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Abstract. Piezoelectric shakers have been developed and used at the National Institute of Standards and Technology 
(NIST) for decades for high-frequency calibration of accelerometers.  Recently, NIST researchers built new piezoelectric 
shakers in the hopes of reducing the uncertainties in the calibrations of accelerometers while extending the calibration 
frequency range beyond 20 kHz.  The ability to build and measure piezoelectric shakers invites modeling of these systems 
in order to improve their design for increased performance, which includes a sinusoidal motion with lower distortion, 
lower cross-axial motion, and an increased frequency range.  In this paper, we present a model of piezoelectric shakers 
and match it to experimental data.  The equations of motion for all masses are solved along with the coupled state 
equations for the piezoelectric actuator.  Finally, additional electrical elements like inductors, capacitors, and resistors are 
added to the piezoelectric actuator for matching of experimental and theoretical frequency responses. 
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INTRODUCTION

For decades, piezoelectric shakers have been developed and used at the National Institute of Standards and 
Technology (NIST) for calibration of accelerometers [1], and recently, NIST researchers built new piezoelectric 
shakers in the hopes of enabling calibrations with reduced uncertainties and extended frequency ranges beyond 
20 kHz [2].  The ability to build and measure piezoelectric shakers invites modeling of these systems in order to 
better their designs for improved calibration of accelerometers.  Sinusoidal motion of the accelerometer under test 
along a single axis with lower distortion, lower cross-axial motion, and an increased frequency range is desired. 

Piezoelectric shakers have many advantages that make them suitable for high-frequency calibration of 
accelerometers.  For example, these shakers are relatively stiff, may be used at high frequencies (usually above 
3 kHz), and are easy to keep in optical alignment [3] for interferometry due to almost no equilibrium excursion [4] 
from their stiff construction.  Furthermore, relatively small piezoelectric shakers can provide much higher 
accelerations compared to those achievable with electrodynamic shakers for frequencies above 5 kHz.  In fact, when 
a piezoelectric-based exciter vibrates in a state of resonance, a large axial acceleration can be produced with little 
exciting power [4].  Because many of the primary modes are axial for piezoelectric systems, mechanical resonances 
could be exploited in those cases to produce satisfactory axial motion.  Shakers at NIST have been developed with 
distributed sets of axial resonances to produce flatter frequency responses over wide frequency ranges [1].  On the 
other hand, for exciters in which air bearings or flexural elements are used, avoiding resonances is preferable 
because the resonances are usually associated with non-axial motion. 

In this paper, we present a model of piezoelectric shakers and match it to experimental data.  The piezoelectric 
actuator is modeled as a compliant element governed by coupled state equations, and the other shaker parts are 
modeled as either rigid bodies or simple compliant elements.  By considering the excited shaker as a system with a 
modified impedance due to additional electrical elements, we demonstrate that the results from the model agree 
fairly well with those from impedance and acceleration experiments.  Improvements to the model should help to 
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illustrate how both electrical and mechanical resonances can be tailored to maximize the performance of 
piezoelectric shakers. 

BASIC DESIGN CONSIDERATIONS 

Figure 1 shows the simplest configuration for an axisymmetric 
piezoelectric shaker (also known as a “piezoshaker”), which is 
composed of a table cylinder of mass m1 and a base cylinder of mass m2 
that are separated by a piezoelectric material disk.  The accelerometer 
mounts to the top of the table and, when the piezoelectric material is 
excited by a sinusoidal voltage, the table and accelerometer will vibrate.  
In order to acquire acceptable motion of the accelerometer, there are 
certain guidelines that should be followed in the design of piezoshakers, 
even for the simple configuration in Figure 1.

One design consideration is the relative masses of the table and base.  
The shaker is assumed to be weakly coupled to its surrounding 
environment, and consequently, the shaker can be considered to be 
“floating” for sufficiently high frequencies.  Thus, without any external 
forces, the center of mass of the shaker cannot change with time, no 
matter what vibrations are induced by internal forces.  This is a crucial 
fact, because it directly affects the goal to maximize the axial (vertical) 
displacement of the table.  For example, if m1 = m2, then the table and 
base will displace the same magnitude, but in opposite directions, due to 
piezoelectric actuation.  On the other hand, if m1 << m2, then the table 
mass will incur the bulk of the displacement while the base remains 
relatively still.  Therefore, the table displacement for m1 << m2 is almost 
twice that for m1 = m2, which leads us to desire that the base mass be 
much greater than the table mass to maximize the achievable 
accelerations. 

