

I. INTRODUCTION

Abstract: Supporting different stakeholder viewpoints across
the product’s entire lifecycle requires semantic richness for
representing product related information. This paper proposes
a multi-layered product-modeling framework that enables
stakeholders to define their product-specific models and relate
product-specific models to physical or simulated instances. The
framework is defined within the Model-driven Architecture and
adapted to the multi-layer approach of the architecture. The
data layer represents real world products, the model layer
includes models of those products, and the meta-model layer
defines the product modeling language. The semantic-based
product modeling language described in this paper is specialized
from a web ontology language enabling product designers to
express the semantics of their product models explicitly and
logically in an engineering-friendly way. The interactions
between these three layers are described to illustrate how each
layer in the framework is used in a product engineering context.

FFICIENT collaboration is essential when products are
designed by temporally and spatially separated

engineers. Collaborative environments enable product
designers to interact and reach agreement by sharing design
knowledge and product information [1], [2]. Ontology can
play a role in the environments as a shared product
information model because ontology is a formal and explicit
specification of a shared conceptualization [3]. The
collaborative environment needs the support of a generic
product modeling language that: (1) can be readily
specialized for the products at hand; (2) can provide
information to all stakeholders throughout the product
lifecycle; and (3) provides explicit, logical semantics of the
concepts and relationships involved, without requiring that
the stakeholders be versed in ontological thinking.

Ontological multi-layered product modeling frameworks
provide the above capabilities [4]. Figure 1 shows a high level

Manuscript received March 31, 2010.
Jae H. Lee*, Conrad Bock, Sudarsan Rachuri, Ram D. Sriram are with the

National Institute of Standards and Technology, 100 Bureau Drive,
Gaithersburg, MD 20899 USA (*corresponding author to provide phone:
301-975-3167; fax: 301-975-4635; e-mail: {lee.jaehyun, conrad.bock,
sudarsan, sriram}@nist.gov).

Steven J. Fenves was with the National Institute of Standards and
Technology, Gaithersburg, MD 20878 USA. (e-mail:
fenvessj@comcast.net).

Hyo-Won Suh is with the Korea Advanced Institute of Science and
Technology, Daejoen South Korea, (e-mail: hw_suh@kaist.ac.kr).

Xenia Fiorentini was with the National Institute of Standards and
Technology. She is now an independent consultant in Italy. (e-mail:
xenia.fiorentini@gmail.com)

view of the framework. Engineers can describe their product
models using a given semantic product modeling language.
An editor interface needs to be developed for engineers to
describe their product models without understanding the
language. The product model descriptions need to be
converted into formal descriptions with axioms so that
reasoners can check the consistency of the formal
descriptions and infer new knowledge based on the
descriptions and their instances, i.e., information about
physical products. In order to develop the editor interface,
converter, and reasoners, the syntax and semantics of the
product modeling language need to be defined. In this paper,
the structure of the modeling framework and the abstract
syntax and semantics of the product modeling language are
proposed. Developing the concrete syntax for an editor
interface, converter, and reasoners are out of scope for this
paper.

The framework includes a generic product modeling
language. The language enables product designers to define
their product models from an engineering point of view while
exploiting the benefits of ontology languages. The product
modeling language consists of generic product domain
concepts and relationships, such as artifact, behavior, and
their relationships (explained later in the paper), which can
guide designers in building their product-specific models,
such as models of cars, airplanes, ships, etc. The language
extends existing work on ontological product modeling
languages [4] to support product model verification as in the
Core Product Model 2 (CPM2), a product modeling language,
which also contains generic product concepts and
relationships [5].

The product modeling language is specialized from an

Product Modeling Framework and Language
for Behavior Evaluation

Jae H. Lee, Steven J. Fenves, Conrad Bock, Hyo-Won Suh,
Sudarsan Rachuri, Xenia Fiorentini, and Ram D. Sriram, Member, IEEE

E

Fig. 1. A high level view of the product modeling framework.

ontology language, while product models are represented as
instances of the language. Thereby, product designers can
share and understand the semantics of the product
information and design knowledge. In addition, the
framework clarifies the different meanings of the product
information modeling layers, so that: (1) the generic product
model is used as the product modeling language; (2)
product-specific models can be represented in the product
modeling language; and (3) information about physical
products can be represented as instances of the
product-specific models.

This paper is organized as follows. Section 2 reviews
previous research on product information models and
ontological multi-layered product modeling architectures.
Section 3 presents an overview of the proposed multi-layered
product modeling framework, including the generic product
model. Section 4 addresses the concepts and relationships in
the integrated generic product model, and their semantics.
Section 5 describes the interaction mechanisms within the
multi-layered product modeling framework. Section 6 gives
suggestions for future work and also contains the conclusions
of this paper.

