” and
“M war ni ngs” are printed and the PrEpRoCeSsDmls file is removed.

3.5 What doesthe dmisParser do when it parsesa set of DMISinput files?

If the first argument to the command to run the dmisParser does not end in .dmi, the dmisParser
assumes the file contains a list of names of DMIS input files. The dmisParser handles the filesin

13



Users Manual NIST DMIS Test Suite 2.2.1

thelist in the order given and does the following for each.

First, the dmisParser checks that the name ends in .dmi and checks that the file exists. If either of
these checks fails, the dmisParser prints an error message and quits.

Then the dmisParser processes the file as described in Section 3.4.

3.6 What do the dmisParser’serror and warning messages mean?

If the dmisParser runs into an error during the preprocessing stage, it will print an error message
and fix the problem in the preprocessing output file if it can. If the input file or preprocessing
output file cannot be opened or if the dmisParser reads a line more than 65536 characters long, it
will print an error message and quit. Every error message that can be sent during preprocessing is
easy to understand. If there is a preprocessing error, the line number of the line causing the error
will be printed, but the line will not be printed. For example the following preprocessor error
message means that line 3 isthe last line of the file and the endline character is missing from that
line.

3: Error - no endline on last line of file

If the dmisParser runs into an apparent error while parsing the preprocessed file, it will print two
lines: (1) the line number from the input file followed by either an error message or a warning
message, and (2) the text of the line on which the error occurred, but only up to the point where an
error was detected. For example, the following two lines mean that an error was found on line 7,
and the error is that a MACRO has two arguments that are the same. The actua line 7 may be
longer, but the dmisParser stopped parsing the line when it ran into the error at the second x.

7: argunent reused
M f eat def ) =MACRQ x, x

The error message above was written by a human. The error messages written by a human are
usually understandable with a little study. Often it will help to refer to the text of the DMIS 5.2
standard.

Many error messages are machine-authored, not written by a human. The machine-authored error
messages are generated automatically on the fly by the dmisParser and may be difficult to
understand. They al start with “syntax error”. Here is a machine-authored example.

4: syntax error, unexpected RPAREN, expecting C
y = ASSI GV M\( x)

In this example, the dmisParser has been reading the ASSI GN statement and has just read the
right parenthesis (known to the dmisParser as RPAREN) following x. The dmisParser knows that
the MN function must have at least two arguments and the arguments are separated by commas
(known to the dmisParser as C). The dmisParser was expecting to see a comma after x, but it saw
aright parenthesisinstead, so it stopped parsing the line and printed an error message.

The dmisParser stops trying to parse a line as soon as it finds an error on the line, but then it tries
to continue parsing starting with the next line. Usually this is successful, but sometimes the
dmisParser will become confused and start giving off incorrect error messages. Thisismost likely
to happen if an error occurs on the first line of ablock (such asin a MEAS or GOTARG statement).
To deal with this problem, the error that caused the initial error message should be fixed in the
DMISinput file, and the file should be run through the dmisParser again.

14



Users Manual NIST DMIS Test Suite 2.2.1

Warning messages usually indicate errors. The dmisParser can be tricked into thinking there is a
problem for multiply DECLared variables, multiply defined labels, and references to undefined
labels even if there is no problem. When it detects a problem of any of those types, since it cannot
be sure there is an error, the dmisParser emits a warning message rather than an error message.
The percentage of casesin which awarning isnot actually an error is very low, however.

4 The dmisConfor manceChecker

The dmisConformanceChecker checks that DMIS input files conform to a conformance class of
DMIS. It aso gathers information on the use of DMI S statementsin aset of DMISinput files. The
dmisConformanceChecker starts processing a DMIS input file by running the same parser as used
in the dmisParser, so the operations described in Section 3.4 and the messages described in
Section 3.6 apply to the dmisConformanceChecker. The dmisConformanceChecker does its work
by analyzing the parse tree(s) built by the parser.

4.1 How do | usethe dmisConformanceChecker to check that a single DMISinput file
conformsto a particular DM S confor mance class?

For all three operating systems, you run the dmisConformanceChecker by typing acommand in a
command window. The same procedure is used for Linux and SunOS. Windows is slightly
different.

The dmisConformanceChecker takes one or more command arguments. The first argument is
either (1) the path to a DMIS input file to parse or (2) the path to a file containing the paths to a
number of DMIS input files. If thereis only one argument, full DMIS is used as the conformance
class. If there are more arguments, they identify the conformance modules in your conformance
class. If there are at |east two arguments, the second argument must identify alevel of an AP. The
choices for the second argument are: PM1, PM2, PM3, TW1, TW2, or TW3. Those indicate
levels 1, 2, or 3 of the prismatic AP or the thin-walled AP. If there are more than two arguments,
the remaining arguments must each identify alevel of one of the addenda. The choices are zero or
one from each of the following groups of three, in any order: (RY1, RY2, RY3), (MC1, MC2,
MC3), (CT1, CT2, CT3), (IP1, IP2, IP3), (QI1, QI2, QI3), (MU1, MU2, MU3), (SF1, SF2, SF3).

The dmisConformanceChecker writes its messages in the command window, but output
redirection may be used to send the messages to afile.

4.1.1 Linux and SunOS

Example 1. Get into the utilities/linux directory if you are using Linux or the utilities/sun
directory if you are using SUnOS. Give the following command.

bin/dmisConformanceChecker ..l..IparserTestFiles/okin/units1.dmi PM3

The command parses the DMIS input file units1.dmi, runs a conformance check, and writes the
messages “O parser errors”, “0O parser warnings”, and “0O confornmance
checker errors” onthreelinesinthe command window.

Example 2. Get into the utilities/linux directory if you are using Linux or the utilities/sun
directory if you are using SUnOS. Give the following command.

binldmisConformanceChecker ..l..IparserTestFileslokinlunits1.dmi PM2

15



Users Manual NIST DMIS Test Suite 2.2.1

The command parses the DMIS input file units1.dmi, runs a conformance check, and writes the
following messages. The conformance checker error messages are given because ANGRAD, CM
METER, and FEET, which are in the units1.dmi file, are not allowed in level 2 of the prismatic
AP.

O parser errors
0 parser warni ngs

no angl eUnit _ANGRAD subtype of angl eUnit
ANGRAD

no | engt hUnit CM subtype of |engthUnit
CM

no | engt hUnit METER subtype of | engthUnit
METER

no | engt hUnit_ FEET subtype of |engthUnit
FEET

4 conf ormance checker errors

Example 3. Get into the utilities/linux directory if you are using Linux or the utilities/sun
directory if you are using SUnOS. Give the following command.

bin/dmisConformanceChecker ..l..IparserTestFiles/okIn/units1.dmi

The command parses the DMIS input file units1l.dmi and writes the messages “0O par ser
errors” and“0 parser warni ngs” ontwo linesin the command window. This command
checks only that the file conformsto full DMIS.

Example 4. Get into the utilities/linux directory if you are using Linux or the utilities/sun
directory if you are using SUnOS. Give the following command.
binldmisConformanceChecker ..l..IparserTestFileslannexAIn/A.07.dmi PM3 QI2 SF1

The command parses the DMIS input file A.07.dmi, runs a conformance check, and writes the
messages “O parser errors”, “0O parser warnings”, and “O confornmance
checker errors” on threelinesin the command window. This indicates that level 3 of the
prismatic AP, plus level 2 of the QIS addendum and level 1 of the soft gauging addendum are
sufficient to handle A.07.dmi. If QI3 had been used instead of QI2 (or SF2 or SF3 instead of
SF1), the same messages would have been written.

