
  

 

I. INTRODUCTION 

 

Abstract:  Supporting different stakeholder viewpoints across 
the product’s entire lifecycle requires semantic richness for 
representing product related information. This paper proposes 
a multi-layered product-modeling framework that enables 
stakeholders to define their product-specific models and relate 
product-specific models to physical or simulated instances. The 
framework is defined within the Model-driven Architecture and 
adapted to the multi-layer approach of the architecture. The 
data layer represents real world products, the model layer 
includes models of those products, and the meta-model layer 
defines the product modeling language. The semantic-based 
product modeling language described in this paper is specialized 
from a web ontology language enabling product designers to 
express the semantics of their product models explicitly and 
logically in an engineering-friendly way. The interactions 
between these three layers are described to illustrate how each 
layer in the framework is used in a product engineering context.  

FFICIENT collaboration is essential when products are 
designed by temporally and spatially separated 

engineers. Collaborative environments enable product 
designers to interact and reach agreement by sharing design 
knowledge and product information [1], [2]. Ontology can 
play a role in the environments as a shared product 
information model because ontology is a formal and explicit 
specification of a shared conceptualization [3]. The 
collaborative environment needs the support of a generic 
product modeling language that: (1) can be readily 
specialized for the products at hand; (2) can provide 
information to all stakeholders throughout the product 
lifecycle; and (3) provides explicit, logical semantics of the 
concepts and relationships involved, without requiring that 
the stakeholders be versed in ontological thinking.  

Ontological multi-layered product modeling frameworks 
provide the above capabilities [4]. Figure 1 shows a high level 
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view of the framework. Engineers can describe their product 
models using a given semantic product modeling language. 
An editor interface needs to be developed for engineers to 
describe their product models without understanding the 
language. The product model descriptions need to be 
converted into formal descriptions with axioms so that 
reasoners can check the consistency of the formal 
descriptions and infer new knowledge based on the 
descriptions and their instances, i.e., information about 
physical products. In order to develop the editor interface, 
converter, and reasoners, the syntax and semantics of the 
product modeling language need to be defined. In this paper, 
the structure of the modeling framework and the abstract 
syntax and semantics of the product modeling language are 
proposed. Developing the concrete syntax for an editor 
interface, converter, and reasoners are out of scope for this 
paper.  

The framework includes a generic product modeling 
language. The language enables product designers to define 
their product models from an engineering point of view while 
exploiting the benefits of ontology languages. The product 
modeling language consists of generic product domain 
concepts and relationships, such as artifact, behavior, and 
their relationships (explained later in the paper), which can 
guide designers in building their product-specific models, 
such as models of  cars, airplanes, ships, etc. The language 
extends existing work on ontological product modeling 
languages [4] to support product model verification as in the 
Core Product Model 2 (CPM2), a product modeling language, 
which also contains generic product concepts and 
relationships [5]. 

The product modeling language is specialized from an 
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Fig. 1.  A high level view of the product modeling framework. 



  

ontology language, while product models are represented as 
instances of the language. Thereby, product designers can 
share and understand the semantics of the product 
information and design knowledge. In addition, the 
framework clarifies the different meanings of the product 
information modeling layers, so that: (1) the generic product 
model is used as the product modeling language; (2) 
product-specific models can be represented in the product 
modeling language; and (3) information about physical 
products can be represented as instances of the 
product-specific models. 

This paper is organized as follows. Section 2 reviews 
previous research on product information models and 
ontological multi-layered product modeling architectures. 
Section 3 presents an overview of the proposed multi-layered 
product modeling framework, including the generic product 
model. Section 4 addresses the concepts and relationships in 
the integrated generic product model, and their semantics. 
Section 5 describes the interaction mechanisms within the 
multi-layered product modeling framework. Section 6 gives 
suggestions for future work and also contains the conclusions 
of this paper. 

II. PREVIOUS RESEARCH 

A. Multi-layered product modeling framework 
Ontological representations without multiple layers of 

abstraction could not integrate product lifecycle information 
at different abstraction levels. This need gave rise to 
multi-layered approaches for integrated models of product 
lifecycle information. Research clarified the difference 
between a generic product ontology and product-specific 
ontologies, and the multi-layered architecture provided the 
additional instance layers under the product-specific 
ontology.  

