
k-Zero Day Safety: Measuring the Security Risk of
Networks against Unknown Attacks

Lingyu Wang1, Sushil Jajodia2, Anoop Singhal3, and Steven Noel2

1 Concordia Institute for Information Systems Engineering, Concordia University
wang@ciise.concordia.ca

2 Center for Secure Information Systems, George Mason University
{jajodia,snoel}@gmu.edu

3 Computer Security Division, National Institute of Standards and Technology
anoop.singhal@nist.gov

Abstract. The security risk of a network against unknown zero day attacks has
been considered as something unmeasurable since software flaws are less pre­
dictable than hardware faults and the process of finding such flaws and devel­
oping exploits seems to be chaotic. In this paper, we propose a novel security
metric, k-zero day safety, based on the number of unknown zero day vulnerabili­
ties. That is, the metric simply counts how many unknown vulnerabilities would
be required for compromising a network asset, regardless of what vulnerabilities
those might be. We formally define the metric based on an abstract model of net­
works and attacks. We then devise algorithms for computing the metric. Finally,
we show the metric can quantify many existing practices in hardening a network.

1 Introduction

Today’s critical infrastructures and enterprises increasingly rely on networked
computer systems. Such systems must thus be secured against potential network
intrusions. However, before we can improve the security of a network, we must
be able to measure it, since you cannot improve what you cannot measure. A
network security metric is desirable since it will allow for a direct measurement
of how secure a network currently is, and how secure it would be after introduc­
ing new security mechanisms or configuration changes. Such a capability will
make the effort of network hardening a science rather than an art.

Emerging efforts on network security metrics (Section 5 will review re­
lated work) typically assign numeric scores to vulnerabilities as their relative
exploitability or likelihood. The assignment is usually based on known facts
about each vulnerability (e.g., whether it requires an authenticated user ac­
count). However, such a methodology is no longer applicable when considering
zero day vulnerabilities about which we have no prior knowledge or experience.
In fact, a major criticism of existing efforts on security metrics is that unknown
zero day vulnerabilities are unmeasurable [10]. First, the knowledge about a

mailto:anoop.singhal@nist.gov
mailto:jajodia,snoel}@gmu.edu
mailto:wang@ciise.concordia.ca

software system itself is not likely to help because unlike hardware faults, soft­
ware flaws leading to vulnerabilities are known to be much less predictable. Sec­
ond, modeling adversaries is not feasible either, because the process of finding
flaws and developing exploits is believed to be chaotic. Third, existing metrics
for known vulnerabilities are not helpful, because they measure the difficulty of
exploiting a known vulnerability but not that of finding a zero day vulnerability.

The incapability of measuring unknown zero day vulnerabilities can poten­
tially diminish the value of security mechanisms since an attacker can simply
step outside the implementation and do as he pleases [10]. What is the value of
a more secure configuration, if it is equally susceptible to zero day attacks? We
thus fall into the agnosticism that security is not quantifiable until we can fix all
security flaws (by then we certainly do not need any security metric, either).

We propose a novel security metric, k-zero day safety, to address this issue.
Instead of attempting to measure which zero day vulnerability is more likely,
our metric counts how many distinct zero day vulnerabilities are required to
compromise a network asset 1. A larger number will indicate a relatively more
secure network, since the likelihood of having more unknown vulnerabilities
all available at the same time, applicable to the same network, and exploitable
by the same attacker, will be lower. Based on an abstract model of networks
and attacks, we formally define the metric and prove it to satisfy the three alge­
braic properties of a metric function. We then design algorithms for computing
the metric. Finally, we show the metric can quantify many existing practices in
network hardening and discuss practical issues in instantiating the model.

The contribution of this work is twofold. First, to the best of our knowledge,
this is the first effort capable of quantifying the security risk of a network against
unknown zero day attacks. Second, we believe the metric would bring about new
opportunities to the evaluation, hardening, and design of secure networks.

In the rest of this paper, we first build intuitions through a running example.
We then present a model and define the metric in Section 2, design and analyze
algorithms in Section 3, discuss network hardening and model instantiation in
Section 4, review related work in Section 5, and finally conclude the paper in
Section 6. Due to space limitations, the proof of theorems is given in [21].

1.1 Motivating Example

The left-hand side of Figure 1 shows a toy example where host 1 provides an
HTTP service (http) and a secure shell service (ssh), and host 2 provides only
ssh. The firewall allows traffic to and from host 1, but only connections origi­
nated from host 2. Assume the main security concern is over the root privilege

1 In our model, an asset is a general concept that may encompass one or more aspects of security,
such as confidentiality, integrity, and availability.

