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Abstract
In this paper we present the results of the Shape Retrieval Contest’10 (SHREC’10) of Generic 3D Warehouse. The
aim of this track was to evaluate the performances of various 3D shape retrieval algorithms on a large Generic
benchmark based on the Google 3D Warehouse. We hope that the benchmark developed at NIST will provide
valuable contributions to the 3D shape retrieval community. Three groups have participated in the track and they
have submitted 7 set of results based on different methods and parameters. We also ran two standard algorithms
on the track dataset. The performance evaluation of this track is based on six different metrics.

Categories and Subject Descriptors (according to ACM CCS): I.5.4 [Pattern Recognition]: Computer Vision—, H.3.3
[Information Storage and Retrieval]: Information Search and Retrieval—

1. Introduction

With the increasing number of 3D models that are created
everyday and stored in databases, the development of effec-
tive 3D shape-based retrieval algorithms has become an im-
portant area of research. Benchmarking allows researchers to
evaluate the quality of results of different 3D shape retrieval
approaches. Here, we propose a new publicly available large
benchmark called Generic 3D Warehouse with 3168 mod-
els, based on the Google 3D Warehouse to advance the state
of art in 3D shape retrieval. The motivation behind the cre-
ation of this Generic benchmark is to have larger number of
3D models in the benchmark to challenge the 3D Shape Re-
trieval research community to be able handle, process and
calculate feature vectors and distance measure in short time.
Also presumably the reliability of the performance evalua-
tion of algorithm increases with the increase in number of
models in benchmark. The remainder of the paper is orga-
nized as follows. Section 2 describes the track dataset and
how it was created. Section 3 discusses performance eval-
uation methods used to compare the results. Section 4 dis-
cusses the participant’s information. Afterwards, Section 5
discusses briefly the different methods tested in this track
and Section 6 describles the evaluation results. Finally, the
conclusion of this paper is provided in Section 7.

2. Dataset

All the 3D models in the Generic 3D Warehouse track were
acquired by a web crawler from the Google 3D Warehouse.
The database consists of 3168 3D objects categorized into
43 categories. The number of objects in each category is not
same and varies between 11 and 177. This dataset is a col-
lection of 3D models downloaded from Google 3D Ware-
house [1] which is an online collection of 3D models and
3D scenes created in sketchup format (*.skp) format using
Google Sketchup [2] or converted from other 3D databases.
which have been modified and converted into ASCII Object
File Format(*.off). The categories of objects are given in Ta-
ble 1. Even though the models have been retrieved from a
single source of google 3d warehouse, it has still a varied
type of models as they have been made and uploaded by the
enthusiastic 3D model designers all across the world. There
were quite a few complications in making the dataset be-
cause many models were repetitive and most of the time it
was not a single object in the 3d model but rather a scene
with more than one related object. Also many of the models
were found to be corrupt. For every shape we made a list of
keywords which different people might have used in the pro-
cess of uploading the models. For every key word we have
downloaded 683 .skp models on a maximum (if available)
spanning across 57 search result pages of Google 3D Ware-
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Figure 1: One example image from each class of the Generic 3D Warehouse is shown.

house. As sketchup program was mostly used to generate a
multi-object models rather than a single object model many
objects were repeating themselves across various skp files.
Also almost every model was part of a scene with other ob-
jects and had a background. Then after manually verifying
each of the downloaded file and removing the unnecessary
content, we converted them to Object File Format (OFF).

The sub classification of each class was done based on the
shape forms of the models that were downloaded by key-
words, like a book model has been sub classified as open-
book and closed-book and book-set.

The classes are defined with respect to their semantic cat-
egories and are listed in Table 1.

Both Google and end users have a non-exclusive, perpet-
ual, worldwide license to use any content uploaded under
the terms of the Term of Service (ToS). So, we as the end
user can use the content in any manner described in the ToS,
including: to reproduce the content; to create and reproduce
derivative works of the Content; to display publicly and dis-
tribute copies of the Content; to display publicly and dis-
tribute copies of derivative works of the content.

3. Performance Evaluation

The evaluation of the shape retrieval contest is based on
standard metrics. Using the dissimilarity matrix the follow-
ing evaluation measures are calculated: 1) Nearest Neigh-
bor (NN), 2) First Tier (FT), 3) Second Tier (ST), 4) E-
measure (E), and 5) Discounted Cumulative Gain (DCG)
[SMKF04]. In addition to these scalar performance mea-
sures, the precision-recall curves are also obtained.