Ontology representations, such as first-order logic, 
description logic, and the web ontology language (OWL), 
have been widely used for representing formal descriptions of 
information models. However, it is a heavy burden on a 
product designer to understand these formalisms and to be 
able to use them to represent product models. Therefore, 
specialized product modeling languages are necessary so that 
product designers can build and use their product models on 
top of generic product domain concepts that are independent 
of specific product domains. Collaborative design 
environments also need product-specific ontologies, namely, 
sets of concepts, relationships, and constraints related to a 
specific product domain such as ‘car,’ ‘axle,’ or ‘bolt,’ 
defined using a specialized product modeling language. The 
resulting product-specific ontologies have instances, which 
have measured values of the design parameters. Finally, 
collaborative product design environments need integrated 
semantics of both the generic product modeling language and 
the product-specific ontologies. 

The previous efforts in developing product ontology using 
multi-layer approach [7-11] did not provide a modeling 
language for engineers. Although they exploited ontological 

reasoning capability in their models, they did not explain how 
engineers can use the modeling language and exploit the 
reasoning capability. 

B. Related NIST efforts 
Significant work in product modeling languages has been 

developed by the Design Process Group at National Institute 
of Standards and Technology (NIST). In particular, Core 
Product Model (CPM) [12], CPM2 [5], Open Assembly 
Model (OAM) [13], and ontological product modeling 
language (OPML) [4], provide product information models 
with generic terms such as ‘artifact,’ ‘behavior,’ and ‘form.’ 
CPM and OPML were developed to represent a generic 
product modeling language, while OAM is an information 
model specialized from CPM2 to express geometric 
constraints, kinematics, and tolerance in assemblies. The 
current effort augments OPML with additional aspects of 
CPM2, in particular the evaluation of product behavior.  

III. MULTI-LAYERED PRODUCT INFORMATION MODELING 
FRAMEWORK 

The proposed framework contains three layers for 
ontological product modeling, namely: the ontological 
product modeling language (M2), product-specific 
ontological models (M1), and physical item information (M0). 
Figure 2 shows the three layers and the relationships among 
them.    

The first layer (M2) is the modeling language. A 
semantics-based product modeling language (SPML) is 
proposed at this layer. As shown in Figure 2, the concepts and 
relationships in SPML are specialized from OWL classes, and 
the syntax and semantics of SPML inherit the syntax and 
semantics of OWL. The semantics of SPML need to be 
specified further because its classes and relationships require 
more specialized semantics for the domain of products. Since 
OWL can be a meta-modeling language to express semantics 
of SPML at M2, OWL is used to represent the axioms 
explicitly. For example, ‘Artifact’ and ‘Designed Behavior’ 
classes in SPML have different axioms. Although both 
classes are sub-classes of owl:Class , only the ‘Artifact’ class 
has an axiom that it must have at least one relationship with 
‘Designed Behavior.’ Specifically, the semantics of ‘Artifact’ 
constrains an artifact to have at least one ‘Designed 
Behavior.’  

The second layer (M1) is for product-specific ontological 
models. A product-specific model at M1 holds representative 
information about a particular product. It consists of 
product-specific concepts and relationships such as artifacts, 
behaviors, forms, and structures of a specific product, 
including attributes and their (required or designed) values. 
The concepts and relationships are defined by product 
designers, as instances of SPML, so that they can be checked 
by a reasoner to determine their conformity to the axioms in 
SPML (this is shown in the figure as Conformance). For 
instance, if a ‘Motor’ concept is defined as an instance of the 
‘Artifact’ class and it does not have a relationship with any 



  

designed-behavior, a reasoner can find inconsistencies by 
checking the above axiom of the ‘Artifact’ class. If the 
concepts and relationships at M1 do not create any 
inconsistency with SPML, they are valid, and their axioms 
can be added or inferred. Most axioms at M1 can be defined 
by domain experts, but some of the axioms can be inferred 
from axioms of the product modeling language at M2. 

The bottom layer (M0) is for physical product information. 
The information at M0 represents information about physical 
products observed at a certain time or space, or simulations of 
these. The information can be different from the product 
designers’ intent or expectation. Physical product information 
needs to be related to the original design models, which may 
include requirements as well as product designers’ intent and 
plan. For example, a physical product in M0 needs to be 
related to the maintenance policy and geometry information 
described in the design model in M1. 