However, the cylinders should not be too large.  During high-frequency vibrations, the cylinders used for the 
piezoshakers need to translate in vibration without being excited themselves.   No material is perfectly rigid, yet the 
cylinders should be rigid enough so that internal modes are not excited.  These cylinder-specific modes may lead to 
large and undesirable cross-axial motions of the accelerometer under test.  To minimize the excitation of these 
modes, their resonant frequencies should be much greater than the calibration frequencies; that is, v/L >> f, where v 
is the speed of sound in the material, L is a characteristic length of the cylinder, and f is the calibration frequency.  
Therefore, the sound speed should be as large as possible and the cylinder dimensions should be minimized.   
Alternatively, because v = f � where � is the wavelength of sound in the material, we find out that L << �.  In other 
words, the cylinders should be small relative to the wavelength of sound in the cylinders in order to minimize the 
excitation of their modes. 

Materials with relatively large speeds of sound are chosen to help maximize the resonant frequencies of the 
cylinders.  The main figure of merit for sound speed is the specific modulus, which is the ratio of the elastic modulus 
to the density and is on the order of the square of the speed of sound.  Specific moduli of candidate materials are 
shown in Table 1 [5]. 

 
TABLE 1.  Candidate Materials for Piezoelectric Shakers 
Material Density, �

(kg/m3)
Elastic Modulus, Y

(GPa)
Specific Modulus, Y/� 

(km/s)2 
Diamond 3510 1035 295 
Beryllium 1850 303 164 
Silicon Carbide 3200 390 122 
Aluminum Oxide (Alumina) 3900(a) 393 101 
Tungsten Carbide 14800(a) 530(b) 36 
Titanium 4510 110 24 
Piezoelectric Ceramic 7700(c) 54 7 

 (a) Approximate measured values for materials at NIST 
(b) Value from Ref. [6] 

 (c) Value from manufacturer [7] 

FIGURE 1.  Basic Piezoelectric Shaker. 
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Due to the large density difference between alumina and tungsten carbide, alumina was chosen as the material for 
the table and tungsten carbide was chosen as the material for the base in order to help satisfy m1 << m2.  Cost (e.g., 
for diamond) and safe-handling concerns (e.g., for beryllium) were also factors in material selection. 

  Finally, not only must the cylinders be small enough, but they must also be wide enough to provide adequate 
flexural rigidity and resistance to cross-axial rotations.  Furthermore, the top surface of the table needs to be 
sufficiently large to accommodate accelerometers of various sizes as well as reflectors and other calibration aids. 

ADVANCED DESIGN CONSIDERATIONS 

If all of these criteria are met, then the basic piezoelectric 
shaker of Fig. 1 should produce an accelerometer frequency 
response curve with one sharp peak (i.e., a high quality factor) 
and a resonant frequency that would depend significantly on the 
accelerometer mass.  Beyond the resonant frequency, the shaker 
would not be very useful for calibrations because the table 
displacement would become too small. 

One way to avoid this problem is by using the method of 
“stagger tuning” [1] by coupling additional cylinders to the table 
and base, as seen in Fig. 2.  Because of the extra degrees of 
freedom, additional axial modes exist, which would be seen as 
additional peaks at various frequencies in the frequency response.  
These frequencies and mode shapes rely on the connecting 
material between the masses.  Thin disks of polyisobutylene 
(butyl rubber) connect the extra alumina masses for the shakers in 
Fig. 2.  The butyl rubber disks are seen in the figure as thin black 
curves. 