2

on host 2. Clearly, if all the services are free of known vulnerabilities, a vulner-
ability scanner or attack graph will both lead to the same conclusion, that is, the
network is secure (an attacker on host 0 can never obtain the root privilege on
host 2), and no additional network hardening effort is necessary.

host 0

host 1

host 2

http

(iptables) ssh

ssh

firewall

〈user,0〉
〈root,1〉

〈root,2〉

〈vhttp,0,1〉

〈vssh,0,2〉

〈vssh,0, 1〉

〈vfirewall,0,F〉 〈0,2〉

〈root,1〉

〈root,2〉

〈vhttp,0,1〉

〈vssh,1,2〉 〈vssh,0,1〉
〈viptables,0,1〉

〈ssh,1〉
〈user,0〉

〈vfirewall,0,F〉 〈0,2〉 〈vssh,0,2〉

〈vssh,1,2〉

Fig. 1. Network Configuration and Sequences of Zero Day Attacks

However, we shall reach a different conclusion by considering how many
distinct zero day attacks the network can resist. The upper-right corner of Fig­
ure 1 shows three sequences of zero day attacks leading to ⟨root, 2⟩ (each pair
denotes a condition and each triple inside oval denotes the exploitation of a zero
day vulnerability): An attacker on host 0 can exploit a zero day vulnerability
in either http or ssh on host 1 to obtain the root privilege; using host 1 as a
stepping stone, he/she can exploit a zero day vulnerability in ssh on host 2 to
reach ⟨root, 2⟩; alternatively, he/she can exploit a zero day vulnerability in the
firewall (e.g., a weak password in its Web-base remote administration interface)
to re-establish the blocked connection to host 2 and then exploit ssh on host 2.
The network can resist at most one zero day attack since the second sequence
only requires one unique zero day vulnerability in ssh (on both host 1 and 2).

Now consider hardening the network by using iptables rules (iptables) to
allow only specific hosts, not including host 0, to connect to ssh on host 1. The
lower-right corner of Figure 1 shows four sequences of zero day attacks (the
two new sequences indicate exploiting a zero day vulnerability in iptables to
either connect to ssh, or obtain the root privilege, on host 1). It can be observed
that all four sequences now require two distinct zero day vulnerabilities. The
seemingly unnecessary hardening effort thus allows the network to resist one
more zero day attack. The hardened network can be considered relatively more
secure, since the likelihood of having more zero day vulnerabilities available at
the same time, in the same network, and exploitable by the same attacker, will be
lower 2. Therefore, the number of distinct zero day vulnerabilities can be used

2 This likelihood would decrease exponentially in the number of vulnerabilities if such vulnera­
bilities can be modeled as i.i.d. random variables, but we shall not assume any specific model
since the process of developing exploits is believed to be chaotic [10].

3

to measure the relative security risk of different networks, which may otherwise
be indistinguishable by existing techniques. Those discussions, however, clearly
oversimplify many issues, which will be addressed in the rest of this paper.

2 Modeling k-Zero Day safety

In this section, we define the k-zero day safety metric based on an abstract model
of network components. We shall delay to Section 4 the discussion of practical
issues in instantiating the abstract model based on a real world network.

2.1 The Network Model

Definition 1 gives an abstract model of network components relevant to mea­
suring zero day attacks (all notations will later be summarized in Table 1). The
model will allow us to formally define and reason about the proposed metric.

Definition 1 (Network). Our network model has the following components:

–	 H , S, and P , which denotes the set of hosts (computers and networking
devices), services, and privileges, respectively.

–	 serv(.) : H → 2S and priv(.) : H → 2P , which denotes a function that
maps each host to a set of services and that of privileges, respectively.

–	 conn ⊆ H × H , and ≼⊆ priv(h) × priv(h), which denotes a connectivity
relation and a privilege hierarchy relation, respectively.

Here hosts are meant to also include networking devices because such de­
vices are vulnerable to zero day attacks, and a compromised device may re-
enable accesses to blocked services (e.g., the firewall in Figure 1). Also, tightly-
coupled systems (e.g., a server hosting multiple replicas of a virtual host under
the Byzantine-Fault Tolerance algorithm [3]) should be regarded as a single
host, since we shall only consider causal relationships between hosts.

A service in the model is either remotely accessible over the network, in
which case called a remote service, or used to disable a remote service or net­
work connection, in which case called a security service. The model does not
include services or applications that can only be exploited locally for a privilege
escalation (modeling such applications may not be feasible at all considering
that an attacker may install his/her own applications after obtaining accesses to
a host). On the other hand, the model includes remote services and connectiv­
ity currently disabled by security services, since the former may be re-enabled
through zero day attacks on the latter (e.g., ssh behind iptables in Figure 1).

In the model, privileges are meant to include those under which services are
running and those that can potentially be obtained through a privilege escalation.

4

The purpose of including the latter is not to model privilege escalation itself
but to model the strength of isolation techniques (e.g., sandboxing or virtual
machines) that may prevent such an escalation, as we shall elaborate shortly.

Example 1. In Figure 1, we have

–	 H = {0, 1, 2, F } (F denotes the firewall),
–	 conn = {⟨0, F ⟩, ⟨0, 1⟩, ⟨0, 2⟩, ⟨1, F ⟩, ⟨1, 0⟩, ⟨1, 2⟩, ⟨2, F ⟩, ⟨2, 0⟩, ⟨2, 1⟩} (we

include ⟨0, 2⟩ since it can be enabled by a zero day attack on the firewall),
–	 serv(1) = {http, ssh, iptables}, serv(2) = {ssh}, and serv(F) = {

f irewall} (f irewall is a security service and it disables connection ⟨0, 2⟩),
–	 priv(1) = priv(2) = {user, root}.

2.2 The Zero Day Attack Model

The very notion of unknown zero day vulnerability means we cannot assume any
vulnerability-specific property, such as the likelihood or severity. We can, how­
ever, assume generic properties common to vulnerabilities, as in Definition 2.

Definition 2 (Zero Day Vulnerability). A zero day vulnerability is a vulnera­
bility whose details are unknown except that it satisfies the following 3 .