The relationship between M0 and M1 is particularly 
important when the lifetime of the manufactured product is so 
long that information on the physical product may change 
several times, as in the case of ships, aircraft, and buildings. 
The conformance relationship in ontology modeling is better 
at expressing this relationship than the instantiation 
relationship in object-oriented modeling. The conformance 
relationship is a relationship between an individual and a 
class in an ontological modeling perspective. Individuals can 
exist without their specific classes, so their attributes are not 
dependent on specific classes. A conformance relation can be 
established between an individual and a class by an inference 
engine if the information declared for the individual satisfies 
the definition of the class. There are other terms such as 
‘instance of’ and ‘type of’ (used interchangeably in the 
literature). In this paper, these terms are distinguished with 
the term ‘conforms to’ to mean that the instances are checked 
logically with reasoners to be consistent with the class’s 
definitions. For example, an individual can be defined by 
engineers as an instance of a class but it may or may not be 
conformed to the class. 

A physical product at M0 can conform to several product 
models at M1 such as a requirement model, a conceptual 
design model, an engineering model, etc. Since a physical 
product has detailed information, it can have more attributes 
than one of its product models at M1. Definitions at the M1 

layer can be used to infer the conformance relationships 
between the M1 and M0 layers. A detailed description of the 
interaction between the M1 and M0 layers will be given in 
Section 5. 

IV. THE PRODUCT MODELING LANGUAGE: SPML 
This section describes the classes and relationships of the 

product modeling language at the M2 layer, in short, the 
SPML classes.  SPML uses OWL for its base language. 
SPML inherits OWL semantics through the specialization 
relationship. In addition, SPML classes have axioms to 
specify their meanings explicitly. The axioms are also 
described in OWL, so that they can provide OWL syntax for 
SPML to describe specific product models at M1. 

Figure 3 shows the relationships between the SPML 
classes and the OWL primitives. The ‘spml:Class’ is the top 

class in SPML, and it is a sub-class of ‘owl:Class.’ 
‘spml:Entity,’ ‘spml:Behavior,’ and ‘spml:Property’ classes 
will be defined in this section. From this section, the “Arial” 
bold font is used to avoid repeating usage of ‘spml:’ prefix. 
For example, Class means spml:Class. 

Entity, Behavior, and Property classes 
Entity, Behavior, and Property are crucial concepts for 

building product-specific models. They have relationships 
among themselves, and have further sub-classes which inherit 
the relationships. Figure 4 shows the class hierarchy and 
relationships graphically.  

Entity is things that can be described with Behavior and 
Property. Entity can be involved in some Behavior. 
Behavior is a dynamic aspect of one or more Entities. A 
dynamic aspect involves the notion of time in its description. 
For example, ‘motor’ and ‘fan’ are entities involved in a 
behavior ‘rotating a fan.’  

Property represents things that describe Class, 
excluding the dynamics of the Class represented by 
Behavior. Property must describe either Entity or 
Behavior so instances of it cannot exist without at least one 
‘is_property_of’ relationship to an instance of either Entity 
or Behavior. Property is different from Attribute because 
properties can be further described by attributes while 
Attribute cannot have attributes. For example, ‘motor 
cylinder’ property (geometry) can describe as a ‘motor’ with 
its attributes such as ‘diameter’ and ‘length.’ However, 

 
Note1: The SPML at M2 uses OWL as a meta-modeling language to 
express its axioms. 
Fig. 2.  The multi-layered product information modeling framework. 

 
Fig. 3.  Relationships between OWL and SPML classes. 



  

attributes such as ‘diameter’ or ‘‘length’ cannot be further 
described by other attributes in SPML.  

Figure 4 shows subclasses of Entity, Behavior, and 
Property, and their relationships.  

A. Entity class  
Entity is divided into ExternalEntity and 

SpecifiedEntity, and SpecifiedEntity is divided further 
into Artifact and Feature.  

ExternalEntity is a kind of entity that interacts with 
artifacts in a context of use, which is a required behavior. The 
required behavior identifies some entities participating in it as 
the external entities.  The external entities interact with the 
entity being specified (the artifact), which is also involved in 
the required behavior. For instance, a person’s hand and 
mouth, and water can be external entities for designing a 
water-bottle because they give required behaviors to the 
water-bottle design.  