II. PREVIOUS RESEARCH

A. Multi-layered product modeling framework
Ontological representations without multiple layers of

abstraction could not integrate product lifecycle information
at different abstraction levels. This need gave rise to
multi-layered approaches for integrated models of product
lifecycle information. Research clarified the difference
between a generic product ontology and product-specific
ontologies, and the multi-layered architecture provided the
additional instance layers under the product-specific
ontology.

Ontology representations, such as first-order logic,
description logic, and the web ontology language (OWL),
have been widely used for representing formal descriptions of
information models. However, it is a heavy burden on a
product designer to understand these formalisms and to be
able to use them to represent product models. Therefore,
specialized product modeling languages are necessary so that
product designers can build and use their product models on
top of generic product domain concepts that are independent
of specific product domains. Collaborative design
environments also need product-specific ontologies, namely,
sets of concepts, relationships, and constraints related to a
specific product domain such as ‘car,’ ‘axle,’ or ‘bolt,’
defined using a specialized product modeling language. The
resulting product-specific ontologies have instances, which
have measured values of the design parameters. Finally,
collaborative product design environments need integrated
semantics of both the generic product modeling language and
the product-specific ontologies.

The previous efforts in developing product ontology using
multi-layer approach [7-11] did not provide a modeling
language for engineers. Although they exploited ontological

reasoning capability in their models, they did not explain how
engineers can use the modeling language and exploit the
reasoning capability.

B. Related NIST efforts
Significant work in product modeling languages has been

developed by the Design Process Group at National Institute
of Standards and Technology (NIST). In particular, Core
Product Model (CPM) [12], CPM2 [5], Open Assembly
Model (OAM) [13], and ontological product modeling
language (OPML) [4], provide product information models
with generic terms such as ‘artifact,’ ‘behavior,’ and ‘form.’
CPM and OPML were developed to represent a generic
product modeling language, while OAM is an information
model specialized from CPM2 to express geometric
constraints, kinematics, and tolerance in assemblies. The
current effort augments OPML with additional aspects of
CPM2, in particular the evaluation of product behavior.

III. MULTI-LAYERED PRODUCT INFORMATION MODELING
FRAMEWORK

The proposed framework contains three layers for
ontological product modeling, namely: the ontological
product modeling language (M2), product-specific
ontological models (M1), and physical item information (M0).
Figure 2 shows the three layers and the relationships among
them.

The first layer (M2) is the modeling language. A
semantics-based product modeling language (SPML) is
proposed at this layer. As shown in Figure 2, the concepts and
relationships in SPML are specialized from OWL classes, and
the syntax and semantics of SPML inherit the syntax and
semantics of OWL. The semantics of SPML need to be
specified further because its classes and relationships require
more specialized semantics for the domain of products. Since
OWL can be a meta-modeling language to express semantics
of SPML at M2, OWL is used to represent the axioms
explicitly. For example, ‘Artifact’ and ‘Designed Behavior’
classes in SPML have different axioms. Although both
classes are sub-classes of owl:Class , only the ‘Artifact’ class
has an axiom that it must have at least one relationship with
‘Designed Behavior.’ Specifically, the semantics of ‘Artifact’
constrains an artifact to have at least one ‘Designed
Behavior.’

The second layer (M1) is for product-specific ontological
models. A product-specific model at M1 holds representative
information about a particular product. It consists of
product-specific concepts and relationships such as artifacts,
behaviors, forms, and structures of a specific product,
including attributes and their (required or designed) values.
The concepts and relationships are defined by product
designers, as instances of SPML, so that they can be checked
by a reasoner to determine their conformity to the axioms in
SPML (this is shown in the figure as Conformance). For
instance, if a ‘Motor’ concept is defined as an instance of the
‘Artifact’ class and it does not have a relationship with any

designed-behavior, a reasoner can find inconsistencies by
checking the above axiom of the ‘Artifact’ class. If the
concepts and relationships at M1 do not create any
inconsistency with SPML, they are valid, and their axioms
can be added or inferred. Most axioms at M1 can be defined
by domain experts, but some of the axioms can be inferred
from axioms of the product modeling language at M2.

The bottom layer (M0) is for physical product information.
The information at M0 represents information about physical
products observed at a certain time or space, or simulations of
these. The information can be different from the product
designers’ intent or expectation. Physical product information
needs to be related to the original design models, which may
include requirements as well as product designers’ intent and
plan. For example, a physical product in M0 needs to be
related to the maintenance policy and geometry information
described in the design model in M1.

The relationship between M0 and M1 is particularly
important when the lifetime of the manufactured product is so
long that information on the physical product may change
several times, as in the case of ships, aircraft, and buildings.
The conformance relationship in ontology modeling is better
at expressing this relationship than the instantiation
relationship in object-oriented modeling. The conformance
relationship is a relationship between an individual and a
class in an ontological modeling perspective. Individuals can
exist without their specific classes, so their attributes are not
dependent on specific classes. A conformance relation can be
established between an individual and a class by an inference
engine if the information declared for the individual satisfies
the definition of the class. There are other terms such as
‘instance of’ and ‘type of’ (used interchangeably in the
literature). In this paper, these terms are distinguished with
the term ‘conforms to’ to mean that the instances are checked
logically with reasoners to be consistent with the class’s
definitions. For example, an individual can be defined by
engineers as an instance of a class but it may or may not be
conformed to the class.