4.1.2 Windows
Example 1. Get into the utilities\windows directory. Give the following command.

bin\dmisConformanceChecker ..\..\parserTestFiles\okin\units1.dmi PM3

The command parses the DMIS input file units1.dmi, runs a conformance check, and writes the
messages “O parser errors”, “0O parser warnings”, and “0O confornmance
checker errors” onthreelinesinthe command window.

16



Users Manual NIST DMIS Test Suite 2.2.1

Example 2. Get into the utilities\windows directory. Give the following command.

bin\dmisConformanceChecker ..\..\parserTestFiles\okin\units1.dmi PM2
The command parses the DMIS input file units1.dmi, runs a conformance check, and writes the
following messages. The conformance checker error messages are given because ANGRAD, CM
VETER, and FEET, which are in the units1.dmi file, are not allowed in level 2 of the prismatic
AP.

O parser errors
0 parser warni ngs

no angl eUni t ANGRAD subtype of angl eUnit
ANGRAD

no | engthUnit_ CM subtype of |engthUnit
™M

no | engthUnit_ METER subtype of | engthUnit
MVETER

no | engthUnit_ FEET subtype of |engthUnit
FEET

4 conformance checker errors

Example 3. Get into the utilities\windows directory. Give the following command.

bin\dmisConformanceChecker ..\..\parserTestFiles\okin\units1.dmi

The command parses the DMIS input file unitsl.dmi and writes the messages “O par ser
errors” and“0 parser warni ngs” ontwo linesin the command window. This command
checks only that the file conformsto full DMIS.

Example 4. Get into the utilities\windows directory. Give the following command.

bin\dmisConformanceChecker ..\..\parserTestFiles\annexAIn\A.07.dmi PM3 QI2 SF1

The command parses the DMIS input file A.07.dmi, runs a conformance check, and writes the
messages “O parser errors”, “0O parser warnings”, and “0O confornmance
checker errors” on threelinesin the command window. This indicates that level 3 of the
prismatic AP, plus level 2 of the QIS addendum and level 1 of the soft gauging addendum are
sufficient to handle A.07.dmi. If QI3 had been used instead of QI2 (or SF2 or SF3 instead of
SF1), the same messages would have been written.

4.2 How can | use a single command to run confor mance checks and collect data on
statement usage for a whole set of DM 1S input files?

Start by making a file listing the names of the DMIS input files you want to test. The file names
must include the path. In the examples below, the runAllFull and runSomeFull files are of this
sort. TherunSomekFull fileisabout half of the runAllFull file.

17



Users Manual NIST DMIS Test Suite 2.2.1

4.2.1 Linux and SunOS

To run a set of DMIS input files through the dmisConformanceChecker in Linux, get into the
utilities/linux/full directory; in SUnOS, get into the utilities/sun/full directory.

Example 1. Give the command:

..IbinldmisConformanceChecker runAllFull

The command runs the 327 DMIS input files listed in the runAllFull file through the
dmisConformanceChecker. Output printing goes to the command window. The names of the
DMISfilesmust end in .dmi.

The command takes 5 seconds or so to run on a Dell Precision 670 PC running Linux and about 8
seconds on a Sun Fire V215 running SunOS, and it prints 2602 lines. Most of the lines give the
names of each DMIS input file parsed and the parser warnings and parser errors report for each
input file. At the end, the following summary report is printed (where many lines have been
omitted, as shown by ...). The meaning of the summary report should be obvious. There are no
names of DMIS statements that were not used at the end because al of the statements were used.

Total statement uses for all files
aclrat 28

al gdef 4

assign 211

badtst 6

bound 4

cal i bMaster 1

calibRtab 3

cal i bSens 12

vform 30

w ndef 5

wkpl an 5

wist 20

wite 10

xtern 5

xtract 6

100. 0% of the commands in full DM S were used.

Example 2. Give the command:

..Ibin/ldmisConformanceChecker runSomeFull

The command runs the 143 DMIS input files listed in the runSomeFull file through the
dmisConformanceChecker. Output printing goes to the command window. The names of the
DMISfilesmust end in .dmi.

The command takes 2 seconds or so to run on a Dell Precision 670 PC running Linux and about 3
seconds on a Sun Fire V215 running SunOS, and it prints 1216 lines. Most of the lines give the
names of each DMIS input file parsed and the parser errors and parser warnings report for each
input file. At the end, the following summary report is printed (where many lines have been

18



Users Manual NIST DMIS Test Suite 2.2.1

omitted, asshown by ...).

Total statement uses for all files
aclrat 27

al gdef 2

assign 51

badt st 4

bound 4

cal i bMaster 1

units 2

vform 4

wist 3

xtern 4

67.9% of the commands in full DM S were used.
The foll owm ng commands were not used:
lotid

operid

panmeas

partid

partrv

uncert set

val ue

w ndef

wkpl an

wite

xtract

Example 3. Give the command:

..IbinldmisConformanceChecker runSomeFull PM3 RY3 MC3 CT3 IP3 QI3 MU3 SF3

The command runs the 143 DMIS input files listed in the runSomeFull file through the
dmisConformanceChecker. The conformance class being used includes everything that is allowed
in level 3 of the prismatic AP and al 7 addenda. Output printing goes to the command window.
The names of the DMISfilesmust end in .dmi.

The command takes 2 seconds or so to run on a Dell Precision 670 PC running Linux and about 3
seconds on a Sun Fire V215 running SUnOS, and it prints 1905 lines. Most of the lines give the
names of each DMIS input file parsed and the parser warnings, parser errors, and conformance
errors report for each input file. At the end, the following summary report is printed (where many
lines have been omitted, as shown by ...). The meaning of the summary report should be obvious
except for the Mat the beginning of some lines. The “ Total statement uses” list at the top includes
only statements that are in the conformance class. An Mat the beginning of a line means that the
statement is essential for the metrology functionality of the conformance class. In the example,
for instance, “M paneas” occursin the second section of the report because pameas is essential
in the CT3 (contact scanning level 3) conformance module, but no pameas command was used in
any of the input files. The Mis used only in the first and second sections of the report.

19



Users Manual NIST DMIS Test Suite 2.2.1

Total statement uses for all files
aclrat 27

assign 51

badt st 4

bound 4

cal i bMaster 1

Mtol Profp 1

Mtol Profs 1

t ool df 2

units 2

viorm 4

wist 3

xtern 4

67.4% of the commands in the confornmance class were used.
The foll ow ng commands were not used:
lotid

operid

M paneas

partid

partrv

M tol Wdth
M trans
uncertal g
uuncert set
val ue

wkpl an
wite
xtract

The follow ng commands not in the conformance cl ass were used:
al gdef
croscl

dm sOf f

dm sOn

f eat Edgept
f eat Geom

f eat Obj ect
fildef
geom
group
[itdef

ref mt

4.2.2 Windows

To run a set of DMIS input files through the dmisParser in Windows, get into the
utilities\windows\full directory.