SpecifiedEntity is a kind of Entity that is specified with 
SpecifiedBehavior and Form. Artifact and Feature are 
sub-classes of SpecifiedEntity. A specified entity must be 
involved in at least one specified behavior (either required 
behavior or designed behavior) and have at least one form. 
For example, a water-bottle can be a specified entity that has a 
specified behavior ‘containing water’ and a material (a 
subclass of form) ‘plastic.’  

Artifact is a kind of SpecifiedEntity which is designed, 
as opposed to entities that are naturally occurring. Artifacts 
must be involved in at least one specified behavior. Artifact 
and ExternalEntity are not disjoint because an artifact can 
be an external entity for another artifact. For instance, a 
‘desk’ can be an external entity for a ‘chair’ design, while a 
‘chair’ can be an external entity for a ‘desk.’  

Feature is a kind of SpecifiedEntity which is a portion 
of an artifact. A feature has relationships with specific forms 
and behaviors of its artifact to specify relationships between 
the specific forms and behaviors. For example, a 
‘bottle-neck’ feature of a ‘water-bottle’ can be a feature the 
form of which is a ‘through-hole’, and the designed behavior 
of which is ‘guiding water-flow.’ The relationship between 
Artifact and Feature is defined as a composite relationship 
because they have a structural relationship and a feature 
cannot exist without an artifact. 

B. Behavior class  
Behaviors are classified into two direct sub-classes: 

SpecifiedBehavior and TestBehavior.  
SpecifiedBehavior is a kind of Behavior specifies 

dynamic aspects of entities, which are invariant once they are 
specified. It is further specialized into RequiredBehavior 
and DesignedBehavior.  

Required behaviors describe external entities’ dynamics, 
which affect artifact design. Required behaviors are classified 
into two classes.  
• InformalRequiredBehavior is a behavioral 

description of the dynamics of the external entities 
surrounding artifacts. The description explains behaviors 

of the external entities informally, and provides initial data 
for the analysis of interactions between external entities 
and artifacts. For example, ‘Person is drinking water’ is an 
example of informal description. A designer can start to 
think about an artifact like ‘water-bottle’ and its 
interactions with external entities, such as ‘person’ and 
‘water’, based on the description. A required behavior can 
have sub-behaviors. Sub-behaviors are described with 
more specific entities or verbs. For example, the above 
example can have sub behaviors: ‘Hand tilts a 
water-bottle’ and ‘Mouth contacts a water-bottle.’ 

• FormalRequiredBehavior explicitly specifies external 
entities, artifacts, and their interactions. A formal required 
behavior can be derived from an informal required 
behavior. While an informal required behavior is 
expressed with a sentence, a formal required behavior is 
expressed with a structured sentence and attributes. A 
structured sentence consists of a subject, verb, and object 
[14]. Entities can be used as a subject or object. From the 
previous example, ‘person,’ ‘hand,’ ‘mouth,’ and ‘water’ 
are defined as external entities, and a ‘water-bottle’ is 
defined as an artifact. Verb taxonomy is required to 
specify verbs. For instance, Hirtz [15] and Kitamura [16] 
defined verb taxonomies to describe engineering 
behaviors and functions, respectively. From the previous 
example, ‘drink,’ ‘tilt,’ and ‘contact’ are verbs to describe 
the required behaviors, and a formal required behavior 
‘FB01’ can be expressed with a subject ‘person’, a verb 
‘drink’, and an object ‘water.’  Attributes also needed to 
specify a formal required behavior. For instance, the 
‘FB01’ formal required behavior has an attribute ‘water 
flow-rate’ whose value is ‘more than 50 cc/sec.’   

DesignedBehavior is behaviors of an artifact or feature, 
determined by product designers in response to formal 
required behaviors. It identifies some entities participating in 

 
Fig. 4.  Entity, Behavior, and Property classes and relationships. 



  

it as specified entities (artifact and feature). The subject of its 
description should be an artifact or feature, while the subject 
of required behavior’s description is an external entity. For 
example, ‘Water-bottle provides water to mouth’ is a 
designed behavior for the above required behavior example. 
A designed behavior can have specific attributes and their 
values that satisfy the attributes and values defined at 
corresponding required behaviors. For example, the ‘water 
flow-rate’ of the above designed behavior can have a value 
‘more than 60 cc/sec.’  