A physical product at M0 can conform to several product
models at M1 such as a requirement model, a conceptual
design model, an engineering model, etc. Since a physical
product has detailed information, it can have more attributes
than one of its product models at M1. Definitions at the M1

layer can be used to infer the conformance relationships
between the M1 and M0 layers. A detailed description of the
interaction between the M1 and M0 layers will be given in
Section 5.

IV. THE PRODUCT MODELING LANGUAGE: SPML
This section describes the classes and relationships of the

product modeling language at the M2 layer, in short, the
SPML classes. SPML uses OWL for its base language.
SPML inherits OWL semantics through the specialization
relationship. In addition, SPML classes have axioms to
specify their meanings explicitly. The axioms are also
described in OWL, so that they can provide OWL syntax for
SPML to describe specific product models at M1.

Figure 3 shows the relationships between the SPML
classes and the OWL primitives. The ‘spml:Class’ is the top

class in SPML, and it is a sub-class of ‘owl:Class.’
‘spml:Entity,’ ‘spml:Behavior,’ and ‘spml:Property’ classes
will be defined in this section. From this section, the “Arial”
bold font is used to avoid repeating usage of ‘spml:’ prefix.
For example, Class means spml:Class.

Entity, Behavior, and Property classes
Entity, Behavior, and Property are crucial concepts for

building product-specific models. They have relationships
among themselves, and have further sub-classes which inherit
the relationships. Figure 4 shows the class hierarchy and
relationships graphically.

Entity is things that can be described with Behavior and
Property. Entity can be involved in some Behavior.
Behavior is a dynamic aspect of one or more Entities. A
dynamic aspect involves the notion of time in its description.
For example, ‘motor’ and ‘fan’ are entities involved in a
behavior ‘rotating a fan.’

Property represents things that describe Class,
excluding the dynamics of the Class represented by
Behavior. Property must describe either Entity or
Behavior so instances of it cannot exist without at least one
‘is_property_of’ relationship to an instance of either Entity
or Behavior. Property is different from Attribute because
properties can be further described by attributes while
Attribute cannot have attributes. For example, ‘motor
cylinder’ property (geometry) can describe as a ‘motor’ with
its attributes such as ‘diameter’ and ‘length.’ However,

Note1: The SPML at M2 uses OWL as a meta-modeling language to
express its axioms.
Fig. 2. The multi-layered product information modeling framework.

Fig. 3. Relationships between OWL and SPML classes.

attributes such as ‘diameter’ or ‘‘length’ cannot be further
described by other attributes in SPML.

Figure 4 shows subclasses of Entity, Behavior, and
Property, and their relationships.

A. Entity class
Entity is divided into ExternalEntity and

SpecifiedEntity, and SpecifiedEntity is divided further
into Artifact and Feature.

ExternalEntity is a kind of entity that interacts with
artifacts in a context of use, which is a required behavior. The
required behavior identifies some entities participating in it as
the external entities. The external entities interact with the
entity being specified (the artifact), which is also involved in
the required behavior. For instance, a person’s hand and
mouth, and water can be external entities for designing a
water-bottle because they give required behaviors to the
water-bottle design.

SpecifiedEntity is a kind of Entity that is specified with
SpecifiedBehavior and Form. Artifact and Feature are
sub-classes of SpecifiedEntity. A specified entity must be
involved in at least one specified behavior (either required
behavior or designed behavior) and have at least one form.
For example, a water-bottle can be a specified entity that has a
specified behavior ‘containing water’ and a material (a
subclass of form) ‘plastic.’

Artifact is a kind of SpecifiedEntity which is designed,
as opposed to entities that are naturally occurring. Artifacts
must be involved in at least one specified behavior. Artifact
and ExternalEntity are not disjoint because an artifact can
be an external entity for another artifact. For instance, a
‘desk’ can be an external entity for a ‘chair’ design, while a
‘chair’ can be an external entity for a ‘desk.’

Feature is a kind of SpecifiedEntity which is a portion
of an artifact. A feature has relationships with specific forms
and behaviors of its artifact to specify relationships between
the specific forms and behaviors. For example, a
‘bottle-neck’ feature of a ‘water-bottle’ can be a feature the
form of which is a ‘through-hole’, and the designed behavior
of which is ‘guiding water-flow.’ The relationship between
Artifact and Feature is defined as a composite relationship
because they have a structural relationship and a feature
cannot exist without an artifact.