20



Users Manual NIST DMIS Test Suite 2.2.1

Example 1. Give the command:

..\bin\dmisConformanceChecker.exe runAllFull

The command runs the 327 DMIS input files listed in the runAllFull file through the dmisParser.
Output printing goes to the command window. The names of the DMIS files must end in .dmi. In
Windows, it does not matter whether or not you include the .exe suffix in the name of the
command.

The command takes about 6 seconds to run on a Dell Dimension 8300 PC running Windows XP,
and it prints 2602 lines. Most of the lines give the names of each DMIS input file parsed and the
parser warnings and parser errors for each input file. At the end, the summary report shown in
Example 1 of Section 4.2.1 is printed (where many lines have been omitted, asshown by ...). The
meaning of the summary report should be obvious. There are no names of DMIS statements that
were not used at the end because al of the statements were used.

Example 2. Give the command:

.\bin\dmisConformanceChecker runSomeFull

The command runs the 143 DMIS input files listed in the runSomeFull file through the
dmisConformanceChecker. Output printing goes to the command window. The names of the
DMISfilesmust end in .dmi.

The command takes about 3 seconds to run on a Dell Dimension 8300 PC running Windows XP,
and it prints 1216 lines. Most of the lines give the names of each DMIS input file parsed and the
parser errors and parser warnings report for each input file. At the end, the summary report shown
in Example 2 of Section 4.2.1 is printed (where many lines have been omitted, as shown by ...).

Example 3. Give the command:

.\bimdmisConformanceChecker runSomeFull PM3 RY3 MC3 CT3 IP3 QI3 MU3 SF3

The command runs the 143 DMIS input files listed in the runSomeFull file through the
dmisConformanceChecker. The conformance class being used includes everything that is allowed
in level 3 of the prismatic AP and al 7 addenda. Output printing goes to the command window.
The names of the DMISfilesmust end in .dmi.

The command takes about 3 seconds to run on a Dell Dimension 8300 PC running Windows XP,
and it prints 1905 lines. Most of the lines give the names of each DMIS input file parsed and the
parser warnings, parser errors, and conformance errors report for each input file. At the end, the
summary report shown and explained in Example 3 of Section 4.2.1 is printed.

5 The dmisConfor manceRecor der

The dmisConformanceRecorder automatically inserts conformance information on the DM SIWN
or DM SMD line of a DMIS input file. The conformance information identifies which
conformance modules are needed to deal with the file. The dmisConformanceRecorder starts
processing a DMIS input file by running the same parser as used in the dmisParser, so the
operations described in Section 3.4 and the messages described in Section 3.6 apply to the
dmisConformanceRecorder. The dmisConformanceRecorder does its work by analyzing the parse
tree built by the parser.

21



Users Manual NIST DMIS Test Suite 2.2.1

5.1 How do | usethe dmisConfor manceRecorder to put confor mance information into a
DMISinput file?

For all three operating systems, you run the dmisConformanceRecorder by typing acommand in a
command window. The same procedure is used for Linux and SunOS. Windows is dightly
different.

The dmisConformanceRecorder takes one to four command arguments. The first argument is the
path to a DMIS input file in which to insert conformance information. The other arguments may
be any or all of PM, TW, and QI in any order.

If neither PM nor TW isgiven or if both are given, then the conformance information will include
both PM,n and TW,m where m and n are each 1, 2, 3, or 4. If only PM is given, then the
conformance information will include only PM,n. If only TW is given, then the conformance
information will include only TW,m.

For some DMI S input files, the dmisConformanceRecorder will have a choice between IP and QI
because severa DMI S statements are included in both addenda at the same level. For such files, if
QI isnot given as an argument, the dmisConformanceRecorder will choose to use IP since |P has
fewer requirements than QI. If QI is given as an argument and there is a choice, the
dmisConformanceRecorder will choose to use QI.

If there is a parse error in the file, error messages will be printed and no conformance statement
will be generated. The file will not change.

5.1.1 Linux and SunOS

Example 1. Get into the utilities/linux directory if you are using Linux or the utilities/sun
directory if you are using SUnOS. Give the following commands.

cp ..l..IparserTestFileslannexAIn/A.07.dmi junk
bin/dmisConformanceRecorder junk
The command will run amost instantly, and the following messages will be printed.

runni ng command "dm sConf or manceRecor der j unk"

starting NIST DM S Conf ornmance Recorder, Version 2.2.1

for DMS Version 5.2

parsing file junk

parsed all 58 lines of file - no parser errors

conformance statenent "PM 3, TW3, Q,2, SF, 1" inserted at end of
DM SW | i ne

original file copied to junk.back

exiting NI ST DM S Conf or mrance Recor der

Thejunk filewill not change, so if you are feeling skeptical, edit junk by deleting everything after
5. 2 on the DM SIWN line of junk before running the dmisConformanceRecorder. Then look at
junk again afterwards.

Example 2. Get into the utilities/linux directory if you are using Linux or the utilities/sun
directory if you are using SUnOS. Give the following commands.

cp ..l..IparserTestFileslannexAIn/A.07.dmi junk

22



Users Manual NIST DMIS Test Suite 2.2.1

bin/ldmisConformanceRecorder junk TW

The same messages shown in the previous example will be printed except that “PM 3” will not be
in the conformance statement. After the dmisConformanceRecorder finishes running, compare
thefirst line of A.07.dmi with the first line of junk. They will be identical except that PM 3 will
be missing from junk.

Example 3. Get into the utilities/linux directory if you are using Linux or the utilities/sun
directory if you are using SUnOS. Give the following commands.

cp ..l..IparserTestFiles/okin/cimpid1.dmi junk
bin/ldmisConformanceRecorder junk QI

After these commands are given, compare the DM SIWN line of clmpidl.dmi with the DM SMN
line of junk. They will be the following:

DMSW / 'DMS parser test for CLMPID, 05.2, PM1, TW1, IP, 2
DMSW / DM S parser test for CLMPID, 05.2, PM1, TW1, Q,62

Note that the last thing on the line has changed from | P, 2 to Q , 2. Either IP2 or QI2 is
sufficient to handle this file. Since IP is preferred to QI by default, it was used in cimpidl.dmi.
Since QI appeared at the end of the dmisConformanceRecorder command, QI was used in junk.

5.1.2 Windows
Example 1. Get into the utilities\windows directory. Give the following commands.

copy ..\..\parserTestFiles\annexAIn\A.07.dmi junk
bin\dmisConformanceRecorder junk
The command will run amost instantly, and the following messages will be printed.

runni ng command "dm sConf or manceRecor der junk"

starting NIST DM S Conf ormance Recorder, Version 2.2.1

for DMS Version 5.2

parsing file junk

parsed all 58 lines of file - no parser errors

conformance statenent "PM 3, TW3, Q,2, SF, 1" inserted at end of
DM SW | i ne

original file copied to junk.back

exiting NI ST DM S Conf or mance Recor der

Thejunk file will not change, so if you are feeling skeptical, edit junk by deleting everything after
5. 2 on the DM SWN line of junk before running the dmisConformanceRecorder. Then look at
junk again afterwards.