Designed behaviors are defined to satisfy required 
behaviors. The relationship between RequiredBehavior 
and DesignedBehavior, ‘satisfy_beh_required’ 
relationship in Figure 4, means a specialization relationship. 
So, a designed behavior in the M1 layer can be described as a 
sub-class of required behaviors. In addition, artifacts involved 
in a designed behavior in the M1 layer should be a sub-class 
of another artifact that is involved in the required behaviors, 
or they can be a same class. 

TestBehavior is a behavior of an artifact or feature that 
can be observed after testing with a test method. External 
entities and specified entities can be involved in describing a 
test behavior, but a test behavior cannot exist without a 
related specified entity. TestBehavior is the observed 
behavior of the artifact or feature. It can be observed through 
test methods such as running mathematical models or 
simulation models, or testing physical prototypes or 
manufactured items. The test methods should be defined as an 
attribute of test behaviors at the M1 layer.  

A test behavior of an artifact or feature should be compared 
to a designed behavior. It can satisfy the designed behavior if 
its observed behaviors are qualified for the designed 
behavior. Otherwise, it cannot satisfy the designed behavior. 
The evaluation results are recorded with Behavior 
Evaluation class, which is a sub-class of Property. 
Conformance relationship between the M1 and M0 layer is 
used to evaluate test behaviors, which will be explained in 
Section 5. 

C. Property class 
Property has two sub-classes; Form and 

BehaviorEvaluation. Forms are properties of Entity, and 
behavior evaluations are properties of TestBehavior. Only 
those two sub-classes are defined in this paper, but the class 
hierarchy of Property can be expanded with more 
sub-classes in future works if product development domain 
requires more properties.  

Form is properties of entities that explain geometry and 
material aspects of the entities. It has two sub-classes: 
Geometry and Material. Geometry is defined to describe 
the measurements of lines, angles, surfaces, solids, and 
relationships among them. Material describes the substances 
that entities can be made from.  

The relationship between Form and Entity, ‘is_form_of’ 
relationship, is used to specify forms of entities at the M1 
layer. The relationship means a specialization relationship at 

the M1 layer. For example, a ‘Cylinder’ geometry at M1 can 
be used to describe many artifact designs such as a cup, pipe, 
or drum artifact at M1. All instances of those artifacts at M0 
are members of the ‘Cylinder’ geometry. Therefore, the cup, 
pipe, and drum artifacts at M1 are sub-classes of the 
‘Cylinder’ geometry. The specialization relationship is 
derived from the ‘is_form_of’ relationships between the 
artifacts and geometry classes at M1. If an engineer defines 
that ‘Cylinder’ geometry at M1 has the ‘is_form_of’ 
relationship with a ‘Cup’ artifact at M1, the semantic of the 
relationship should be defined as a specialization relationship 
[4].  

BehaviorEvaluation is a sub-class of Property and is 
used to record results of behavior tests. It has an attribute 
‘result’ at the M1 layer to specify the test results such as 
‘satisfactory’ or ‘failure.’ 

V. DEVELOPING PRODUCT MODELS AND INSTANCES  
USING SPML 

SPML is an extension of OWL, which provides 
mechanisms for engineers to specify their models in this 
language. Using SPML at the layer M2 will allow engineers 
to write their product models at the M1 layer in this language 
(i.e., interaction between M2 and M1), which provides 
product-specific semantics developed in SPML (i.e., adding 
semantics to the product models). Once engineers defined 
product models using SPML, they can instantiate their 
product models and check conformance of the real world 
instances to the product models (i.e., interaction between M1 
and M0). 

A. Developing product models (M2-M1 interactions) 
Engineers and inference systems perform the interaction 

between the M2 and M1 layers. A SPML editor interface 
needs to be developed for engineers to describe their 
product-specific ontological models (M1) in SPML (M2). 
Axioms of SPML provide OWL syntax for SPML, and 
inference systems can assist engineers by telling what classes 
and relationships are needed to be defined. Inference systems 
can also check syntactic consistency of engineers’ 
 

Index SPML - OWL expressions 
(a)  SPML axioms 
example 

Class:   spml:Artifact 
    SubClassOf:    spml:SpecifiedEntity 
 
Class:   spml:SpecifiedEntity 
    SubClassOf:    spml:Entity  and 
    SubClassOf:    (spml:has_form only 
spml:Form) and 
    SubClassOf:    (spml:has_form some 
spml:Form)  

(b) Engineer’s 
initial description 
example 

<spml:Artifact rdf:ID= “Motor”> 

(c) Template 
example provided 
by inference 
systems  

<spml:Artifact rdf:ID= “Motor”> 
    <spml:has_form rdf:ID= “___”> 
        <spml:Geometry   rdf:ID= “___”/> 
        <spml:Material   rdf:ID= “___”/> 
    </spml:has_form> 
</spml:Artifact> 

Fig. 5.  An example of interactions between the M2 and M1 layers. 