To a large extent, the resonant frequencies and mode shapes 
can be “tuned” via adjustments to the thicknesses of the butyl 
rubber connecting pieces.  The main goal is to produce modes 
that have the largest possible table motions in order to maximize 

the acceleration.  Furthermore, the resonant frequencies should be 
“staggered” or spaced out along a wide frequency domain, with the 
frequency limit for calibrations being slightly beyond the largest 
modal frequency.  In that case, any frequency for calibration will be 
“near” a resonance in order to maximize the acceleration. 

MODELING OF PIEZOELECTRIC SHAKERS 

Shakers P102 and P103 (see Fig. 2) were developed at NIST 
over the last year [2], but their designs were created at NIST through 
a trial-and-error process many decades ago [1].  Those designs were 
revisited recently in order to gain new experience in the assembling 
and behavior of piezoelectric shakers, with the hopes of extending 
the frequency range beyond 20 kHz while decreasing the 
measurement uncertainty.  However, in order to accomplish these 
goals to the fullest, the efficient and modern tools of computer 
simulations and software should be used to design new piezoshakers 
before the time-consuming process of assembly begins. 

The first step in simulating the motion of the shaker is to create a 
simplified model that includes the main physics affecting the 
behavior of the shaker.  Figure 3 shows the model used herein for 
shaker P102.  All five masses are labeled as m1, m2, … m5, and they 
move axially (vertically) by w1, w2, … w5 from their equilibrium 
positions as a function of time, t.  Because we know a priori that the 
majority of the motion is axial despite some unwanted cross-axial 

FIGURE 2.  Shakers P102 (Left) and P103 (Right).
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FIGURE 3.  Model of Piezoelectric Shaker P102 
for Axial Vibrations. 
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motion, we have assumed that all excitation and displacements are axial.  Second, because the cylinder materials 
were chosen so that cylinder-specific modes are not excited, the alumina and tungsten carbide pieces are modeled as 
rigid masses.  Third, springs and dampers are used to approximate the butyl rubber disks with spring constants ki and 
damping coefficients ci for i = 1, 2. 

The piezoelectric ceramic actuators are two disks that have been bonded together with conductive epoxy.  As 
seen in Fig. 3, the excitation voltage, V, operates at the interface of the two piezoelectric disks.  The remaining upper 
and lower piezoelectric interfaces are electrically grounded and epoxied to masses m3 and m5, respectively.  Hence, 
the actuators are coupled to the masses via net forces, Fu and F1, which are assumed to act via uniform normal 
stresses at the interfaces.  Furthermore, the upper and lower disks have deformed thicknesses of �u and �1, 
respectively, which depend on the excitation voltage and the interfacial stresses. 

EQUATIONS OF MOTION 

The cylinders move according to Newton’s second law, which states that the net force on a body equals its mass 
times the acceleration of its center of mass.  Therefore, the governing equations for each of the bodies in Fig. 3 are 
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where wp is the combined center of mass for the two piezoelectric disks.  The variable wp is not seen in Fig. 3 
because Eq. (1d) will not be used, but must still be satisfied for a valid solution.  Solution of Eqs. (1) is not yet 
possible because expressions for the forces Fu and F1 rely on equations governing the piezoelectric actuation. 

Piezoelectric materials can produce electric fields when sensing stresses through the direct piezoelectric effect 
and, vise versa, can generate large forces and strains through electrical excitation via the inverse piezoelectric 
effect [8].  The piezoelectric disks used for the NIST piezoshakers are solid, ceramic disks that are axially polarized 
with the top and bottom flat surfaces fully electroded.  The polarization is assumed to be perfectly axial and uniform 
across the ceramic, so that the excitation is purely axial.  Piezoelectric ceramics are categorized as “soft” or “hard” 
according to whether or not the ceramics contain “donor” or “acceptor” dopants, respectively.  Soft ceramics 
produce large displacements relative to hard ceramics, but they also have greater hysteresis and are more susceptible 
to depolarization.  Hard ceramics, like those used for the shakers in Fig. 2, are able to operate at higher temperatures 
due to Curie points greater than 300 ºC.  Even though they cannot produce the same large displacements as soft 
ceramics, hard ceramics are more stable and compatible with large mechanical loads and voltages [7]. 