1. It cannot be exploited unless
(a) a network connection exists between the source and destination hosts,
(b) a remote service with the vulnerability exists on the destination host,
(c) and the attacker already has a privilege on the source host.

2. Its exploitation can potentially yield any privilege on the destination host.

The assumptions essentially depict a worst-case scenario about the pre- and
post-conditions, respectively, of exploiting a zero day vulnerability. That is, a
particular zero day vulnerability may in reality require stronger pre-conditions
while implying weaker post-conditions than those stated above. This fact en­
sures our metric to always yield a conservative result (the metric can be extended
to benefit from weaker assumptions when they can be safely made). For a simi­
lar purpose, we shall assign one zero day vulnerability to each service although
in reality a service may have more vulnerabilities (note that a more conservative
result of a metric is one that requires less zero day vulnerabilities).

We more formally state above assumptions in Definition 3 and 4. In Defi­
nition 3, the zero day exploit of a privilege will act as a placeholder when we

3 While we shall focus on such a restrictive model of zero-day vulnerabilities in this paper, an
interesting future direction is to extend the model to address other types of zero-day vulnera­
bilities, such as a time bomb whose exploitation does not require a network connection.

5

later model isolation techniques. In Definition 4, unlike the exploit of a known
vulnerability which has its unique pre- and post-conditions, all zero day exploits
share the same hard-coded conditions, as assumed above. Also note that the zero
day exploit of each security service has additional post-conditions, which indi­
cates the exploit will re-enable the disabled conditions. For zero day exploits
of a privilege p, the pre-conditions include the privilege of every service, un­
less if that privilege already implies p (in which case including it will result
in redundancy). This follows from our assumption that a zero day exploit may
potentially lead to any priviledge.

Definition 3 (Zero Day Exploit). For each h ∈ H and x ∈ (serv(h) ∪
priv(h)), denote by vx a zero day vulnerability. A zero day exploit is the triple

–	 ⟨vs, h, h ′ ⟩ where ⟨h, h ′ ⟩ ∈ conn and s ∈ serv(h ′), or
–	 ⟨vp, h, h⟩ where p ∈ priv(h).

Definition 4 (Condition). Denote by E0 the set of all zero day exploits, C0 the
set of conditions (conn ∪ {⟨x, h⟩ : h ∈ H, x ∈ serv(h) ∪ priv(h)}), and define
functions pre(.) : E0 → C0 and post(.) : E0 → C0 as

–	 pre(⟨vs, h, h ′ ⟩) = {⟨h, h ′ ⟩, ⟨s, h ′ ⟩, ⟨pmin, h⟩} for each s ∈ serv(h), where
pmin is the least privilege on h.

–	 pre(⟨vp, h, h⟩) = {ps : s ∈ serv(h), ¬(p ≼ ps)} for each p ∈ priv(h).
–	 post(⟨vs, h, h ′ ⟩) = {ps} for each remote service s with privilege ps.
–	 post(⟨vs, h, h ′ ⟩) = {ps} ∪ Cs for each security service s, where Cs is the

set of conditions disabled by s.
–	 post(⟨vp, h, h⟩) = {⟨p, h⟩} for each p ∈ priv(h).

In Definition 5, a zero day attack graph is composed by relating both exploits
of known vulnerabilities and zero day exploits through common pre- and post-
conditions. In a zero day attack graph, the exploits of known vulnerabilities can
be considered as shortcuts that help attackers to satisfy a condition with less
zero day exploits. Therefore, exploits of known vulnerabilities here may also
be a trust relationship or a misconfigured application, as long as they serve the
same purpose of a shortcut for bypassing zero day exploits.

Definition 5 (Zero Day Attack Graph). Given the set of exploits of known
vulnerabilities E1 and their pre- and post-conditions C1, let E = E0 ∪ E1,
C = C0 ∪ C1, and extend pre(.) and post(.) to E → C (as the union of
relations). The directed graph G = ⟨E ∪ C, {⟨x, y⟩ : (y ∈ E ∧ x ∈ pre(y)) ∨
(x ∈ E ∧ y ∈ post(x))}⟩ is called a zero day attack graph.

6

In Definition 6, the notion of initial condition serves two purposes. First,
it includes all conditions that are not post-conditions of any exploit (which is
the usual interpretation of the notion). Second, it is meant to also include con­
ditions that may be satisfied as the result of insider attacks or user mistakes. In
another word, the effect of such attacks or mistakes is modeled as the capability
of satisfying post-conditions of an exploit without first executing the exploit 4 .
Also note that in the definition, an attack sequence is defined as a total order,
which means multiple attack sequences may lead to the same asset. However,
this is not a limitation since our metric will not require the attack sequence to
be unique, as we shall show.

Instead of the usual way of modeling an asset as a single condition, we
take a more general approach. The logical connectives ∧, ∨, and ¬ respectively
model cases where multiple conditions must be satisfied altogether to cause a
damage (e.g., the availability of a file with multiple backups on different hosts),
cases where satisfying at least one condition will cause the damage (e.g., the
confidentiality of the aforementioned file), and cases where conditions are not to
be satisfied during an attack (for example, conditions that will trigger an alarm).
The asset value is introduced as the relative weight of independent assets.