  

descriptions at M1 based on the SPML syntax. For example, 
let us assume that there are SPML axioms like Figure 5-(a). 
The axioms are represented in the Manchester OWL syntax 
[17]. They specify every artifact at M1 must have at least one 
relationship ‘has_form’ with a form. If an engineer defines a 
‘Motor’ artifact class like Figure 5-(b), inference systems can 
check syntactic consistency of the description and tell what 
information is missing. Then, systems can provide templates 
for engineers to describe the missing information. The place 
underlined in Figure 5-(c) is where engineers need to fill the 
missing information.  

B. Adding semantics to product models at M1 layer 
If a product model description at M1 satisfies the axioms of 

SPML, axioms for the product model description at M1 can 
be added. Axioms at the M1 layer are defined for each 
behavior, form, and entity.  

A behavior can be described with its attributes and 
sub-behaviors. For example, let us assume that a designed 
behavior ‘Rotating a fan’ of a motor is described like Figure 
6.  A behavior can be differentiated from other behaviors 
based on its attributes and sub-behaviors. So, the definition of 
the behavior can be generated from the attributes and 
sub-behaviors like Figure 7. The contents in Figure 6 and 7 

are now hard coded for explanation, but a SPML editor user 
interface and inference system are in development process.   

Inference systems require axiom generation rules in order 
to add axioms to the behavior descriptions. Axiom generation 
rules can be expressed or implemented in various ways. Lee 
[18] and Liang [19] showed implementation of rules using 
eXtensible Stylesheet Language Transformations (XSLT) 
[20] and Java [21], respectively. They find patterns in a 
product description and generate axioms or definitions for the 
description.  

The rules should be designed considering the axioms of 
SPML at the M2 layer. Then, axioms at the M1 layer can be 
generated automatically from the sentences defined by 
engineers. However, axioms generated by rules may not be 
sufficient to specify all the semantics of product models in 
M1. Especially, when the semantics concern engineering 
knowledge that is product specific, some axioms have to be 
generated manually by engineers in order to express the exact 
meanings of concepts. For example, if engineers know what 
attributes and sub-behaviors can discriminate the 
‘Rotating_a_fan’ behavior from other behaviors, they can 
select attributes and sub-behaviors for the definition.  

Axioms for form and entity descriptions in M1 can also be 
generated like behavior axioms. Since entities are described 
with their behaviors, axioms of entities can be defined with 
behaviors and reuse the axioms of the behaviors by referring 
the behaviors. For example, a ‘Motor_A’ artifact class can be 
defined as an artifact that must have a designed behavior 
‘Rotating_a_fan.’  Then, the definition of the motor will refer 
the behavior, and the definition of the behaviors will be 
included in the definition of the motor.  

Axioms for SPML relationships also need to be generated 
and added to the product model descriptions. Some of SPML 
relationships are interpreted as specialization relationship 
such as ‘satisfy’ relationships among behaviors and 
‘is_form_of’ relationships between entity and form.  

If a designed behavior satisfies a required behavior, then 
the attributes and sub-behaviors of the designed behavior 
should satisfy the attributes and sub-behaviors of the required 
behavior. A specialization relationship between two classes 
enables inference systems to verify the ‘satisfy’ relationship 
between behaviors.   

An ‘is_form_of’ relationship between an entity and form 
class is also interpreted as a specialization relationship, and 
the entity class becomes a sub-class of the form class. For 
example, if a ‘Motor_Cylinder’ class is a form of a ‘Motor’ 
artifact, a specialization relationship between two classes is 
added, and the ‘Motor’ class becomes a sub-class of the 
‘Motor_Cylinder’ class.  