Example 2. Get into the utilities\windows directory. Give the following commands.
copy ..\..\parserTestFiles\annexAIn\A.07.dmi junk
bin\dmisConformanceRecorder junk TW

The same messages shown in the previous example will be printed except that “PM 3” will not be
in the conformance statement. After the dmisConformanceRecorder finishes running, compare
thefirst line of A.07.dmi with the first line of junk. They will be identical except that PM 3 will

23



Users Manual NIST DMIS Test Suite 2.2.1

be missing from junk.
Example 3. Get into the utilities\windows directory. Give the following commands.

copy ..\..\parserTestFiles\okin\cImpid1.dmi junk
bin\dmisConformanceRecorder junk QI

After these commands are given, compare the DM SIWN line of clmpidl.dmi with the DM SMN
line of junk. They will be the following:

DMSW / DM S parser test for CLMPID, 05.2, PM1, TW1, IP, 2
DMSW / 'DMS parser test for CLMPID, 05.2, PM1, TW1, Q,62

Note that the last thing on the line has changed from | P, 2 to Q , 2. Either IP2 or QI2 is
sufficient to handle this file. Since IP is preferred to QI by default, it was used in cimpidl.dmi.
Since QI appeared at the end of the dmisConformanceRecorder command, QI was used in junk.

5.2 What does the confor mance infor mation mean?

If both TW and PM are given in the conformance information, they are alternatives, but if any of
the addenda are included, they are all required. For example, PM 3, TW3, Q,2, SF, 1
means that either PM 3, QI 2, and SF1 are required or TW3, QI2, and SF1 are required.

A 1, 2, or 3 after PM, TW, or any of the addendainitialsindicates that level 1, 2, or 3 of that AP or
addendum is needed. A 4 may appear after PM and TW but not after any of the addendainitials. A
4 after PM indicates that the file includes a construct that isin full DMIS but not in any level of
PM and not in any level of any addendum. A 4 after TW indicates that the file includes a construct
that isin full DMIS but not in any level of TW and not in any level of any addendum.

The level of each conformance module chosen by the dmisConformanceRecorder is the minimum
level required to handle thefile.

6 The dmisConformanceTester

Running the dmisConformanceTester on a DMIS input file is similar to first running the
dmisConformanceChecker and then running the dmisConformanceRecorder. There are two
differencesin the second half of the action. First, the dmisConformanceTester prints conformance
information in the command window rather than inserting it in a file. Second, the
dmisConformanceTester prints the C++ construct that first caused each conformance module to
have the level it has.

6.1 How do | usethe dmisConfor manceTester ?

For all three operating systems, you run the dmisConformanceTester by typing a command in a
command window. The same procedure is used for Linux and SunOS. Windows is dlightly
different.

The dmisConformanceTester takes two to nine arguments. The first argument is the path to a
DMIS input file to test. The second argument is alevel of an AP (one of PM1, PM2, PM3, TW1,
TW2, or TW3). Any additional arguments are each alevel of an addendum, i.e., 0 or 1 from each
of the following 7 sets (RY1,RY2,RY3), (CT1,CT2,CT3), (MCLMC2MC3), (IPL,I1P2,P3)
(Q11,Q12,Q13), (MU1L,MU2,MU3), (SF1,SF2,SF3).

24



Users Manual NIST DMIS Test Suite 2.2.1

If the dmisConformanceTester has a choice between IP and QI, it will choose IP unless the
arguments include QI and do not include IP.

6.1.1 Linux and SunOS

Example 1. Get into the utilities/linux directory if you are using Linux or the utilities/sun
directory if you are using SunOS. Give the following command.

bin/[dmisConformanceTester ..I..IparserTestFiles/okin/cimpid1.dmi PM1 QI1

The following messages will be printed in the command window. The first five lines are the same
as what the dmisConformanceChecker would print. The CLMPI D statement is in QI2 but not in
QI1l, so a conformance error message is given. The sixth line is what the
dmisConformanceRecorder would add to the DM SIWN line of the clmpid1.dmi file. The last two
lines are explained in Section 6.2.

O parser errors
0 parser warni ngs

no cl npi dSt m subt ype of dm sFreeSt at enent
Cl (C1)=CLMPI D/’ ecl anpsi &’

1 confornmance checker error

PM1, Q,2
PML i nputFile a_dm sFirstStatenent
Q2 clnpidStm

Example 2. Get into the utilities/linux directory if you are using Linux or the utilities/sun
directory if you are using SUnOS. Give the following command.
bin/ldmisConformanceTester ..I..IparserTestFiles/okin/cimpid1.dmi PM1 QI2

The following messages will be printed in the command window. The first three lines are the same
as what the dmisConformanceChecker would print. The CLMPI D statement isin QI2, so there are
no conformance errors. The fourth line is what the dmisConformanceRecorder would add to the
DM SWN line of the cimpidl1.dmi file. The last two lines are explained in Section 6.2.

O parser errors
0 parser warni ngs

0 conformance checker errors
PM1, Q,2

PML i nputFile a_dm sFirstStatenment
Q2 clnmpidStm

25



Users Manual NIST DMIS Test Suite 2.2.1

6.1.2 Windows
Example 1. Get into the utilities\windows directory. Give the following command.

bin\dmisConformanceTester ..\..\parserTestFiles\okin\cImpid1.dmi PM1 QI1

The following messages will be printed in the command window. The first five lines are the same
as what the dmisConformanceChecker would print. The CLMPI D statement is in QI2 but not in
QI1l, so a conformance error message is given. The sixth line is what the
dmisConformanceRecorder would add to the DM SIWN line of the clmpid1.dmi file. The last two
lines are explained in Section 6.2.

O parser errors
0 parser warni ngs

no cl npi dSt m subt ype of dm sFreeSt at enent
Cl (Cl)=CLMPI I’ ecl anpsi &’

1 confornmance checker error

PM1, Q,2
PML i nputFile a_dm sFirst Statenent
Q2 clnpidStm

Example 2. Get into the utilities\windows directory. Give the following command.

bin\dmisConformanceTester ..\..\parserTestFiles\okin\clmpid1.dmi PM1 QI2

The following messages will be printed in the command window. Thefirst three lines are the same
as what the dmisConformanceChecker would print. The CLMPI D statement isin QI2, so there are
no conformance errors. The fourth line is what the dmisConformanceRecorder would add to the
DM SWN line of the cimpid1.dmi file. The last two lines are explained in Section 6.2.

O parser errors
0 parser warni ngs

0 conformance checker errors

PM1, Q,2
PML i nputFile a_dm sFirst Statenent
Q2 clnmpidStm

6.2 What does the output of the dmisConfor manceTester mean?

The beginning of the output from the dmisConformanceTester (through the line giving the
number of conformance checker errors) is the same as the output produced by the
dmisConformanceChecker. See Section 4.1.1 or Section 4.1.2.

The next line of output from the dmisConformanceTester is alisting of conformance information
in the same format as produced by the dmisConformanceRecorder. See Section 5.2.

26



Users Manual NIST DMIS Test Suite 2.2.1

The remaining lines of output show the C++ construct first encountered by the
dmisConformanceTester that caused each conformance module to have the level it has. For
example, suppose thelines are:

PML inputFile a_dm sFirst Statenent
| P2 cl npi dStm

Thefirst line means that the dmisConformanceTester decided prismatic level 1 isrequired as soon
as it started traversing the parse tree (which hasi nput Fi | e at its root). In order to handle the
a_dm sFi rst St at enent attribute of thei nput Fi | e class when the prismatic AP is being
used, level 1 isrequired. Whenever a message has three parts, as on the first line, the third item is
an attribute of the C++ class named in the second item.