B. Behavior class
Behaviors are classified into two direct sub-classes:

SpecifiedBehavior and TestBehavior.
SpecifiedBehavior is a kind of Behavior specifies

dynamic aspects of entities, which are invariant once they are
specified. It is further specialized into RequiredBehavior
and DesignedBehavior.

Required behaviors describe external entities’ dynamics,
which affect artifact design. Required behaviors are classified
into two classes.
• InformalRequiredBehavior is a behavioral

description of the dynamics of the external entities
surrounding artifacts. The description explains behaviors

of the external entities informally, and provides initial data
for the analysis of interactions between external entities
and artifacts. For example, ‘Person is drinking water’ is an
example of informal description. A designer can start to
think about an artifact like ‘water-bottle’ and its
interactions with external entities, such as ‘person’ and
‘water’, based on the description. A required behavior can
have sub-behaviors. Sub-behaviors are described with
more specific entities or verbs. For example, the above
example can have sub behaviors: ‘Hand tilts a
water-bottle’ and ‘Mouth contacts a water-bottle.’

• FormalRequiredBehavior explicitly specifies external
entities, artifacts, and their interactions. A formal required
behavior can be derived from an informal required
behavior. While an informal required behavior is
expressed with a sentence, a formal required behavior is
expressed with a structured sentence and attributes. A
structured sentence consists of a subject, verb, and object
[14]. Entities can be used as a subject or object. From the
previous example, ‘person,’ ‘hand,’ ‘mouth,’ and ‘water’
are defined as external entities, and a ‘water-bottle’ is
defined as an artifact. Verb taxonomy is required to
specify verbs. For instance, Hirtz [15] and Kitamura [16]
defined verb taxonomies to describe engineering
behaviors and functions, respectively. From the previous
example, ‘drink,’ ‘tilt,’ and ‘contact’ are verbs to describe
the required behaviors, and a formal required behavior
‘FB01’ can be expressed with a subject ‘person’, a verb
‘drink’, and an object ‘water.’ Attributes also needed to
specify a formal required behavior. For instance, the
‘FB01’ formal required behavior has an attribute ‘water
flow-rate’ whose value is ‘more than 50 cc/sec.’

DesignedBehavior is behaviors of an artifact or feature,
determined by product designers in response to formal
required behaviors. It identifies some entities participating in

Fig. 4. Entity, Behavior, and Property classes and relationships.

it as specified entities (artifact and feature). The subject of its
description should be an artifact or feature, while the subject
of required behavior’s description is an external entity. For
example, ‘Water-bottle provides water to mouth’ is a
designed behavior for the above required behavior example.
A designed behavior can have specific attributes and their
values that satisfy the attributes and values defined at
corresponding required behaviors. For example, the ‘water
flow-rate’ of the above designed behavior can have a value
‘more than 60 cc/sec.’

Designed behaviors are defined to satisfy required
behaviors. The relationship between RequiredBehavior
and DesignedBehavior, ‘satisfy_beh_required’
relationship in Figure 4, means a specialization relationship.
So, a designed behavior in the M1 layer can be described as a
sub-class of required behaviors. In addition, artifacts involved
in a designed behavior in the M1 layer should be a sub-class
of another artifact that is involved in the required behaviors,
or they can be a same class.

TestBehavior is a behavior of an artifact or feature that
can be observed after testing with a test method. External
entities and specified entities can be involved in describing a
test behavior, but a test behavior cannot exist without a
related specified entity. TestBehavior is the observed
behavior of the artifact or feature. It can be observed through
test methods such as running mathematical models or
simulation models, or testing physical prototypes or
manufactured items. The test methods should be defined as an
attribute of test behaviors at the M1 layer.

A test behavior of an artifact or feature should be compared
to a designed behavior. It can satisfy the designed behavior if
its observed behaviors are qualified for the designed
behavior. Otherwise, it cannot satisfy the designed behavior.
The evaluation results are recorded with Behavior
Evaluation class, which is a sub-class of Property.
Conformance relationship between the M1 and M0 layer is
used to evaluate test behaviors, which will be explained in
Section 5.

C. Property class
Property has two sub-classes; Form and

BehaviorEvaluation. Forms are properties of Entity, and
behavior evaluations are properties of TestBehavior. Only
those two sub-classes are defined in this paper, but the class
hierarchy of Property can be expanded with more
sub-classes in future works if product development domain
requires more properties.

Form is properties of entities that explain geometry and
material aspects of the entities. It has two sub-classes:
Geometry and Material. Geometry is defined to describe
the measurements of lines, angles, surfaces, solids, and
relationships among them. Material describes the substances
that entities can be made from.