Definition 6 (Initial Condition, Attack Sequence, and Asset). Given a zero
day attack graph G,

–	 the set of initial conditions is given as any CI ⊆ C satisfying CI ⊇ {c :
(∀e ∈ E)(c /∈ post(e))},

–	 an attack sequence is any sequence of exploits e1, e2, . . . , ej satisfying (∀i ∈
[1, j]) (∀c ∈ pre(ei)) (c ∈ CI) ∨ (∃x ∈ [1, i − 1] c ∈ post(ex)),

–	 an asset a is any logical proposition composed of conditions and the logic
connectives ∧, ∨, and ¬ for which an asset value v(a) is given through a
function v(.) : A → [0, ∞) where A denotes the set of all assets, and

–	 define a function seq(.) : A → 2Q as seq(a) = {e1, e2, . . . , ej : a ∈
post(ej)} where Q denotes the set of all attack sequences.

Example 2. Figure 2 shows the zero day attack graph of our running example,

–	 if we do not consider insider attacks or user mistakes, the following attack
sequences will lead to the asset ⟨root, 2⟩.
1.	 ⟨vhttp, 0, 1⟩, ⟨vssh, 1, 2⟩, ⟨vroot , 2, 2⟩
2.	 ⟨viptables , 0, 1⟩, ⟨vssh, 1, 2⟩, ⟨vroot , 2, 2⟩
3.	 ⟨viptables , 0, 1⟩, ⟨vssh, 0, 1⟩, ⟨vssh, 1, 2⟩, ⟨vroot , 2, 2⟩

4 In a broader sense, we should improve robustness of the model such that it will fail gracefully
when assumptions fail, which is beyond the scope of this paper.

7

⟨vf irewall , 0, F ⟩, ⟨vssh , 0, 2⟩, ⟨vroot , 2, 2⟩
if we consider insider attacks on host 1, only sequence ⟨vssh , 1, 2⟩, ⟨vroot , 2, 2⟩
and the fourth attack sequence above will be needed to compromise ⟨root, 2⟩.
if we consider a different asset ⟨root, 1⟩ ∧ ⟨root, 2⟩, then only the first three
attack sequences above can compromise this asset.

<user ,0>

<v_iptables,0,1> <v_firewal l ,0 ,F><v_ht tp ,0 ,1>

<v_ssh ,0 ,1> <v_ssh ,0 ,2>

<firewall ,F> <0,F><iptables,1><0,1>

<ssh ,1>

<user ,1>

<v_root ,1 ,1> <v_ssh ,1 ,2>

<root ,1>

<root ,F> <0,2>

<http,1>

<ssh ,2>

<1,2>

<user ,2>

<v_root ,2 ,2>

<root ,2>

4.

–

–

Fig. 2. An Example of Zero Day Attack Graph

2.3 The k-Zero Day Safety Model

In Definition 7, the relation ≡v models two distinct cases in which two zero
day exploits should only be counted once. First, both exploits involve the same
zero day vulnerability. Second, the exploit of a service is related to the exploit
of a privilege to indicate that the former will directly yield the privilege due to
the lack of isolation between the two (note that we do not model the details of
any involved privilege escalation). A probability can be associated to relation
≡v to indicate the degree of similarity or isolation, when such information is
available. Although the relationship between exploits has distinct meanings in
those two cases, the effect of such a relationship towards our metric will be the
same. Therefore, the relation ≡v models such relationships in a unified way.

Given two sets of zero day exploits, the function k0d(.) counts how many
exploits in their symmetric difference are distinct (that is, these exploits cannot
be related through ≡v). In particular, if one of the sets is empty, then the function
k0d(.) will yield the number of distinct zero day exploits in the other set. When

8

a probabilistic approach is adopted in defining the relation ≡v, the function
k0d(.) can be revised to give the expected value (mean). The reason of defining
the function over the symmetric difference of two sets is given in Theorem 1.

Definition 7 (Relation ≡v and Metric Function k0d(.)).

′ – Define a relation ≡v ⊆ E0 × E0 such that e ≡v e indicates either e and
′	 ′ e are exploits of the same zero day vulnerability, or e = ⟨vs, h1, h2⟩, e =

′	 ′ ⟨vp, h2, h2⟩ and exploiting s yields p. We say e and e are distinct if e ̸≡v e .
–	 Define a function k0d(.) : 2E0 ×2E0 → [0, ∞] as k0d(F, F ′) = max({ |F ′′ | :

′′ F ⊆ (F △F ′), (∀e1, e2 ∈ F ′′) (e1 ̸≡v e2)}) where |F ′′ | denotes the car­
′′	 ′dinality of F , max(.) denotes the maximum value in a set, and F △F

′denotes the symmetric difference (that is, (F \ F ′) ∪ (F \ F)).

Theorem 1. The function k0d(.) is a metric.

In Definition 8, we apply the metric k0d(.) to assets, sets of assets, and a
network. First, k0d(a) indicates the minimum number of distinct zero day ex­
ploits required to compromise a. This number is unique for each asset, although
multiple attack sequences may compromise the asset. The empty set in the def­
inition can be interpreted as the conjunction of all initial conditions (which can
always be compromised without any zero day exploit). Second, the metric is
applied to a set of independent assets by taking the weighted average with asset
values as the weight. Finally, by applying the metric to all assets, we obtain a
measurement of a network’s resistance to potential zero day attacks.