The second line means that when the dmisConformanceTester encountered an instance of the
cl nmpi dSt m C++ class, it decided that level 2 of the IP addendum is required. Whenever a
message has two parts, as on the second line, the second item is the name of a C++ class.

The intent of providing thisinformation isto help the user understand why the particular levels of
particular conformance modules are selected. It would be clearer if sections of DMIS code were
given in addition to the C++ class information, but implementing that has not yet been attempted.
In most cases (such as the second line above), the meaning of the message will be easy to
understand since the names of the C++ classes and their attributes have been chosen to be similar
to the DMIS names.

There may be many itemsin aDMIS input file, each of which forces a conformance module to the
same maximum level. The messages from the dmisConformanceTester only identify the first of
those items encountered.

7 The dmisTestFileReductor

7.1 What doesthe dmisTestFileReductor do?

The dmisTestFileReductor provides an easy way to generate a set of parser test filesfor any of the
98,304 allowed combinations of conformance modulesl. In its simplest use, the
dmisTestFileReductor takes a marked DMIS input file (the incoming file) as input and produces a
similar but reduced DMIS input file (the outgoing file) as output. The reduction is made by
removing some lines entirely. Which lines of the incoming file are removed is determined by
which conformance module names are used as arguments when the dmisTestFileReductor is
called. In some cases, no outgoing file is produced. An incoming file may be identified by using
its name as an argument when the dmisTestFileReductor is called. If the name of afile containing
alist of the names of DMISinput filesis used as an argument instead of the name of aDMIS input
file, then the entire list of DMIS input fileswill be processed.

The name of the outgoing file is the same as the name of the incoming file, but the outgoing fileis
placed in a directory whose name is another argument to the call to the dmisTestFileReductor.

1. There are 6 choices of AP level, and 4 choices (not at al, 1, 2, or 3) for each of 7 addenda
(6XAxAxAx4x4x4x4 = 98,304).

27



Users Manual NIST DMIS Test Suite 2.2.1

7.2 How areincoming filesmarked?

The files in the parserTestFiles/okin directory are marked for use with the
dmisTestFileReductor. Each of those files is designed to test one particular DMIS statement, and
the file name contains the name of that statement. No other filesin the test suite are appropriate to
use as incoming files. As described in Section 8, the parser test files are syntactically correct but
may not make sense as programs. The files outgoing from the dmisTestFileReductor will make
even less sense, so they should be used only for testing parsers.

Each DMIS code line of each of the 254 DMIS input files in the parserTestFiles/okin directory
is preceded by a comment line naming the minimum conformance modules needed to handle the
DMIS code line. In addition, the first line of each file names the minimum conformance modules
needed to make the file worth using.

For example, hereis afile that could be used for testing handling of the FEDRAT statement.

$$ PM2 TW2

$$ PML TWL

DMSW / 'DM S parser test for FEDRAT, 05.2, PM 2, TW3, RY,2
$$ PM2 TW2

FEDRAT/ POSVEL, | PS, 19. 5
$$ PM2 TWB

FEDRAT/ MESVEL, MPM 19. 5
$$ RY2

FEDRAT/ ROTVEL, RPM 19. 5
$$ PML TWL

ENDFI L

Thefirst lineis“$$ PM2 TW2”. That means that in order to be worth using this file for testing
the FEDRAT statement, at least level 2 of the prismatic AP or level 2 of the thin-walled AP must
be used. If the arguments to the dmisTestFileReductor include only one conformance module
name and that name is PM1 or TW1, then no outgoing file will be produced. If the arguments
include any of PM2, PM3, TW2, or TW3, then an outgoing file will be produced.

The second lineis“$$ PML TWL” because either level 1 of the prismatic AP or level 1 of the
thin-walled AP is adequate for handling the DM SIMN statement on the third line.

The fourth lineis“$$ PM2 TW2” because at least level 2 of the prismatic AP or level 2 of the
thin-walled AP is adequate for handling the FEDRAT/ POSVEL statement on the fifth line.

The sixth lineis“$$ PM2 TWB” because at least level 2 of the prismatic AP or level 3 of the
thin-walled AP is adequate for handling the FEDRAT/ MESVEL statement on the seventh line.

The eighth lineis“$$ RY2” because at least level 2 of the rotary table addendum is needed for
handling the FEDRAT/ ROTVEL statement on the ninth line.

In the markings, any PM and TW levels are alternatives, but if other conformance module names
are given, they are required.

To avoid parse errors in reduced files, where there is a block of statementsin afile, the markings
on the lines inside the block may be changed from what they would normally be so that the entire
block is deleted if the statement starting the block is deleted. For the same reason, lines
referencing alabel may be marked the same as the line that defined the label.

28



Users Manual NIST DMIS Test Suite 2.2.1

7.3 How do | usethe dmisTestFileReductor ?

For all three operating systems, you run the dmisTestFileReductor by typing a command in a
command window. The same procedure is used for Linux and SunOS. Windows is slightly
different.

The dmisTestFileReductor takes three to ten arguments. The first argument is the path to aDMIS
input file to test or to a file containing a list of names of DMIS input files to test. The second
argument is the path to a directory in which to write the outgoing file(s). The third argument isa
level of an AP (oneof PM1, PM2, PM3, TW1, TW2, or TW3). Any additional arguments are each
a level of an addendum, i.e.,, O or 1 from each of the following 7 sets (RY1,RY2,RY3),
(CT1,CT2,CT3), (MC1MC2MC3), (IPLIP2JIP3) (QI1,QI2,QI3), (MU1MU2MU3),
(SF1,SF2,SF3).

7.3.1 Linux and SunOS

Example 1. Get into the utilities/linux/full directory if you are using Linux or the utilities/sun/full
directory if you are using SunOS. Give the following command.

..IbinldmisTestFileReductor ..l..I..IparserTestFiles/okinl/fedrat1.dmi outgoing PM2

No messages will be printed in the command window. After the command runs, a file named
fedratl.dmi will be in the outgoing subdirectory. That file will contain only those lines of DMIS
code from the original fedratl.dmi that can be executed by a system that implements level 2 of
the prismatic AP. The comment lines immediately preceding those DMIS code lines will aso be
in the new version of the file. In addition, the requirements at the end of the DM SMN line will be
updated.

Example 2. Get into the utilities/linux/full directory if you are using Linux or the utilities/sun/full
directory if you are using SUnOS. Give the following command.

..IbinldmisTestFileReductor ..l..l..I[parserTestFiles/okInlfedrat1.dmi outgoing TW2 RY2

No messages will be printed in the command window. After the command runs, a file named
fedratl.dmi will be in the outgoing subdirectory. That file will contain only those lines of DMIS
code from the original fedratl.dmi that can be executed by a system that implements both level 2
of the thin-walled AP and level 2 of the rotary table addendum. The comment lines immediately
preceding those DMIS code lines will aso be in the new version of the file. In addition, the
requirements at the end of the DM SIMN line will be updated.

Example 3. Get into the utilities/linux/full directory if you are using Linux or the utilities/sun/full
directory if you are using SunOS. Remove any files that may be in the outgoing subdirectory.
Give the following command.