The relationship between Form and Entity, ‘is_form_of’
relationship, is used to specify forms of entities at the M1
layer. The relationship means a specialization relationship at

the M1 layer. For example, a ‘Cylinder’ geometry at M1 can
be used to describe many artifact designs such as a cup, pipe,
or drum artifact at M1. All instances of those artifacts at M0
are members of the ‘Cylinder’ geometry. Therefore, the cup,
pipe, and drum artifacts at M1 are sub-classes of the
‘Cylinder’ geometry. The specialization relationship is
derived from the ‘is_form_of’ relationships between the
artifacts and geometry classes at M1. If an engineer defines
that ‘Cylinder’ geometry at M1 has the ‘is_form_of’
relationship with a ‘Cup’ artifact at M1, the semantic of the
relationship should be defined as a specialization relationship
[4].

BehaviorEvaluation is a sub-class of Property and is
used to record results of behavior tests. It has an attribute
‘result’ at the M1 layer to specify the test results such as
‘satisfactory’ or ‘failure.’

V. DEVELOPING PRODUCT MODELS AND INSTANCES
USING SPML

SPML is an extension of OWL, which provides
mechanisms for engineers to specify their models in this
language. Using SPML at the layer M2 will allow engineers
to write their product models at the M1 layer in this language
(i.e., interaction between M2 and M1), which provides
product-specific semantics developed in SPML (i.e., adding
semantics to the product models). Once engineers defined
product models using SPML, they can instantiate their
product models and check conformance of the real world
instances to the product models (i.e., interaction between M1
and M0).

A. Developing product models (M2-M1 interactions)
Engineers and inference systems perform the interaction

between the M2 and M1 layers. A SPML editor interface
needs to be developed for engineers to describe their
product-specific ontological models (M1) in SPML (M2).
Axioms of SPML provide OWL syntax for SPML, and
inference systems can assist engineers by telling what classes
and relationships are needed to be defined. Inference systems
can also check syntactic consistency of engineers’

Index SPML - OWL expressions
(a) SPML axioms
example

Class: spml:Artifact
 SubClassOf: spml:SpecifiedEntity

Class: spml:SpecifiedEntity
 SubClassOf: spml:Entity and
 SubClassOf: (spml:has_form only
spml:Form) and
 SubClassOf: (spml:has_form some
spml:Form)

(b) Engineer’s
initial description
example

<spml:Artifact rdf:ID= “Motor”>

(c) Template
example provided
by inference
systems

<spml:Artifact rdf:ID= “Motor”>
 <spml:has_form rdf:ID= “___”>
 <spml:Geometry rdf:ID= “___”/>
 <spml:Material rdf:ID= “___”/>
 </spml:has_form>
</spml:Artifact>

Fig. 5. An example of interactions between the M2 and M1 layers.

descriptions at M1 based on the SPML syntax. For example,
let us assume that there are SPML axioms like Figure 5-(a).
The axioms are represented in the Manchester OWL syntax
[17]. They specify every artifact at M1 must have at least one
relationship ‘has_form’ with a form. If an engineer defines a
‘Motor’ artifact class like Figure 5-(b), inference systems can
check syntactic consistency of the description and tell what
information is missing. Then, systems can provide templates
for engineers to describe the missing information. The place
underlined in Figure 5-(c) is where engineers need to fill the
missing information.

B. Adding semantics to product models at M1 layer
If a product model description at M1 satisfies the axioms of

SPML, axioms for the product model description at M1 can
be added. Axioms at the M1 layer are defined for each
behavior, form, and entity.

A behavior can be described with its attributes and
sub-behaviors. For example, let us assume that a designed
behavior ‘Rotating a fan’ of a motor is described like Figure
6. A behavior can be differentiated from other behaviors
based on its attributes and sub-behaviors. So, the definition of
the behavior can be generated from the attributes and
sub-behaviors like Figure 7. The contents in Figure 6 and 7

are now hard coded for explanation, but a SPML editor user
interface and inference system are in development process.

Inference systems require axiom generation rules in order
to add axioms to the behavior descriptions. Axiom generation
rules can be expressed or implemented in various ways. Lee
[18] and Liang [19] showed implementation of rules using
eXtensible Stylesheet Language Transformations (XSLT)
[20] and Java [21], respectively. They find patterns in a
product description and generate axioms or definitions for the
description.

The rules should be designed considering the axioms of
SPML at the M2 layer. Then, axioms at the M1 layer can be
generated automatically from the sentences defined by
engineers. However, axioms generated by rules may not be
sufficient to specify all the semantics of product models in
M1. Especially, when the semantics concern engineering
knowledge that is product specific, some axioms have to be
generated manually by engineers in order to express the exact
meanings of concepts. For example, if engineers know what
attributes and sub-behaviors can discriminate the
‘Rotating_a_fan’ behavior from other behaviors, they can
select attributes and sub-behaviors for the definition.

Axioms for form and entity descriptions in M1 can also be
generated like behavior axioms. Since entities are described
with their behaviors, axioms of entities can be defined with
behaviors and reuse the axioms of the behaviors by referring
the behaviors. For example, a ‘Motor_A’ artifact class can be
defined as an artifact that must have a designed behavior
‘Rotating_a_fan.’ Then, the definition of the motor will refer
the behavior, and the definition of the behaviors will be
included in the definition of the motor.