Definition 8 (k-Zero Day Safety). Given a zero day attack graph G, the set of
initial conditions CI , and the set of assets A,

–	 for any a ∈ A, we use k0d(a) for min({k0d(q ∩ E0, ϕ) : q ∈ seq(a)})
where min(.) denotes the minimum value in a set and q stands for both a
sequence and a set. For any k ∈ [0, kod(a)), we say a is k-zero day safe.

–	 given any A ′ ⊆ A, we use k0d(A ′) for
∑

a∈A ′ (k0d(a) · v(a))/
∑

v(a). a∈A ′

For any k ∈ [0, kod(A ′)), we say A ′ is k-zero day safe.
–	 in particular, when A ′ = A, we say the network is k-zero day safe.

Example 3. For the running example, suppose all exploits of services involve
distinct vulnerabilities except ⟨vssh, 0, 1⟩, ⟨vssh, 1, 2⟩, and ⟨vssh, 0, 2⟩. Assume
ssh and http are not protected by isolation but iptables is protected. Then, the
relation ≡v is shown in the left-hand side of Table 1 where 1 indicates two
exploits are related and 0 the opposite (or, by adopting a probabilistic approach,
these can be regarded as the probabilities associated with the relation ≡v).

9

⟨v
 ip

ta
b
le
s
, 0

, 1
⟩

⟨v
 ht

tp
, 0

, 1
⟩

⟨v
 ss

h
, 0

, 1
⟩

⟨v
r
o
o
t
, 1

, 1
⟩

⟨v
 ss

h
, 1

, 2
⟩

⟨v
 f i

r
e
w
a
ll

 , 0
, F

 ⟩
⟨v

 ss
h
, 0

, 2
⟩

⟨v
r
o
o
t
, 2

, 2
⟩

Notation Explanation
H , h A set of hosts, a host
S, s A set of services, a service
P , p A set of privileges, a privilege
serv(.) Services on a host
priv(.) Privileges on a host
conn Connectivity
vs, vp Zero day vulnerability
⟨vx, h, h ′ ⟩ Zero day exploit
pre(.), post(.) Pre- and post-conditions
G Zero day attack graph
CI Initial conditions
e1, e2, . . . , ej Attack sequence
A Assets
seq(a) Attack sequences compromising a
≡v Relation of non-distinct exploits
k0d(.) The k-zero day safety metric

⟨viptables, 0, 1⟩ 1 0 0 0 0 0 0 0
⟨vhttp, 0, 1⟩ 0 1 0 1 0 0 0 0
⟨vssh, 0, 1⟩ 0 0 1 1 1 0 1 0
⟨vroot , 1, 1⟩ 0 1 1 1 0 0 0 0
⟨vssh, 1, 2⟩ 0 0 1 0 1 0 1 1
⟨vf irewall , 0, F ⟩ 0 0 0 0 0 1 0 0
⟨vssh, 0, 2⟩ 0 0 1 0 1 0 1 1
⟨vroot , 2, 2⟩ 0 0 0 0 1 0 1 1

Table 1. An Example of Relation =v (Left) and the Notation Table (Right)

3 Computing k-Zero Day Safety

This section presents algorithms for computing the k-zero day safety.

3.1 Computing the Value of k

To compute the k-zero day safety of a network, we first derive a logic propo­
sition of each asset in terms of exploits. Then, each conjunctive clause in the
disjunctive normal form (DNF) of the derived proposition will correspond to a
minimal set of exploits that jointly compromise the asset. The value of k can
then be decided by applying the metric k0d(.) to each such conjunctive clause.

More precisely, we interpret a given zero day attack graph as a logic pro­
gram by regarding each exploit or condition as a Boolean variable and by hav­
ing a logic proposition c ← . for each initial condition c, a proposition e ←∧

c∈pre(e) c and a set of propositions {c ← e : c ∈ post(e)} for each pre- and
post-condition relationship, respectively. We can then apply Procedure k0d Bwd
shown in Figure 3 to obtain the value of k. The main loop (lines 1-8) computes
the k-zero day safety for each asset. The results of all iterations are aggregated
as the final output (line 9). The inner loop (lines 3-6) repetitively applies the
afore-mentioned logic propositions to derive a formula, which is converted into
its DNF (line 7) from which the k-zero day safety is computed (line 8).

Complexity The procedure’s worst-case complexity is exponential in the size of
the zero day attack graph. Specifically, the complexity is dominated by the size
of the derived proposition L and its DNF; both may be exponential. Indeed,
Theorem 2 shows that the problem of computing k-zero day safety is NP-hard.

10

Procedure k0d Bwd

Input: A zero day attack graph G, a set of assets A with the valuation function v(.)

Output: A non-negative real number k

Method:

1. For each asset a ∈ A
2. Let L be the logic proposition representing a
3. While at least one of the following is possible, do
4. Replace each initial condition c∨with T RU E
5. Replace each condition c with ′)} e e∈{e ′ :c∈post(e∧
6. Replace each non-negated exploit e with e ∧ (c∈pre(e) c)
7. Let L1 ∨ L2 ∨ . . . Ln be the DNF of L
8. Let ka = min({k0d(Fi ∩ E0, ϕ) : Fi is the set of non-negated exploits in Li, 1 ≤ i ≤ n})∑ ∑
9. Return (ka · v(a))/a∈A a∈A v(a)

Fig. 3. Computing the Value of k

Theorem 2. Given a zero day attack graph and an asset a, finding an attack
sequence q ∈ seq(a) to minimize k0d(q ∩ E0, ϕ) is NP-complete.