4. Participants

There are three groups that participated in the Contest
and submitted 7 dissimilarity matrices. The groups are: R.

Bed Bicycle Bookshelf Bottle
Bus Cat Fish Guiter
Head Horse Keyboard Knife
Motorbike Rocket Spectacles Spoon
Sword Train Violin Woman
FlyingBird PerchedBird BookSet OpenBook
SingleBook FlipCellphone NormalCellphone SliderCellphone
4LeggedChair 0LeggedChair WheeledChair DrumSingle
DrumSet BedLamp FloorLamp StudyLamp
ClosedLaptop OpenLaptop ClosedPiano OpenPiano
PianoBoard ContainerTruck NoncontainerTruck

Table 1: 43 classes of the target database.

Ohbuchi and T. Furuya with a Methods, Bag-of Densely-
Sampled Local Visual Features for 3D Model Retrieval; Z.
Lian and A. Godil with View based 3D Shape Descrip-
tor Using Local and Global Features; and, H. Dutagaci and
A.Godil with View based PCA. We also ran the dataset on
two of the standard retrieval methods, LightField Descrip-
tor by Chen et al.[CTSO03] and Hybrid method by Vranic
[Vra05].

5. Methods

Brief descriptions of the methods are provided in the follow-
ing subsections.

5.1. Bag-of Densely-Sampled Local Visual Features for
3D Model Retrieval by R. Ohbuchi and T. Furuya

The algorithm compares 3D shapes based on their appear-
ances i.e., range images of the object rendered from multi-
ple viewpoints. The algorithm is designed so that it could
handle (1) diverse range of shape representations, including
polygon soup, point set, or B-rep solid (2) models having
articulation or deformation.

Appearance based comparison gives the algorithm its
ability to handle diverse shape representation i.e., multiple-
viewpoint rendering of dozens of range images coupled with
(2D) rotation invariant image feature gives the algorithm its
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Figure 2: Flow of the Bag-of-Feature Dense-SIFT with ERC-Tree (BF-DSIFT-E) algorithm.

rotation invariance. Invariance to articulation and/or global
deformation is achieved through the use of a set of multi-
scale, local, visual features integrated into a feature vector
per 3D model by using Bag-of-Features (BoF) approach. A
feature vector per 3D model makes the cost of comparison
among a pair of 3D models much lower than comparing sets
of features, each consisting of thousands of local features.
The algorithm is called Bag-of- Features Dense-SIFT with
Extremely randomized tree (BF-DSIFT-E). Please refer to
the paper by Furuya et al. [FO09] for the details. While most
3D model retrieval algorithms deal with invariance to sim-
ilarity transformation, very few algorithms achieve invari-
ance to articulation while being able to accept 3D models
having diverse set of 3D shape representations.

Figure 2 shows the processing flow of the BF-DSIFT- E
algorithm. After normalizing the model for its position and
scale, dozens of range images of the model are generated by
using multiple virtual cameras looking inward at the model
sitting at the coordinate origin. From each range image, our
algorithm densely and randomly samples a few hundreds
of local, multiscale image feature Scale Invariant Feature
Transform (SIFT) by David Lowe [Low04]. Salient point
detector of the SIFT is disabled for the dense sampling. A
SIFT feature, typically having 128 dimensions, encodes po-
sition, orientation, and scale of gray-scale gradient change
of the image about the sample point.

A 3D model is rendered into 42 depth images, each one
of which then is sampled at 300 or so random locations.
Thus, a 3D model is described by a set of about 12k SIFT
features. The set of thousands of visual features is inte-
grated into a feature vector per model by using BoF (e.g.,
[CDF∗04] [SZ03]). The BoF approach vector quantizes, or
encodes, a SIFT feature into a representative vector, or a
“visual word”, using a previously learned codebook. Visual
words are accumulated into a histogram, which is the fea-

ture vector for the 3D model. The optimal dimension of the
histogram, that is, the dimension of BoF-integrated feature
vector, depends on the database. The dimension of feature
vector is experimentally chosen as about 30k for the non-
rigid model.

To extract this many features quickly, a fast GPU-
based implementation of SIFT algorithm called SiftGPU
by Wu [Wu] is applied. The Extremely Randomized Clus-
tering Tree, or ERC-Tree, by Guerts et al. [GEW06], is
also used for both feature set clustering during codebook
learning and for vector quantization of SIFT features. With
a small penalty in retrieval performance, the ERC-Tree is
much faster than k-means clustering during codebook learn-
ing and naive linear search during VQ.