For high precision piezoelectric actuators and sensors, the nonlinear and hysteretic responses under extreme 
conditions may be detrimental for the performance of the whole device.  Up to 70 % of the piezoelectric response is 
attributed to the activity of non-180� ferroelectric domain walls, and the domain wall contribution has been found 
out to be the main origin of the instability of the piezoelectric effect [9].  While harmonic distortion is always 
present, it is known a priori that the harmonic distortion is not significant over most of the frequency range. 

Consequently, we assume that the piezoelectric actuators operate within a linear regime due to relatively small 
displacements and voltages.  The basic constitutive equations governing the linear behavior of axial strain �, axial 
stress �, electric displacement D, and electric field E in the piezoelectric ceramic for axial excitation and polarity are 
given in Ref. [10] as 
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where the superscripts � and E denote measurements taken at constant mechanical stress and constant electric field, 
respectively.  In Eq. (2a), S 

E is the mechanical compliance for a constant electric field and d is the piezoelectric 
charge constant.  In Eq. (2b), � 

� is the dielectric coefficient for a constant stress and the electric displacement D is 
defined as 
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A
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where A is the area of the piezoelectric interface and I is the displacement current in the direction of E.  We note that 
Eq. (2b) relies on the assumption that the transduction process is completely reversible [10].  Also, all parameters are 
assumed to be constant with respect to frequency. 

Figure 4 shows a schematic of the piezoelectric ceramic disks.  Both disks have an undeformed thickness h and 
are poled [7] towards each other.  In the undeformed state, a coordinate z is set up relative to the interface between 
the disks.  Thus, z = 0 to z = h corresponds to the undeformed upper disk and z = –h to z = 0 corresponds to the 
undeformed lower disk.  With a voltage V across the disks, every differential element moves with a deformation w as 
a function of z relative to the initial state, and the upper and lower disk thicknesses change to �u and �l, respectively, 
as seen in Fig. 3.  For simplicity, we designate the direction for deformation w as the same for both disks. 

With the aid of necessary definitions, Eqs. (2) 
can be used to derive a different set of governing 
equations for the piezoelectric material.  First, 
based on Fig. 4, the axial strain � is defined as 

 

z
w





��                                (4) 

 
and because the speed of sound is much less than 
that for light, Poisson’s equation applies as 
  

z
E
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where � is the electric potential and depends on z  [11].  However, within either of the disks, the electric 
displacement D does not depend on z because the displacement current is constant across the thickness due to 
conservation of displacement current.  Finally, every differential element in the piezoelectric disks must obey 
Newton’s second law, which means that 
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where � is the density of the piezoelectric disk. 

We differentiate Eqs. (2) with respect to z, substitute Eqs. (4)-(6) into the resulting equations, and then solve to 
find out that 
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where 
 is the piezoelectric wave speed, which is defined as 
 

2/1)]([ ��� gdS E�
                                                                         (8) 
 
and g is the piezoelectric voltage constant, which is defined as 
 

��
dg �                                                                                   (9) 

 
Equation (8) shows how the piezoelectric wave speed is a modified version (note the minus sign in the equation) of 
the wave speed without any piezoelectric behavior.  Also, we stated beforehand that Eq. (1d) will not be used, but 

FIGURE 4.  Schematic of Piezoelectric Ceramic Disks with 
Additional Variables and Coordinate System. 
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must still be satisfied for a valid solution.  Equation (7a) will be used instead of Eq. (1d), and because Eq. (6) 
(Newton’s second law for a differential element) was used in the formulation of Eq. (7a), Newton’s second law for 
the entire piezoelectric body, Eq. (1d), is automatically satisfied. 