Note that the intractability result here only implies that a single algorithm
is not likely to be found to efficiently determine k for all possible inputs (that
is, arbitrary zero day attack graphs). However, efficient solutions still exist for
practical purposes. We shall examine such a case in the following.

3.2 Determining k-Zero Day Safety for a Given Small k

For many practical purposes, it may suffice to know that every asset in a net­
work is k-zero day safe for a given value of k, even though the network may in
reality be k ′-zero day safe for some unknown k ′ > k (note that we have shown
determining k ′ to be intractable). We now describe a solution whose complexity
is polynomial in the size of a zero day attack graph if k is a constant compared
to this size. Roughly speaking, we attempt to compromise each asset with less
than k distinct zero day exploits through a forward search of limited depth. The
asset is not k-zero day safe if any branch of the search succeeds, and vice versa.

Specifically, Figure 4 shows the recursive Procedure k0d Fwd with two base
cases (lines 1-2 and 3-4, respectively) and one recursive case (lines 5-9). In
the first base case, the procedure returns F ALS E when asset a can be com­
promised with less than k distinct zero day exploits in Te. The Sub-Procedure
k0d Reachable expands Te with all reachable known exploits since they do not
count in terms of the k0d(.) metric. In the second base case, the procedure re­
turns T RU E when the set Te already has more than k distinct zero day exploits
(regardless of whether a can be satisfied with Tc).

The main procedure enters the recursive case only when Te includes less
than k distinct zero day exploits and a cannot be satisfied with Tc. In this case,
the Sub-Procedure k0d Reachable must have already added all known exploits

11

Procedure k0d Fwd
Input: A zero day attack graph G, an asset a, a real number k > 0, Te = ϕ, Tc = CI

//Te and Tc include the exploits and conditions visited so far, respectively
Output: T RU E , if k0d(a) > k; F ALSE , otherwise
Method:
1. If k0d reachable(Te, Tc) ∧ k0d(Te) < k Sub-Procedure k0d Reachable
2. Return F ALS E Input: Te, Tc

3. ElseIf k0d(Te) ≥ k Output: T RU E or F ALS E
4. Return T RU E Method:
5. Else 10. While (∃e ∈ E1 \ Te)(pre(e) ⊆ Tc)
6. For each e ∈ E0 \ Te satisfying pre(e) ⊆ Tc 11. Let Te = Te ∪ {e}
7. If ¬ k0d F wd(G, a, k, Te ∪ {e}, Tc ∪ post(e)) 12. Let Tc = Tc ∪ post(e)∧
8. Return F ALS E 13. Return (c → a)c∈Tc
9. Return T RU E

Fig. 4. Determining k-Zero Day Safety for a Given k

and their post-conditions to Te and Tc, respectively. Now the main procedure
iteratively visits each zero day exploit e reachable from Tc (line 6), and starts
a recursive search from e (line 7). If no such e exists, the procedure will return
T RU E indicating the end of a sequence is reached (line 9). If any branch of
the search succeeds, F ALS E will be recursively returned to indicate a is not
k-zero day safe (line 8); otherwise, T RU E is returned (line 9).

Complexity To find reachable known exploits from E1, the sub-procedure will
check the pre-conditions of each known exploit, which takes time O(|C| · |E1|).
This will be repeated upon adding an exploit to Te and its post-conditions to
Tc. Therefore, k0d Reachable takes time O(|C| · |E1|2), which is also the com­
plexity for the base cases of the main procedure since it dominates the com­
plexity of other steps. For the recursive case, we have the recurrence formula
t = O(|C| · |E1|2) + |E0| · t ′ where t and t ′ denote the complexity of the
recursive case and that of each recursive call. Since the recursive case cannot
be entered unless k0d(Te) < k and each recursive call will add one more
zero day exploit to Te, the maximum layers of recursion can be written as
l = max({|q| : q is an attack sequence satisfying k0d(q, ϕ) < k + 1}). Solving
the recurrence formula, we have that t = |C| · |E1|2 · |E0|l. Therefore, the com­
plexity is polynomial in the size of the zero day attack graph if k is a constant.

4 Discussions

In this section, we demonstrate the power of our metric through an example
application, network hardening, and discuss issues in instantiating the model.

Network Hardening Using the Metric Based on the proposed metric, network
hardening can be defined as making a network k-zero day safe for a larger k.
Such a concept generalizes the existing qualitative approach in [22], which es­

12

sentially achieves k > 0. Moreover, the metric immediately imply a collection

of hardening options. To see this, we first unfold k based on the model: ∑ ∑

k = k0d(A) = (k0d(a) · v(a))/ v(a)	 (1)
a∈A a∈A

k0d(a) = min({k0d(q ∩ E0, ϕ) : q ∈ seq(a)})	 (2)

k0d(q ∩ E0, ϕ ′) = max({ |F | : F ⊆ q ∩ E0, (∀e1, e2 ∈ F) (e1 ̸≡v e2)}) (3)

seq(a) = {e1, e2, . . . , ej : a ∈ post(ej),	 (4)

(∀i ∈ [1, j]) (∀c ∈ pre(ei)) (c ∈ CI) ∨ (∃x ∈ [1, i − 1] c ∈ post(ex))} (5)