..Ibin/dmisTestFileReductor runOkFull outgoing PM2

The runOKFull file contains the paths to al the DMIS input files in the parserTestFiles/okin
directory. While the command runs, a number of messages will be printed in the command
window, each saying that somefile is not being generated “ because file requirements did not meet
conformance class requirements’. After the command is finished running, a set of 136 new parser
fileswill have been printed in the outgoing subdirectory. Each file will be reduced as described in
Example 1. This set of files should be useful for testing a parser that implements only level 2 of
the prismatic AP.

29



Users Manual NIST DMIS Test Suite 2.2.1

7.3.2 Windows
Example 1. Get into the utilities\windows\full directory. Give the following command.

..\bin\dmisTestFileReductor ..\..\..\parserTestFiles\okin\fedrat1.dmi outgoing PM2

No messages will be printed in the command window. After the command runs, a file named
fedratl.dmi will bein the outgoing subdirectory. That file will contain only those lines of DMIS
code from the original fedratl.dmi that can be executed by a system that implements level 2 of
the prismatic AP. The comment lines immediately preceding those DMIS code lines will also be
in the new version of the file. In addition, the requirements at the end of the DM SMN line will be
updated.

Example 2. Get into the utilities\windows\full directory. Give the following command.

..\bin\dmisTestFileReductor ..\..\..\parserTestFiles\okin\fedrat1.dmi outgoing TW2 RY2

No messages will be printed in the command window. After the command runs, a file named
fedratl.dmi will bein the outgoing subdirectory. That file will contain only those lines of DMIS
code from the original fedratl.dmi that can be executed by a system that implements both level 2
of the thin-walled AP and level 2 of the rotary table addendum. The comment lines immediately
preceding those DMIS code lines will also be in the new version of the file. In addition, the
requirements at the end of the DM SMN line will be updated.

Example 3. Get into the utilities\windows\full directory. Remove any files that may be in the
outgoing subdirectory. Give the following command.

..\bin\dmisTestFileReductor runOkFull outgoing PM2

The runOKFull file contains the paths to al the DMIS input files in the parserTestFiles/okin
directory. While the command runs, a number of messages will be printed in the command
window, each saying that somefile is not being generated “ because file requirements did not meet
conformance class requirements’. After the command is finished running, a set of 136 new parser
fileswill have been printed in the outgoing subdirectory. Each file will be reduced as described in
Example 1. This set of files should be useful for testing a parser that implements only level 2 of
the prismatic AP.

8 Parser Test Files

Note: In general, parser test fileswill cause errorsin DMI S execution systems. Use files from
the systemsTestFiles directory (see Section 9) if you want to test a DMI S execution system.

8.1 What arethe parser test fileslike?

The files in the parserTestFiles directory conform to the syntax rules implicit in the EBNF for
DMIS plus additional rules about variables and labels.

The syntax rules implicit in the EBNF include the syntax described in the “Input Formats’
descriptionsin section 6 of DMIS 5.2, plus the following:
* Integer values (not real values) must be used where DMI S requires integer values.

The additional rules stated in the text of DMIS 5.2 to which the parser test files conform are:
 All variables must be explicitly declared with DECL or implicitly declared by being
parameters of a MACRO.

30



Users Manual NIST DMIS Test Suite 2.2.1

» A variable of a given name may not be declared twice with DECL or used twice as a
parameter of the same MACRO.

» Wherever a statement or an expression requires a variable to be of a given type, the
variable used must be of the correct type.

* Blocks of a given type may contain only those types of statements that are allowed in
blocks of that type.

* All labels must be defined before they are referenced.

* A label of agiven type may be defined only once, except for feature labels, since DMIS
allows feature labels to be redefined.

Most of the filesin the parserTestFiles directory are not suitable astest filesfor DMIS execution
systems (systems that carry out the statementsin a DMIS input file) because the files:
* may contain semantic errors, such as having a negative number where a positive number
isrequired,
* may contain nonsense such as attempting to measure points on a feature that are not near
the feature,
* may crash the equipment.

8.2What dothe“dmi” and “out” filename suffixes mean?

Most of the files in the parserTestFiles directory are DMIS input files and have the suffix .dmi.
These are files for testing DMIS utilities.

The OK.out file containstwo lines: “O errors” and“0 war ni ngs”. All the other filesin the
parserTestFiles directory that have the suffix .out are files containing the error and warning
messages that the NIST DMIS parser prints when it parses a file with the same base name and a
.dmi suffix. The files in this directory that have the suffix .out are not DMIS output files as
defined in DMIS 5.2.

8.3What isin the parser TestFiles directory?
As shown in Figure 4 and described below, the parserTestFiles directory has six subdirectories.

1. The annexAln directory contains the examples from Annex A of DMIS 5.2. In most cases
these have been modified by adding DM SIVN and ENDFI L.

2. The annexAOQut directory contains only one file, A.28.out, which contains messages printed
by the dmisParser when it parses A.28.dmi.

3. Theerrorln directory contains parser test fileswith errorsin them. The file names of all of these
filesinclude the string Error.

4. The errorOut directory contains .out files corresponding to the files in the errorin directory.
Each file contains the error and warning messages printed by the dmisParser when it parses the
corresponding file from the corresponding errorin directory.

5. The okIn directory contains 254 syntactically correct parser test files, with one or more for each
subsection of section 6 of DMIS 5.2. For most of these files, the name of the file corresponds to
the name of a DMIS statement. These directories also contain syntactically correct programs
testing expressions and the preprocessor of the dmisParser. As described in Section 7, each line of
DMIS code in each file in this directory is preceded by a comment line that names the minimum
conformance modules needed in order for the line to be in conformance. The first line of each file

31



Users Manual NIST DMIS Test Suite 2.2.1

is acomment naming the minimum conformance modules needed to make the file worth using as
atest file for the DMIS statement in the name of thefile.

6. The okOut directory contains three files: OK.out (which contains the messages produced by
the dmisParser when there are no parser errors or warnings), OKconf.out (which contains the
messages produced by the dmisConformanceChecker when there are no parser errors or warnings
and no conformance errors), and confusing.out (which contains what the dmisParser will print
when it parses the confusing.dmi file).

parserTestFiles
annexAln
annexAOut
errorin
errorOut
okln
okOut

Figure 4. Parser TestFiles Directory Structure

8.4 For what purposes may the par ser test files be used?

The parser test files may be used by developers building DMIS parsers to check that their parsers
are working correctly. A method of automating this testing is described in Section 3.3. A method
of using the parser test files for full DMIS to produce a set of test files for any conformance class
defined by conformance modulesis described in Section 7.

The parser test files have been used at NIST for:
* debugging the NIST DMI S utilities
» checking that the 27 files defining the conformance modules for C++ are correct.

See Section 3.1 and Section 3.2 for descriptions of how to use test filesto test utilities.

9 System Test Files

9.1 What isin the systemTestFiles directory?

The systemTestFiles directory contains DMIS input files that may be safely run on a DMIS
execution system and should run without error.

As shown in Figure 5, the systemTestFiles directory has four subdirectories: full, prismatic1,
prismatic2, and prismatic3. Each of them has two subdirectories, one for programs that produce
no motion, and one for programs that produce motion.

Each okiInNoMotion... subdirectory contains a subset of the files in the corresponding okin...
directory under the parserTestFiles directory (possibly modified). The subset consists of files
which do not move the axes and do not contain semantic errors.