Axioms for SPML relationships also need to be generated
and added to the product model descriptions. Some of SPML
relationships are interpreted as specialization relationship
such as ‘satisfy’ relationships among behaviors and
‘is_form_of’ relationships between entity and form.

If a designed behavior satisfies a required behavior, then
the attributes and sub-behaviors of the designed behavior
should satisfy the attributes and sub-behaviors of the required
behavior. A specialization relationship between two classes
enables inference systems to verify the ‘satisfy’ relationship
between behaviors.

An ‘is_form_of’ relationship between an entity and form
class is also interpreted as a specialization relationship, and
the entity class becomes a sub-class of the form class. For
example, if a ‘Motor_Cylinder’ class is a form of a ‘Motor’
artifact, a specialization relationship between two classes is
added, and the ‘Motor’ class becomes a sub-class of the
‘Motor_Cylinder’ class.

Engineers can also define specialization relationships
between behaviors, entities, or forms if they wish to represent
the same product at different levels of detail [4]. Then, a
specific ‘Motor_A’ in a detail design can be a specialization
of a ‘Motor’ concept in a conceptual or preliminary design
because all information about physical motors conforming to
the former ‘Motor_A’ also conforms to the latter ‘Motor’. In

<spml:DesignedBehavior rdf:ID= “Rotating_a_fan”>
 <spml:specifies>
 <spml:Artifact rdf:ID= “Motor”/>
 <spml:ExternalEntity rdf:ID= “Fan” />
 </spml:specifies>
 <spml:M1_has_attribute>
 <spml:Attribute rdf:ID= “torque”>
 <spml:M1_has_value> [>50, <100] </spml:M1_has_value>
 <spml:M1_has_datatype rdf:Resource= “xsd:integer”/>
 <spml:M1_has_unit rdf:Resource = “ut:Nm” />
 </spml:Attribute>
 <spml:Attribute rdf:ID= “rpm”>
 <spml:M1_has_value> [>3000, <5000]
</spml:M1_has_value>
 <spml:M1_has_datatype rdf:Resource= “xsd:integer”/>
 <spml:M1_has_unit rdf:Resource = “ut:rpm” />
 </spml:Attribute>
</spml:M1_has_attribute>
 <spml:has_sub_behavior>
 <spml:DesignedBehavior rdf:ID= “Receive_electricity”/>
 <spml:DesignedBehavior rdf:ID= “Spin_axis”/>
 </spml:has_sub_behavior>
</spml:DesignedBehavior>

Fig. 6. A behavior description example at the M1 layer.

spml:DesignedBehavior: Rotating_a_fan
 EquivalentTo:
 (spml:M0_has_attribute only (torque or rpm)) and
 (spml:M0_has_attribute exactly 2) and
 (spml:M0_has_attribute some (torque and
 (spml:M0_has_value some int[>50, <100]))) and
 (spml:M0_has_attribute some (rpm and
 (spml:M0_has_value some int[>3000, <5000])))
 and
 (spml:has_sub_behavior only
 (Receive_electricity or Spin_axis)) and
 (spml:has_sub_behavior some Receive_electricity) and
 (spml:has_sub_behavior some Spin_axis)

Fig. 7. Axioms example at the M1 layer.

addition, the specialization relationship can save engineers
the effort of defining duplicate axioms at the M1 layer. Since
specialization implies axiom inheritance, engineers can use
specialization relations in order to reuse existing axioms of
concepts. For example, if axioms of a ‘Motor’ artifact exist, a
new specialized ‘Motor_A’ concept inherits the axioms,
because all information about physical motors conforming to
‘Motor_A’ also conforms to the ‘Motor’ and its axioms.
Moreover, the specialization relationship between classes can
be inferred by ontological reasoning (i.e., description logic
(DL) reasoning). If the axioms of classes at the M1 layer are
consistent, ontological reasoning can exploit those axioms to
find new specialization relationships between classes. For
example, if a designed behavior satisfies a required behavior,
entities specified by them should also have a specialization
relationship.
C. Developing product instances (M1-M0 interactions)

Product models are realized in the real world as physical
items. The interaction between the M1 and M0 layers is
necessary to build and trace the relationships between product
models and physical items. While the M1 layer represents
different views of a product-specific model, the M0 layer
represents occurrence or measured information about
physical realizations (items) of the model. A physical item at
M0 can have multiple behavior occurrences. While a
designed behavior at M1 is invariant once it is specified,
behavior occurrence information of physical items at M0 is
dependent on its observation time and place. Behavior
occurrence information may also depend on the accuracy and

precision of instruments used, so there can be multiple
measurements of the same M0 physical item that gives
different values and uncertainties.