Therefore, k can be increased by:
–	 Increasing the diversity of services such that exploits will involve more dis­

tinct zero-day vulnerabilities (and no longer related by ≡v) in Equation (3).
–	 Strengthening isolation techniques for a similar effect as above.
–	 Disabling initial conditions (e.g., removing a service or a connection) in CI

to yield longer attack sequences in above line (5) (part of Equation (4)).
–	 Enforcing more strict access control policies to lessen the risk of insider

attacks or user mistakes (thus removing conditions from CI in line (5)).
–	 Protecting assets with backups (conjunction of conditions) and detection

efforts (negation of conditions) to yield a longer sequence in Equation (4).
–	 Introducing more security services to regulate accesses to remote services

in such a way that a longer sequence can be obtained in Equation (4).
–	 Patching known vulnerabilities such that less shortcuts for bypassing zero

day exploits yield a longer sequence in Equation (4).
–	 Prioritizing the above options based on the asset values in Equation (1) and

shortest attack sequences in Equation (2).
Clearly, these hardening options closely match current practices, such as the
so-called layered defense, defense in depth, security through virtualization, and
security through diversity approaches. However, their effectiveness 5 can now be
quantified in a simple, intuitive way; their cost can now be more easily justified,
not based upon speculation or good will, but simply with a larger k.

Instantiating the Model Since the proposed metric and algorithms are based on
an abstract model of networks, how to instantiate the model for given networks
is an equally important (and admittedly difficult) issue. We now address several
key aspects of the issue while leaving more research to future work.

–	 While instantiating the model, an uncertain situation can be dealt with by ei­
ther taking a conservative assumption under which the metric yields a lower
k (e.g., any host should be included unless it is believed to be absolutely
immune from zero day attacks) or by taking a probabilistic approach (e.g.,

5 None of options can always guarantee improved security, which is why we need a metric.

13

we have discussed how associating a probability to relation ≡v can help to
model the degree of similarity in vulnerabilities and strength of isolation).
Our future work will further explore such probabilistic approaches.

–	 An extremely conservative assumption may yield a trivial result (e.g., no
network is 1-zero day safe, if insider attacks are considered possible on ev­
ery host). While such an assumption may be the safest, it is also the least
helpful in terms of improving the security since nothing would be helpful.

–	 The remote services and network connectivity must be identified by exam­
ining hosts’ configuration. A network scanning is insufficient since it will
not reveal services or connectivity currently disabled by security services
(e.g., ssh behind iptables in Figure 1). The model is thus more concerned
about the existence, instead of the current reachability, of a service or host.

–	 A zero day attack graph cannot be obtained by injecting zero day exploits
into an existing attack graph of known vulnerabilities. The reason is that
some unreachable exploits may be discarded in generating an attack graph
of known vulnerabilities [1], whereas such exploits may indeed serve as
shortcuts for bypassing zero day exploits in a zero day attack graph.

–	 The model itself does not provide a means for determining which conditions
are likely to be subject to insider attacks or user mistakes, which should be
determined based on knowledge about access control polices (which users
are allowed to do what on which hosts) and how trustworthy each user is.

5 Related Work

Standardization efforts on vulnerability assessment include the Common Vul­
nerability Scoring System (CVSS) [12] which measures vulnerabilities in isola­
tion. The NIST’s efforts on standardizing security metrics are also given in [13]
and more recently in [19]. The research on security metrics has attracted much
attention lately [7]. Earlier work include the a metric in terms of time and efforts
based on a Markov model [4]. More recently, several security metrics are pro­
posed by combining CVSS scores based on attack graphs [20, 5]. The minimum
efforts required for executing each exploit is used as a metric in [2, 15]. A mean
time-to-compromise metric is proposed based on the predator state-space model
(SSM) used in the biological sciences in [9]. The cost of network hardening is
quantified in [22]. Security metrics are also developed for specific applications,
such as IDSs [8] and distributed trust managment [17].

More closely related to our work, attack surface measures how likely a soft­
ware is vulnerable to attacks based on the degree of exposure [14]. Our work
borrows from attack surface the idea of focusing on interfaces, instead of in­
ternal details, of a system. However, we apply the idea to a network of com­

14

puter systems instead of a single software system. Parallel to the study of se­
curity metrics, fault tolerance algorithms rely on replication and diversity to
improve the availability of services [3]. Our metric provides a means for mea­
suring the effectiveness of systems running such algorithms in the context of
a network. Our work is partially inspired by the well known data privacy met­
ric k-anonymity [16] which measures the amount of privacy using an integer
regardless of specific application semantic. In our study, we adopt the graph-
based representation of attack graphs proposed in [1], which avoids the state
explosion problem that may face a model checking-based approach [18].

To the best of our knowledge, few work exist on measuring zero day attacks.
An empirical study of the total number of zero day vulnerabilities available on
a single day is given based on existing data [11]. If such a result can be obtained
or estimated in real time, it may be incorporated into our metric by dynamically
adjusting the value of k (a larger k is needed when more vulnerabilities are
available). Another recent effort orders different applications in a system by the
seriousness of consequences of having a single zero day vulnerability [6]. In
contrast to our work, it has a different focus (applications instead of networks)
and metric (seriousness of consequences instead of number of vulnerabilities).

6 Conclusion

We have proposed k-zero day safety as a novel security metric for measuring
the relative security of networks against potential zero day attacks. In doing so,
we have transformed the unmeasureability of unknown vulnerabilities from a
commonly perceived obstacle to an opportunity for security metrics. While the
general problem of computing the metric is intractable, we have demonstrated
that practical security issues can be formulated and solved in polynomial time.
For future work, we shall extend the model to address various limitations men­
tioned in this paper; we shall also integrate the proposed algorithms into existing
attack graph-based security tools so to validate their real world effectiveness.