GENERAL FORM OF SOLUTION 

We now formulate the general solution for a sinusoidal voltage V(t) with angular frequency � and voltage 
amplitude Vpk; that is, 

)sin()( pk tVtV ��                                                                         (10) 
 

Given a sufficient amount of time under this excitation, the piezoelectric shaker will reach an equilibrium vibration 
with the same frequency.  In that case, the general solution of Eq. (7a) is 
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where variables with bar embellishments are solution parameters yet unknown.  However, proper use of Eq. (11) 
requires one solution, wu(z, t), for the upper piezoelectric disk and another solution, wl(z, t), for the lower 
piezoelectric disk: 
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Consequently, because of the piecewise-continuous nature of the deformation, the electric displacements are 
generally different for the two piezoelectric disks.  For the given sinusoidal excitation, the electric displacements in 
the upper and lower disks, respectively Du and Dl, will reach dynamic equilibrium: 
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The rigid bodies in the piezoshaker also reach dynamic equilibrium.  Therefore, the solutions of Eqs. (1) are 

 
)cos()sin()( tBtAtw iii �� ��                                                              (15) 

 
for i = 1, 2, 3, or 5, and the sinusoidal forces Fu and F1 are defined as 
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There are a total of 24 solution parameters among Eqs. (12)-(16) that need to be solved for the given voltage in 

Eq. (10).  However, proper boundary conditions are still needed for solution. 
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BOUNDARY CONDITIONS 

The required boundary conditions for solution are related to the piezoelectric deformation.  First, because the two 
piezoelectric disks are bonded together, their displacements must match at the interface, z = 0; that is, 
 

),0(),0( lu twtw �                                                                          (17) 
 
Second, because the upper piezoelectric disk is bonded to the third mass (refer to Fig. 3) and the lower piezoelectric 
disk is bonded to the fifth mass, 
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Third, according to Eq. (6), the axial stress � must be continuous across the interface at z = 0 for finite acceleration at 
the interface.  An equation for this condition is found through substitution of Eqs. (2b) and (4) into Eq. (2a) to 
eliminate the variable E, which yields 
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Application of Eq. (19) for the upper and lower piezoelectric disks reveals that, for continuity of axial stress � across 
the interface at z = 0, 
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Fourth, because Eq. (19) must hold at the upper interface (at z = h) where �  = Fu /A as well as at the lower interface 
(at z = –h) where �  = Fl /A, two more boundary conditions are 
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Fifth, the deformed thicknesses, �u and �1, of the upper and lower disks are related to the electric displacements and 
applied voltage through the piezoelectric state equations, Eqs. (2).  We substitute Eqs. (2b), (4), and (5) into Eq. (2a) 
to eliminate the variable � and obtain 
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Then, we integrate Eq. (22) from z = 0 to z = h and also from z = –h to z = 0, apply the voltage boundary conditions 
to the resulting equations, and obtain 
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METHOD OF SOLUTION 

Equations (17), (18), (20), (21), and (23) total eight (8) boundary conditions.  When these are combined with the 
four (4) equations of motion for the rigid bodies in Eqs. (1), we have a total of twelve (12) equations to be solved.  
These twelve equations can be used to solve for the twenty-four (24) parameters.  By inspection of the general form 
of the solution, Eqs. (12)-(16), we note that each solution has sin(�t) and cos(�t) terms.  When substituted into the 
twelve equations to be solved, each of the resulting equations will have sine and cosine terms.  Equating coefficients 
of like-terms on both sides of the equations results in twenty-four equations that will not depend on sin(�t) or 
cos(�t).  In other words, the twelve time-dependent equations have doubled to become twenty-four time-
independent equations through use of the general solution forms. 

Finally, because the twenty-four (24) algebraic equations are linear with respect to the twenty-four (24) solution 
parameters, there is one unique solution for the non-homogeneous system of equations.  These equations can be 
solved using linear equation solvers in a variety of mathematics software. 

EXPERIMENTS 

Now that a solution for the model equations is at 
hand, the model needs to be tested with experimental 
data.  Therefore, three uniaxial accelerometers 
(approx. 0.5 grams each) were attached to the tables 
of shakers P102 and P103 with wax, as seen in the 
small insert of Figure 5(a).  Each shaker was then 
driven with a voltage V(t) of varying frequency but 
with a fairly constant source amplitude of 0.8 V 
from a dynamic signal analyzer.  Voltage data were 
acquired for all three accelerometers.  However, for 
simplicity, only two of the voltage signals were 
processed with 8th-order fits of the respective 
calibrated sensitivities as functions of frequency.  
Finally, the resulting accelerations were averaged 
per shaker. 