The interaction between the M1 and M0 layers is
implemented as a conformance relationship. Conformance
relationships between classes at the M1 and instances at the
M0 can be established automatically by inference systems if
the information pertaining to the instances satisfies the
definitions of the classes at the M1 layer. In addition, if the
conformance relationship is manually established between a
class at the M1 layer and an instance at the M0 layer, the
information of the instance should satisfy the definition of the
class. For example, let us assume that there is a ‘Motor_A’
artifact class specialized from a ‘MotorCylinder’ geometry
class whose attribute and value are ‘diameter’ and ’20 ± 0.1
mm,’ respectively. Every instance of the ‘Motor_A’ class
must have an attribute ‘diameter’, and its value must be
between 19.9 and 20.1 mm. These conformances can be
checked by ontological inference engines.

A conformance relationship can be also established
between a behavior class and behavior occurrence. A
behavior occurrence at the M0 layer is used to test (measure)
behavior information of a physical item. A behavior
occurrence may or may not satisfy a designed behavior. If a
behavior occurrence satisfies a definition of a designed
behavior, it means that the physical item performs well as
designed. Since engineers learn more from failures than
successes, tested behaviors and their evaluation results at M0
should be connected to the respective product model at M1.

SPML has some pre-defines classes at M1 in order to

classify M0 instances. M1_Artifact, M1_Behavior,
M1_TestedBehavior, and M1_BehaviorEvaluation
classes are pre-defined at the M1 layer for behavior
conformance. Figure 8 shows the pre-defined classes and
their relationships. Every specified behavior class at M1
should be defined as a specialization of M1_Behavior, and
every test behavior class at M1 should be defined as a
specialization of M1_TestBehavior. These specializations
allow inference engines to check conformance relationships
between a behavior occurrence at M0 and a designed
behavior class at M1. For instance, behavior occurrences
(Test#01 and Test#02) in Figure 8 have attributes and their
values that satisfy a definition of a designed behavior
(DB#21). Therefore, the occurrences can be inferred as
instances of the designed behavior, and their behavior
evaluations have a result attribute whose value is
‘satisfactory.’

While the attribute values of a designed behavior at M1 are
given by engineers, the attribute values of a test behavior at
M1 cannot be specified until engineers get enough tested
behavior occurrence information at M0. Therefore, the test
behavior (TB#01) in Figure 8 has an attribute ‘Air_flow_rate’
without its value. However, if an engineer declares that the
test behavior has enough occurrences at M0, the attribute may
have a value like ‘≥ 3.1 m 3/s’ which can embrace same

Fig. 8. Predefined classes at M1 for behavior evaluation of M0 instances

attribute’s values of behavior occurrences at M0.

VI. CONCLUSION
The In the paper, we extended OWL to SPML to include

specific language constructs to define and model product
design and manufacturing. The constructs like ‘Behavior,’
‘Artifact,’ etc. are defined in SPML (M2 layer), so that the
semantics of these constructs can be exploited by designers
and engineers. This will allow designer and engineers to
check whether particular entities are behavior, artifact, or
other classes in SPML. In OAM, ‘Assembly’ is a class and
not defined in M2 layer. As a next step, the notion of
‘Assembly’ will be defined in SPML (M2 layer). As
mentioned earlier, this will be a powerful feature to check
whether an entity is an assembly or not. It is also to be noted
that the axioms that define ‘Behavior,’ ‘ExternalEntity,’
‘Artifact’ can be extended for specific needs, thus allowing
extension to SPML.

A SPML editor interface is in development process. The
interface will allow engineers to describe their product
models semantically, which can be easily understood not only
by engineers but also by computers. In addition, the interface
will be connected to Computer-Aided Design (CAD) systems
as a future work for semantically annotating the existing CAD
models. SPML can be a powerful mechanism for annotating
current CAD models using SPML constructs, so that the CAD
models can be semantically enriched not only within
geometric aspects but also beyond geometric aspects such as
requirement, function, behavior, and sustainability aspect.
The proposed framework needs additional work and
implementation in order to be usable as a product modeling
system. In terms of information modeling scope, SPML
currently focuses on product structure and behavior
evaluation in product lifecycle. Additional information
modeling issues need to be addressed such as version control,
product configuration, assembly relationship, tolerance, and
sustainability. In addition, interfaces for integration with
applications such as design knowledge bases and CAD
systems need to be implemented.

DISCLAIMER
No approval or endorsement of any commercial product by

the National Institute of Standards and Technology is
intended or implied. Certain commercial equipments,
software, instruments, or materials are identified in this report
to facilitate better understanding. Such identification does not
imply recommendations or endorsement by the National
Institute of Standards and Technology, nor does it imply the
materials, software, or equipment identified are necessarily
the best available for the purpose.

ACKNOWLEDGMENT
The authors would like to acknowledge the comments and

suggestions of Joshua Lubell, NIST staff, in improving the
report but any residual mistakes remain ours.

REFERENCES
[1] R. D. Sriram and S. Szykman, "The NIST design repository project:

project overview and implementation design," National Institute of
Standards and Technology (NIST), Gaithersburg, MD, USA, NIST
interagency/internal report (NISTIR) 6926, 2002.