Acknowledgements The authors thank the anonymous reviewers for their valu­
able comments. This material is based upon work supported by National Insti­
tute of Standards and Technology Computer Security Division; by Homeland
Security Advanced Research Projects Agency under the contract FA8750-05­
C-0212 administered by the Air Force Research Laboratory/Rome; by Army
Research Office under grant W911NF-05-1-0374, by Federal Aviation Admin­
istration under the contract DTFAWA-04-P-00278/0001, by the National Sci­
ence Foundation under grants CT-0627493, IIS-0242237 and IIS-0430402, by
Natural Sciences and Engineering Research Council of Canada under Discov­

15

ery Grant N01035, and by Fonds de recherche sur la nature et les technologies.
Any opinions, findings, and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect the views of the
sponsoring organizations.

References

1. P. Ammann, D. Wijesekera, and S. Kaushik.	 Scalable, graph-based network vulnerability
analysis. In Proceedings of CCS’02, 2002.

2. D. Balzarotti, M. Monga, and S. Sicari. Assessing the risk of using vulnerable components.
In Proceedings of the 1st Workshop on Quality of Protection, 2005.

3. M. Castro and B. Liskov. Practical byzantine fault tolerance and proactive recovery. ACM
Trans. Comput. Syst., 20(4):398–461, 2002.

4. M. Dacier.	 Towards quantitative evaluation of computer security. Ph.D. Thesis, Institut
National Polytechnique de Toulouse, 1994.

5. M. Frigault, L. Wang, A. Singhal, and S. Jajodia. Measuring network security using dynamic
bayesian network. In Proceedings of ACM workshop on Quality of protection, 2008.

6. K. Ingols, M. Chu, R. Lippmann, S. Webster, and S. Boyer.	 Modeling modern network
attacks and countermeasures using attack graphs. In Proceedings of ACSAC’09, pages 117–
126, Washington, DC, USA, 2009. IEEE Computer Society.

7. A. Jaquith.	 Security Merics: Replacing Fear Uncertainity and Doubt. Addison Wesley,
2007.

8. W. Lee and D. Xiang. Information-theoretic measures for anomaly detection. In Proceedings
of the 2001 IEEE Symposium on Security and Privacy, page 130, Washington, DC, USA,
2001. IEEE Computer Society.

9. D. J. Leversage and E. J. Byres. Estimating a system’s mean time-to-compromise.	 IEEE
Security and Privacy, 6(1):52–60, 2008.

10.	 J. McHugh. Quality of protection: Measuring the unmeasurable? In Proceedings of the 2nd
ACM workshop on Quality of protection (QoP’06), pages 1–2, 2006.

11.	 M. McQueen, T. McQueen, W. Boyer, and M. Chaffin. Empirical estimates and observations
of 0day vulnerabilities. Hawaii International Conference on System Sciences, 0:1–12, 2009.

12.	 P. Mell, K. Scarfone, and S. Romanosky. Common vulnerability scoring system. IEEE
Security & Privacy Magazine, 4(6):85–89, 2006.

13.	 National Institute of Standards and Technology. Technology assessment: Methods for mea­
suring the level of computer security. NIST Special Publication 500-133, 1985.

14.	 J. W. P. Manadhata. An attack surface metric. Technical Report CMU-CS-05-155, 2005.
15.	 J. Pamula, S. Jajodia, P. Ammann, and V. Swarup. A weakest-adversary security metric

for network configuration security analysis. In Proceedings of the 2nd ACM workshop on
Quality of protection, pages 31–38, New York, NY, USA, 2006. ACM Press.

16.	 P.Samarati. Protecting respondents’ identities in microdata release. In IEEE Transactions
on Knowledge and Data Engineering (TKDE), pages 1010–1027, 2001.

17.	 M. Reiter and S. Stubblebine. Authentication metric analysis and design. ACM Transactions
on Information and System Security, 2(2):138–158, 5 1999.

18.	 O. Sheyner, J. Haines, S. Jha, R. Lippmann, and J. Wing. Automated generation and analysis
of attack graphs. In Proceedings of the IEEE Symposium on Security and Privacy, 2002.

19.	 M. Swanson, N. Bartol, J. Sabato, J. Hash, and L. Graffo. Security metrics guide for infor­
mation technology systems. NIST Special Publication 800-55, 2003.

16

20.	 L. Wang, T. Islam, T. Long, A. Singhal, and S. Jajodia. An attack graph-based probabilistic
security metric. In Proceedings of The 22nd Annual IFIP WG 11.3 Working Conference on
Data and Applications Security (DBSec’08), 2008.

21.	 L. Wang, S. Jajodia, A. Singhal, and S. Noel. k-zero day safety: Measuring the security risk
of networks against unknown attacks. Technical report, Spectrum Research Repository, Con­
cordia University, 2010. Available at http://spectrum.library.concordia.ca/6744/1/k0d.pdf.

22.	 L. Wang, S. Noel, and S. Jajodia. Minimum-cost network hardening using attack graphs.
Computer Communications, 29(18):3812–3824, 11 2006.

17

http://spectrum.library.concordia.ca/6744/1/k0d.pdf