Figure 5(a) shows the resulting (averaged) 
acceleration frequency responses, and Fig. 5(b) 
displays voltage per peak-to-peak displacement.  
The accelerations from Fig. 5(a) were used to 
calculate the displacements needed for Fig. 5(b).  
Note that Fig. 5(b) is somewhat like the inverse of 
the frequency response, since the resonances in 
Fig. 5(a) correspond closely to the minima in 
Fig. 5(b) and the minima in Fig. 5(a) are similar in 
frequency to the maxima in Fig. 5(b). 

Figure 5(b) is useful because it reveals the 
voltages necessary for a desired peak-to-peak 
displacement.  For example, for the fringe-
disappearance method for accelerometer calibrations 
[12, 13] in which an approximately 121 nm 
displacement range is needed, Figure 5(b) reveals 
that voltage amplitudes of about 180 V and 120 V 

are needed at 30 kHz for shakers P102 and P103, respectively.  However, application of Figure 5(b) for relatively 
large voltages and stresses is questionable due to nonlinearities of the piezoelectric material.  In fact, elastic 
properties of lead zirconate titanate (PZT) ceramics can be distinctly nonlinear when compressive stresses exceed 
20 MPa [14].  Nonetheless, the values from Fig. 5 should be on the same order of magnitude as those obtained for 
much higher voltages. 

Impedance tests were also performed for model validation.  A commercial impedance analyzer was used to 
measure the electrical impedance of each shaker through use of a constant voltage amplitude of 0.8 V, which is the 

FIGURE 5.  (a) Axial Acceleration and (b) Voltage Amplitude
Per Peak-to-Peak Displacement versus Frequency for Piezo-
Shakers P102 and P103 with Vpk = 0.8 V. 
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same as that used for the accelerometer tests.  The magnitude, Z, and phase, �, versus frequency are seen for both 
shakers in Fig. 6, where the complex impedance Z~  is related to the voltage phasor V~  and the current phasor I~  by 
 

IeZIZV j ~~~~ !��                                                                          (24) 
 
and j is the imaginary unit. 
 

 

MODEL VALIDATION 

The model can now be tested through use of the experimental acceleration and impedance data.  To this end, we 
create a basic electrical model to simulate electrical excitation of the shaker. 

Figure 7(a) shows a RLC circuit with resistance Rs, inductance Ls, and capacitance Cs that is in series with the 
shaker.  All capacitors have imperfections that create series resistance, and similarly, the leads to the piezoelectric 
ceramic disks add series inductance.  Furthermore, 
electrical impedances are added to the system through 
use of voltmeters and other instrumentation that are 
partly accounted for in the model.  A parallel 
capacitance Cp also aids to account for the self 
capacitance of the transducer. 

Figure 7(b) shows the electrical excitation model in 
its phasor space, where Zpiezo is the complex impedance 
of the shaker resulting from the model for axial 
vibrations.  In order to calculate Zpiezo as a function of 
frequency, we first calculate the shaker masses based 
on the densities in Table 1 and the known geometries.  
Then, we choose the remaining four system parameters 
(k1, k2, c1, and c2) and solve the complete system of 
linear equations for the model.  Equation (3) is then 
utilized to calculate the displacement currents Iu and Il 
in the upper and lower piezo disks, respectively, and 
their sum is substituted into Eq. (24) to determine 
Zpiezo.  Finally, the total complex impedance, Ztotal, for the circuit in Fig. 7(b) is determined through use of standard 
circuit impedance rules [15] with the four chosen electrical parameters (Rs, Ls, Cs, and Cp). 