[2] S. Szykman, S. J. Fenves, W. Keirouz, and S. B. Shooter, "A
foundation for interoperability in next-generation product development
systems," Computer-Aided Design, vol. 33, pp. 545-599, 2001.

[3] T. Gruber, "Toward Principles for the Design of Ontologies Used for
Knowledge Sharing," International Journal Human-Computer Studies,
vol. 43, pp. 907-928, 1995.

[4] C. Bock, X. F. Zha, H. W. Suh, and J. H. Lee, "Ontological Product
Modeling for Collaborative Design," NIST, Gaithersburg, MD, USA,
NISTIR 7643, 2009.

[5] S. J. Fenves, S. Foufou, C. Bock, R. Sudarsan, N. Bouillon, and R. D.
Sriram, "CPM 2: A revised core product model for representing design
information," NIST, Gaithersburg, MD, USA, NISTIR 7185, 2005.

[6] Srinivasan, V., “An integration framework for product lifecycle
management,” Computer-Aided Design, 2009,
doi:10.1016/j.cad.2008.12.001.

[7] C. K. Edmond, X. Chan, and K. M. Yu, "A framework of
ontology-enabled product knowledge management," International
Journal of Product Development, vol. 4, pp. 241-254, 2007.

[8] J. Lee, H. Chae, C. H. Kim, and K. Kim, "Design of product ontology
architecture for collaborative enterprises," Expert Systems with
Applications, vol. 36, pp. 2300-2309, 2008.

[9] J. H. Lee and H. W. Suh, "Ontology-based multi-layered knowledge
framework for product lifecycle management," Concurrent
Engineering Researches and Applications, vol. 16, pp. 301-311, 2009.

[10] D. Leal, "ISO 15926 Life Cycle Data for Process Plant: an Overview,"
Oil and Gas Science and Technology, vol. 60, pp. 629-638, 2005.

[11] D. Yang, M. Dong, and R. Miao, "Development of a product
configuration system with an ontology-based approach,"
Computer-Aided Design, vol. 40, pp. 863-878, 2008.

[12] S. J. Fenves, "A core product model for representing design
information," NIST, Gaithersburg, MD, USA, NISTIR 6736, 2002.

[13] S. Rachuri, Y. Han, S. Foufou, S. Feng, U. Roy, Fujun W., R. D.
Sriram, and K. Lyons, "A Model for Capturing Product Assembly
Information," Journal of Computing and Information Science in
Engineering, vol. 6, pp. 11-21, 2006.

[14] A. Weissman, S.K. Gupta, X. Fiorentini, S. Rachuri, and R.D. Sriram,
"Formal representation of product design specifications for validating
product designs," NIST, Gaithersburg, MD, USA, NISTIR 7626, 2009.

[15] J. Hirtz, R. B. Stone, D. A. McAdams, S. Szykman, and K. L. Wood,
"A functional basis for engineering design: reconciling and evolving
previous efforts," Research in Engineering Design, vol. 13, pp. 65-82,
2002.

[16] Y. Kitamura, "A functional concept ontology and its application to
automatic identification of functional structures," Advanced
Engineering Informatics, vol. 16, pp. 145-163, 2002.

[17] M. Horridge, N. Drummond, J. Goodwin, A. rector, R. Stevens, and H.
H. Wang, "The Manchester OWL Syntax," in Proc. of the OWL
experiences and Directions Workshop (OWLED'06), 2006.

[18] J. H. Lee and H. W. Suh, "OWL-based Product Ontology (POWL)
Architecture and Representation for Sharing Product Knowledge on a
Web," in Proceedings of the ASME 2007 International Design
Engineering Technical Conferences Computers and Information in
Engineering Conference (IDETC/CIE) Las Vegas, NV, USA, 2007.

[19] V.C. Liang, C. Bock, and X.F. Zha, "An Ontological Modeling
Platform," NIST, Gaithersburg, MD, USA, NISTIR 7509, 2008.

[20] J. Clark (1999) XSL Transformations (XSLT) Version 1.0 - W3C
Recommendation 16 November 1999. [Online]. Available:
http://www.w3.org/TR/xslt

[21] J. Gosling, B. Joy, G. Steele, and G. Bracha, The Java language
specification, third edition: Addison-Wesley, 2005.

	I. INTRODUCTION
	II. Previous Research
	A. Multi-layered product modeling framework
	B. Related NIST efforts

	III. multi-layered product information modeling framework
	IV. The Product Modeling Language: SPML
	Entity, Behavior, and Property classes
	A. Entity class
	B. Behavior class
	C. Property class

	V. Developing Product models and Instances using SPML
	A. Developing product models (M2-M1 interactions)
	B. Adding semantics to product models at M1 layer
	C. Developing product instances (M1-M0 interactions)

	VI. Conclusion