Engineers can also define specialization relationships 
between behaviors, entities, or forms if they wish to represent 
the same product at different levels of detail [4]. Then, a 
specific ‘Motor_A’ in a detail design can be a specialization 
of a ‘Motor’ concept in a conceptual or preliminary design 
because all information about physical motors conforming to 
the former ‘Motor_A’ also conforms to the latter ‘Motor’. In 

<spml:DesignedBehavior rdf:ID= “Rotating_a_fan”> 
   <spml:specifies> 
      <spml:Artifact rdf:ID= “Motor”/> 
      <spml:ExternalEntity rdf:ID= “Fan” /> 
  </spml:specifies> 
  <spml:M1_has_attribute> 
        <spml:Attribute rdf:ID= “torque”> 
            <spml:M1_has_value>   [>50, <100]   </spml:M1_has_value> 
            <spml:M1_has_datatype rdf:Resource= “xsd:integer”/>  
            <spml:M1_has_unit rdf:Resource = “ut:Nm” /> 
        </spml:Attribute> 
        <spml:Attribute rdf:ID= “rpm”> 
            <spml:M1_has_value>   [>3000, <5000]   
</spml:M1_has_value> 
            <spml:M1_has_datatype rdf:Resource= “xsd:integer”/>  
            <spml:M1_has_unit rdf:Resource = “ut:rpm” /> 
        </spml:Attribute> 
</spml:M1_has_attribute> 
  <spml:has_sub_behavior> 
        <spml:DesignedBehavior rdf:ID= “Receive_electricity”/> 
        <spml:DesignedBehavior rdf:ID= “Spin_axis”/> 
  </spml:has_sub_behavior> 
</spml:DesignedBehavior> 

Fig. 6.  A behavior description example at the M1 layer. 

spml:DesignedBehavior:  Rotating_a_fan 
    EquivalentTo: 
          (spml:M0_has_attribute  only  (torque or rpm))   and 
          (spml:M0_has_attribute  exactly  2)   and 
          (spml:M0_has_attribute  some ( torque  and   
                     (spml:M0_has_value  some  int[>50, <100])))  and 
          (spml:M0_has_attribute  some ( rpm  and   
                     (spml:M0_has_value  some  int[>3000, <5000])))   
          and 
          (spml:has_sub_behavior  only   
                                    (Receive_electricity  or  Spin_axis))  and 
          (spml:has_sub_behavior  some  Receive_electricity)   and 
          (spml:has_sub_behavior  some  Spin_axis) 

Fig. 7.  Axioms example at the M1 layer. 
 



  

addition, the specialization relationship can save engineers 
the effort of defining duplicate axioms at the M1 layer. Since 
specialization implies axiom inheritance, engineers can use 
specialization relations in order to reuse existing axioms of 
concepts. For example, if axioms of a ‘Motor’ artifact exist, a 
new specialized ‘Motor_A’ concept inherits the axioms, 
because all information about physical motors conforming to 
‘Motor_A’ also conforms to the ‘Motor’ and its axioms. 
Moreover, the specialization relationship between classes can 
be inferred by ontological reasoning (i.e., description logic 
(DL) reasoning). If the axioms of classes at the M1 layer are 
consistent, ontological reasoning can exploit those axioms to 
find new specialization relationships between classes. For 
example, if a designed behavior satisfies a required behavior, 
entities specified by them should also have a specialization 
relationship. 
C.  Developing product instances (M1-M0 interactions) 

Product models are realized in the real world as physical 
items. The interaction between the M1 and M0 layers is 
necessary to build and trace the relationships between product 
models and physical items. While the M1 layer represents 
different views of a product-specific model, the M0 layer 
represents occurrence or measured information about 
physical realizations (items) of the model. A physical item at 
M0 can have multiple behavior occurrences. While a 
designed behavior at M1 is invariant once it is specified, 
behavior occurrence information of physical items at M0 is 
dependent on its observation time and place. Behavior 
occurrence information may also depend on the accuracy and 

precision of instruments used, so there can be multiple 
measurements of the same M0 physical item that gives 
different values and uncertainties.  