Figure 8 shows the comparison of the magnitude and phase of Ztotal for the model of shaker P102 with the 
experimental results from Fig. 6(a).  Figure 8(a) reveals that the three frequencies at approximately 10 kHz, 21 kHz, 
and 35 kHz are fairly well matched by the model.  The modes at these frequencies are basically those for coupled 
rigid bodies.  Consequently, the chosen parameters listed in the caption of Fig. 8 are by no means optimal, but 
adequate for illustrative purposes.  However, the fourth experimental resonance at about 45 kHz is not captured in 
the simulated impedance.  One possible reason for this discrepancy is that the response at 45 kHz is not for an axial 

FIGURE 6.  Measured Electrical Impedance for (a) Shaker P102 and (b) Shaker P103 with Vpk = 0.8 V. 
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FIGURE 7.  Schematic of Electrical Model for Shaker 
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FIGURE 8.  Simulated versus Experimental (a) Magnitude and (b) Phase for Shaker P102 with these Parameters: 
k1 = 2.6 N/nm, k2 = 4.2 N/nm, c1 = 1500 N•s/m, c2 = 2500 N•s/m, Rs = 250 �, Ls = 0.6 mH, Cs = 20 nF, and Cp = 2.5 nF. 
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FIGURE 9.  Piezoelectric Ceramic Mode Near 100 kHz 
for Simulated Excitation of Shaker P102. 

mode, but rather for a lateral mode, of the piezoelectric ceramic actuators.  The model, having been developed for 
only axial displacements, cannot capture lateral modes.  On the other hand, the impedance analyzer captures the full 
impedance and is therefore influenced by axial, lateral, and other motions of the piezoelectric ceramic. 

Nonetheless, the model does have four modes that are visible in Figure 8.  While the first three modes for the 
model correspond to typical modes of coupled rigid bodies, the fourth mode at about 100 kHz corresponds mainly to 
an internal mode of the bonded piezoelectric disks.  Figure 9 shows this mode shape for the model of shaker P102.  
The interface of the piezoelectric disks at z = 0 moves the most, while the two ends of the actuator do not move 
relatively as much.  Consequently, the piezoelectric disks 
resonate together without a lot of interaction with the rigid 
masses.  The experimental data in Fig. 8 possibly supports 
the existence of this mode, albeit at a lower frequency near 
85 kHz. 

Another check of the model is to simulate the 
acceleration of the shaker table and compare it to the 
experimental data in Fig. 5.  For this comparison, the 
system parameters remained the same except for the series 
resistance Rs, which was decreased from 250 � to 25 �.  
The former resistance was determined after data 
processing to be caused primarily by the impedance 
analyzer, which inadvertently adds a large resistance if the 
electrical contacts are not suitable.  The dynamic signal 
analyzer was used instead of the impedance analyzer for 
the accelerometer tests, and since the source impedance of 
the analyzer is specified to be less than 5 �, no other 
impedance sources were added to the model of Fig. 7. 

Figure 10 shows the resulting simulated voltage per displacement and axial acceleration for shaker P102.  With 
increasing frequency, the modeled damping appears to be too small, then acceptable, and then too large, compared to 
the experimental data at the resonances.  This shows that damping should be better modeled, but with only two 
damping parameters, the fitting of parameters was limited.  Consequently, perhaps another significant damping 
source was neglected that should be included in a future attempt at modeling piezoshakers, e.g., damping within the 
piezoelectric ceramic. 
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CONCLUSIONS 

In this paper, we presented a model of piezoelectric shakers and compared its predictions to experimental data.  
The piezoelectric actuator was modeled as a compliant element governed by coupled state equations, and the other 
shaker parts were modeled as either rigid bodies (alumina or tungsten carbide cylinders) or simple compliant 
elements (butyl rubber).  Twenty-four linear algebraic equations governing the physics of the shaker were created 
and solved.  For any set of system parameters (two stiffness and two damping coefficients), an electrical impedance 
can be generated from the solution for use with model validation. 

By considering the excited shaker as a system with a modified impedance due to additional electrical elements, 
we demonstrated that the results from the model agree fairly well with those from impedance and acceleration 
experiments.  However, some discrepancies in resonant frequencies and damping exist.  Therefore, future 
improvements include the addition of system nonlinearities, piezoelectric ceramic radial displacements, cross-axial 
and rotational motion of rigid bodies, piezoelectric ceramic damping, transduction irreversibility, and frequency-
dependent parameters.  These improvements to the model, coupled with further model validation, should illustrate 
how modeling of piezoelectric shakers can be used as a design tool to maximize their performance for the high-
frequency calibration of accelerometers before shaker assembly begins. 
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