The okinMotion... subdirectories contains files that move the sensor. These files contain
instructions about how to use themselves, including suggestions for editing. The files in these

32



Users Manual NIST DMIS Test Suite 2.2.1

directories should only be run by a person who is knowledgeable about using the machine on
which they are to be run.

The full/okinMotionFull subdirectory contains the files freeMotion.dmi, gohome.dmi,
IMTS1.dmi, and simplel.dmi. The first two of these move the sensor without attempting to
inspect anything. Each of the last two inspects a specific machined part, which must be available
in order to execute the file.

The prismatic3/okinMotionP3  subdirectory contains the files freeMotionp3.dmi,
gohome.dmi, IMTS1.dmi, and simplel.dmi.

The prismatic2/okinMotionP2  subdirectory contains the files freeMotionp2.dmi,
IMTS1p2.dmi, and simplelp2.dmi.

The prismaticl/okinMotionP1 subdirectory contains only the file simplelpl.dmi.

A p1, p2, or p3in afile name before .dmi means the file has been modified to be suitable for the
prismaticl, prismatic2, or prismatic3 conformance class.

systemTestFiles

full
okInMotionFull
okInNoMotionFull

prismaticl
oklInMotionP1
okInNoMotionP1

prismatic2
oklInMotionP2
okiInNoMotionP2

prismatic3
oklInMotionP3
okiInNoMotionP3

Figure5. SystemTestFiles Directory Structure

9.2 For what purposes may system test files be used?

System test files may be used by users, conformance testers, or developersto determineif aDMIS
execution system can parse and execute DMIS input files correctly. Although many files are
provided, they do not cover al of the functionality of a DMIS execution system. Moreover, the
DMI S output files that should be generated when these input files are executed are not included in
the test suite.

33



Users Manual NIST DMIS Test Suite 2.2.1

10 EBNF

10.1 Who should read this section?

Read this section if you:
* are building a DMIS parser by modifying a DEBNF file,
» want to deal with a DEBNF file for some other reason,
* are curious about DEBNF.

10.2 What is EBNF?

EBNF (Extended Backus-Naur Form) is an international standard language for describing the
syntax of formal languages. EBNF is |SO/IEC standard 14977. A copy of the final standard may
be downloaded free of charge from

http://standards.iso.org/ittf/PubliclyAvailable Standards/index.html.

The standard gives a good intuitive description of the EBNF language.

10.3 Why use EBNF?

It isagood ideato use aformal syntax language such as EBNF to describe a computer-readable
language such as DMIS because a forma language allows the syntax of the target language
(DMIS) to be specified completely and unambiguously. It is difficult to give a complete and
unambiguous description of syntax any other way. It is a good idea to use a standard formal
syntax language because being a standard ensures the language has been carefully developed and
ispublicly available to all.

10.4 What is DEBNF?

DEBNF (DMIS EBNF) is adiaect of EBNF used in the DMIS standard to define the syntax of
DMIS. All of the semantics (meanings) of DEBNF are consistent with those of EBNF, but
DEBNF uses some conventions that provide a shorthand allowing it to provide additional
meanings that could be expressed in EBNF but would require many more pages.

DEBNF uses some, but not all, of the extensions to BNF provided by EBNF.
To be consistent with the DMIS standard, DEBNF is used in the NIST DMI S test suite.

10.5What is DEBNF Syntax?

10.5.1 Overview

A DEBNFfileisalist of productions. Each production sets a production name to be equivalent to
alist of definitions. Each definition is alist of expressions. An expression may be (among other
things) the name of a production, atoken, asingle character, or an optional. A production nameis
also called a non-terminal symbol.

For example, the DEBNF production for the DM SMN statement is:

dmsmStm= DM SMN, ’'/’, stringConst, c, versionTag,
[c, conformtenList], # ;

In this example:
* The name of the productionisdm snmSt m



Users Manual NIST DMIS Test Suite 2.2.1

* = isan assignment symbol equating the name on the | eft to the definition on the right.

* Thereisonly one definition, and it has six expressions.

* DM SWNis atoken.

*’ [’ isadlash.

* ¢ isathe name of a production that represents a comma.

*stringConst andver si onTag are the names of other productions.

*[c, conformteniist] isan optiona consisting of a comma followed by the
name of a production.

* # is an end-of-line symbol.

* The expressions are separated by commas, and the production is ended by a semicolon.

The production means that adm smmSt mis equivalent to the token DM SMN followed by a slash
followed by ast ri ngConst followed by a comma followed by aver si onTag followed by
an optional conf orm t enLi st preceded by a commafollowed by an end-of-line.

The order in which productions are given in a DEBNF file is irrelevant except that the top-level
production (i nput Fi |l e for DMIS) must be given first. The order in which the alternate
definitions of a production is given is aso irrelevant. The ordering of the expressions in a
definition, however, is significant. It is OK if a production has no definitions, and it is OK if there
are no expressions in a definition.

10.5.2 Rules of Standard EBNF

The following are the elements of standard EBNF used in DEBNF. Standard EBNF includes
additional elements that are not needed (and, hence, not used) in DEBNF.

1. An EBNF file is alist of productions in which every production name except the first one is
used in defining some other production.

2. A production consists of a non-terminal symbol followed by an equal sign, followed by a
(possibly empty) list of alternative definitions, followed by a semicolon.

3. A definition isalist of expressions separated by commas.

4. A vertical bar | isused between the definitions of a production. For example, the following
means st r Var 6 may be either the token LONG or the token SHORT:

strvVar6 = LONG | SHORT ;

5. An expression is asymbol name (token or non-terminal), asingle character, agroup, a constant,
or an optional.

6. Symbol names start with a letter and include only letters and digits.
7. A single character must be preceded and followed by an apostrophe, eg.,” /’ .

8. A group is two alternatives enclosed in parentheses (other types of groups are alowed in full
EBNF). The alternatives are separated by a vertical bar. For example, the spelling of the token
AND is defined as followsin the DEBNF file for full DMIS.

AND =0 (AT L (Nt L (D)
This means the spelling may be any of . AND. ,. ANd. ,. AnD. ,.And. ,.aND. ,.aNd. ,
.anD. ,.and. .

35



Users Manual NIST DMIS Test Suite 2.2.1

9. A constant is any string of printable characters or space surrounded by apostrophes, for
example’ **’ or’ Not defined here’.

10. A simple optional expression in a production is set off using square brackets.

For example,a,[ b, c] , d meansthat either a, d or a, b, c, d isallowed.

Simple optional expressions (and multiple optional expressions, which follow) may be nested.
For example,a, [b,[c]] , dmeansa,dora, b,dora, b, c, disalowed.

11. A multiple optiona expression in a production is set off using square brackets preceded by a
digit (full EBNF allows any positive integer) and an asterisk. The digit gives the upper limit on the
number of repetitions. For example, a , 2*[b , c¢] , d means a,d or a, b, c,d or
a, b,c,b,c,disalowed.

12. White space (spaces, tabs, and newlines) may be used anywhere except inside symbol names
and constants and has no meaning. Thus, a single definition may extend across severa lines.
Spaces (but not tabs or newlines) may be used inside a constant, where they are part of the
constant.

13. Comments are indicated by being enclosed with (* at the beginning and *) at the end.
Multiple comments on the same line are allowed and may occur in the middle of definitions. For
example, the following is allowed: a , b , (* commentl *) ¢, (* conment2 *) d.
Comments that extend across several lines are also allowed, but comments may not be nested.
Comments have no forma meaning. They are treated like white space.