The interaction between the M1 and M0 layers is 
implemented as a conformance relationship. Conformance 
relationships between classes at the M1 and instances at the 
M0 can be established automatically by inference systems if 
the information pertaining to the instances satisfies the 
definitions of the classes at the M1 layer. In addition, if the 
conformance relationship is manually established between a 
class at the M1 layer and an instance at the M0 layer, the 
information of the instance should satisfy the definition of the 
class. For example, let us assume that there is a ‘Motor_A’ 
artifact class specialized from a ‘MotorCylinder’ geometry 
class whose attribute and value are ‘diameter’ and ’20 ± 0.1 
mm,’ respectively. Every instance of the ‘Motor_A’ class 
must have an attribute ‘diameter’, and its value must be 
between 19.9 and 20.1 mm. These conformances can be 
checked by ontological inference engines.  

A conformance relationship can be also established 
between a behavior class and behavior occurrence. A 
behavior occurrence at the M0 layer is used to test (measure) 
behavior information of a physical item. A behavior 
occurrence may or may not satisfy a designed behavior. If a 
behavior occurrence satisfies a definition of a designed 
behavior, it means that the physical item performs well as 
designed. Since engineers learn more from failures than 
successes, tested behaviors and their evaluation results at M0 
should be connected to the respective product model at M1. 

 
SPML has some pre-defines classes at M1 in order to 

classify M0 instances. M1_Artifact, M1_Behavior, 
M1_TestedBehavior, and M1_BehaviorEvaluation 
classes are pre-defined at the M1 layer for behavior 
conformance. Figure 8 shows the pre-defined classes and 
their relationships. Every specified behavior class at M1 
should be defined as a specialization of M1_Behavior, and 
every test behavior class at M1 should be defined as a 
specialization of M1_TestBehavior. These specializations 
allow inference engines to check conformance relationships 
between a behavior occurrence at M0 and a designed 
behavior class at M1.  For instance, behavior occurrences 
(Test#01 and Test#02) in Figure 8 have attributes and their 
values that satisfy a definition of a designed behavior 
(DB#21). Therefore, the occurrences can be inferred as 
instances of the designed behavior, and their behavior 
evaluations have a result attribute whose value is 
‘satisfactory.’    

While the attribute values of a designed behavior at M1 are 
given by engineers, the attribute values of a test behavior at 
M1 cannot be specified until engineers get enough tested 
behavior occurrence information at M0. Therefore, the test 
behavior (TB#01) in Figure 8 has an attribute ‘Air_flow_rate’ 
without its value. However, if an engineer declares that the 
test behavior has enough occurrences at M0, the attribute may 
have a value like ‘≥ 3.1 m 3/s’ which can embrace same 

 
Fig. 8.  Predefined classes at M1 for behavior evaluation of M0 instances 



  

attribute’s values of behavior occurrences at M0. 

VI. CONCLUSION 
The In the paper, we extended OWL to SPML to include 

specific language constructs to define and model product 
design and manufacturing. The constructs like ‘Behavior,’ 
‘Artifact,’ etc. are defined in SPML (M2 layer), so that the 
semantics of these constructs can be exploited by designers 
and engineers. This will allow designer and engineers to 
check whether particular entities are behavior, artifact, or 
other classes in SPML. In OAM, ‘Assembly’ is a class and 
not defined in M2 layer. As a next step, the notion of 
‘Assembly’ will be defined in SPML (M2 layer). As 
mentioned earlier, this will be a powerful feature to check 
whether an entity is an assembly or not. It is also to be noted 
that the axioms that define ‘Behavior,’ ‘ExternalEntity,’ 
‘Artifact’ can be extended for specific needs, thus allowing 
extension to SPML.   

A SPML editor interface is in development process. The 
interface will allow engineers to describe their product 
models semantically, which can be easily understood not only 
by engineers but also by computers. In addition, the interface 
will be connected to Computer-Aided Design (CAD) systems 
as a future work for semantically annotating the existing CAD 
models. SPML can be a powerful mechanism for annotating 
current CAD models using SPML constructs, so that the CAD 
models can be semantically enriched not only within 
geometric aspects but also beyond geometric aspects such as 
requirement, function, behavior, and sustainability aspect. 
The proposed framework needs additional work and 
implementation in order to be usable as a product modeling 
system. In terms of information modeling scope, SPML 
currently focuses on product structure and behavior 
evaluation in product lifecycle. Additional information 
modeling issues need to be addressed such as version control, 
product configuration, assembly relationship, tolerance, and 
sustainability.  In addition, interfaces for integration with 
applications such as design knowledge bases and CAD 
systems need to be implemented. 
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