10.5.3 Conventions of DEBNF
DEBNF uses the following conventions in addition to the rules for standard EBNF.

1. Token - A word in upper case letters is atoken, e.g.,, DM SMN. In a DMIS input file, the word
must appear using the same characters as in the DEBNF file, with the following exceptions. First,
in the DMISfile, either lower case or upper case letters may be used (and mixed, e.g., Dm sWh).
Second, since the EBNF standard requires that a symbol name start with aletter and include only
letters and digits, DMIS tokens that start with a dot, digit, or minus sign or contain an underscore
have been spelled differently. The new spellings are given as productions near the beginning of
the DEBNFfile. If atoken appears on the left side of a production, the right side givesits spelling.

2. The name of a production other than a production spelling a token must start with alower case
letter (digits are also allowed, but underscores are not allowed), except as provided in the next
paragraph.

3. The name of a data type that is not meaningfully defined by a production must start with an
upper case letter and contain aleast one lower case letter, e.g., St r i ngVar namne. The characters
to be used for these data types in a DMIS input file are specified in section 5 of DMIS 5.2.
Because the definitions of these datatypes in terms of characters are complex, these datatypes are
given syntactically correct but meaningless definitions in the DEBNF file, and the software that
analyzes all the other EBNF productions skips over them. The real definitions are hard-coded in
the DMIS parser.

36



Users Manual NIST DMIS Test Suite 2.2.1

4. A comma is represented by a production whose name is c. This is to avoid having a mix of
literal commas and separator commas, which is very hard to read. For example, the definition of
the dm smmSt mgiven earlier could also be written as follows, but the eye stumbles at the literal
commeas.

dm stmStm = DM SWN, '/’ |, stringConst , ',’ , versionTag,
[',’, conformtenlist], #;

5. Inthe DEBNF representation of DMIS, the end of aline of aDMISinput fileisindicated by the
# character. Thisisthe only DEBNF convention that violates the rules of EBNF. In a DMIS input
file, the end of aline is indicated by a carriage return followed by a line feed, i.e. ASCII 13
followed by ASCII 10.

6. DEBNF does not require any specific syntax or naming convention for lists. Lists that are not
optional could be represented in at least three ways. It is not obvious from the right side of a
production that alist is being defined. Therefore, to make DEBNF files easier to comprehend, the
DEBNF filesin the test suite use two conventions. First, the name of alist waysendsin “List”.
Second, the definition of a simple list (repetitions of a single type of item) usually has the
following form.

itemlist = [itenList , c] , item;

10.6 What DEBNF files are available?

The ebnf directory contains two versions of the DEBNF file for full DMIS. One has no comments
and does not define a CALL block (since there is no such thing in DMIS). The other has alot of
comments and does define a CALL block (since CALL blocks exist in the file prepared by the
preprocessor). The DMIS file printer in the dmis.cc file knows that only the first line of a call
block should be printed, so the call block disappears (as it should) if aDMISfile is printed back
out again.

Annex C of DMIS 5.2 contains a 104-page DEBNF file for al of DMIS. The dmisFull.debnf file
in the ebnf directory differs from Annex C of DMIS 5.2 but describes the same syntax.

37



	Users Manual for Version 2.2.1 of the NIST DMIS Test Suite (for DMIS 5.2)
	1 Introduction
	1.1 Overview
	Figure 1. Directory Structure of NistDmisTestSuite2.2.1

	1.2 Downloading and Installing the Test Suite
	1.3 Documentation
	1.3.1 How is the Excel spreadsheet defining conformance classes arranged?
	Figure 2. Excel SpreadSheet


	1.4 Arrangement of this Manual
	1.5 Use of Fonts
	1.6 Changes from Version 2.1.5
	1.6.1 DMIS 5.2
	1.6.2 Full Unified Coverage
	1.6.3 More Utilities
	1.6.4 DEBNF
	1.6.4.1 more DMIS statements
	1.6.4.2 condensation
	1.6.4.3 naming
	1.6.5 Generator

	1.6.5.1 debnf2pars
	1.6.5.2 generateMore
	1.6.6 Parser Test Files
	1.6.7 Testing

	1.6.7.1 cycle testing of conformance information
	1.6.7.2 additional test scripts

	1.7 Shortcomings

	2 Utilities
	2.1 What is in the utilities directory?
	2.2 How is the utilities directory arranged?
	Figure 3. Utilities Directory Structure

	2.3 Which utility should I use?

	3 The dmisParser
	3.1 How do I use the dmisParser to parse a single DMIS input file?
	3.1.1 Linux and SunOS
	3.1.2 Windows

	3.2 How can I use a single command to parse a whole set of DMIS input files?
	3.2.1 First method for running a set of DMIS input files through the dmisParser
	3.2.1.1 Linux and SunOS
	3.2.1.2 Windows
	3.2.2 Second method for running a set of DMIS input files through the dmisParser

	3.2.2.1 Linux and SunOS
	3.2.2.2 Windows

	3.3 How do I modify a command that runs a set of test files so that it tests my parser?
	3.3.1 Linux and SunOS
	3.3.2 Windows

	3.4 What does the dmisParser do when it parses a single DMIS input file?
	3.4.1 Preprocess
	3.4.2 Parse

	3.5 What does the dmisParser do when it parses a set of DMIS input files?
	3.6 What do the dmisParser’s error and warning messages mean?

	4 The dmisConformanceChecker
	4.1 How do I use the dmisConformanceChecker to check that a single DMIS input file conforms to a particular DMIS conformance class?
	4.1.1 Linux and SunOS
	4.1.2 Windows

	4.2 How can I use a single command to run conformance checks and collect data on statement usage for a whole set of DMIS input files?
	4.2.1 Linux and SunOS
	4.2.2 Windows


	5 The dmisConformanceRecorder
	5.1 How do I use the dmisConformanceRecorder to put conformance information into a DMIS input file?
	5.1.1 Linux and SunOS
	5.1.2 Windows

	5.2 What does the conformance information mean?

	6 The dmisConformanceTester
	6.1 How do I use the dmisConformanceTester?
	6.1.1 Linux and SunOS
	6.1.2 Windows

	6.2 What does the output of the dmisConformanceTester mean?

	7 The dmisTestFileReductor
	7.1 What does the dmisTestFileReductor do?
	7.2 How are incoming files marked?
	7.3 How do I use the dmisTestFileReductor?
	7.3.1 Linux and SunOS
	7.3.2 Windows


	8 Parser Test Files
	8.1 What are the parser test files like?
	8.2 What do the “dmi” and “out” filename suffixes mean?
	8.3 What is in the parserTestFiles directory?
	Figure 4. ParserTestFiles Directory Structure

	8.4 For what purposes may the parser test files be used?

	9 System Test Files
	9.1 What is in the systemTestFiles directory?
	Figure 5. SystemTestFiles Directory Structure

	9.2 For what purposes may system test files be used?

	10 EBNF
	10.1 Who should read this section?
	10.2 What is EBNF?
	10.3 Why use EBNF?
	10.4 What is DEBNF?
	10.5 What is DEBNF Syntax?
	10.5.1 Overview
	10.5.2 Rules of Standard EBNF
	10.5.3 Conventions of DEBNF

	10.6 What DEBNF files are available?