To derive ranked list of retrieval results given a query,
two methods are employed: simple distance computa-
tion using Kullback-Leibler Divergence (KLD), and a
distance-metric learning approach called Manifold Ranking
(MR) [ZWG∗03] with a small modification. In the retrieval
experiment, the version that used KLD is named BF-DSIFT-
E, while the one used MR is named MR-BF-DSIFT-E. The
KLD below performs well for comparing two histogram-
based feature vectors x and y.

dKLD(x,y) =
n

∑
i=1

(yi − xi)ln
yi

xi

The MR first estimates the distribution of features in a
low-dimensional subspace, or “manifold” approximated by
a mesh. The mesh is created based on the proximity of fea-
ture points, and its edges are weighted based on the distance
among the feature points. It then computes similarity among
the features on the manifold using a process similarity solv-
ing a diffusion equation. A relevance rank is diffused from
the source, that is, the query. At an equilibrium state, the
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concentration of the relevance rank at a feature point indi-
cates its closeness to the query. KLD is utilized to form the
manifold mesh on which the diffusion takes place.

5.2. VLGD: View based 3D Shape Descriptor Using
Local and Global Features by Z. Lian and A. Godil

The visual similarity based method has been widely con-
sidered as the most discriminative approach in the field of
content-based 3D object retrieval. We developed three such
kind of methods, denoted as CM-BOF, GSMD, and VLGD,
respectively, for the Warehouse Benchmark of SHREC’10.
Basically, these two algorithms are similar due to the fact
that, they all utilize a particular visual similarity based
framework, and the only difference between them is how to
describe the depth-buffer views captured around a 3D object.
More specifically, CM-BOF uses a local feature based shape
descriptor to represent a view as a histogram, and GSMD
describes the view by a global feature vector, while VLGD
utilizes a linear combination of above mentioned 2D shape
descriptors. Finally, a Modified Manifold Ranking (MMR)
method is applied to try to further improve the retrieval per-
formance of the VLGD method.

5.2.1. A Visual Similarity based Framework

As demonstrated in Figure 3, our visual similarity based 3D
shape retrieval framework is implemented subsequently in
four steps:

1. Pose Normalization: Given a 3D object, we first trans-
late the center of its mass to the origin of canonical coor-
dinate frame and then scale the maximum polar distance
of the points on the surface to one. Rotation invariance
is achieved by applying the PCA technique to find the
principal axes and align them to the canonical coordi-
nate frame. Note that, we only employ the information of
eigenvectors to fix the positions of three principal axes,
namely, the direction of each axis is still undecided and
the x-axis, y-axis, z-axis of the canonical coordinate sys-
tem can be located in all three axes. That means 24 differ-
ent orientations are still plausible for the normalized 3D
object, or rather, 24 matching operations should be car-
ried out when comparing two models. It should also be
pointed out that, the exact values of the surface moments
used in our PCA-based pose normalization are calculated
via the explicit formulae introduced by [ST01].

2. View Rendering: After pose normalization, 66 depth-
buffer views with size 256×256 are captured on the ver-
tices of a given unit geodesic sphere whose mass center
is also located in the origin, such that a 3D model can be
represented by a set of images. We render the views base
on OpenGL.

3. Feature Extraction: For each view, a specific image pro-
cessing technique is applied to represent the view as a
compact feature vector. Based on the different 2D shape

descriptors used (see corresponding subsections), our al-
gorithms are classified as the following three categories:
local feature based (i.e. CM-BOF), global feature based
(i.e. GSMD), and composite (i.e. VLGD) methods.

4. Dissimilarity Calculation: The last step of our frame-
work is the dissimilarity calculation for two shape de-
scriptors. The basic idea is that, after we get the principal
axes of an object, instead of completely solving the prob-
lem of fixing the exact positions and directions of these
three axes to the canonical coordinate frame, all possible
poses are taken into account during the shape matching
stage.
The dissimilarity between the query model q and the
source model s is defined as,

Disq,s = min
0≤i≤23

65

∑
k=0

D
(

FVq(p
′

0(k)),FVs(p
′

i (k))
)
,

where FVm = {FVm(k)|0 ≤ k ≤ 65} denotes the shape
descriptor of 3D object m, FVm(k) stands for the feature
vector of view k, the permutations p

′

i = {p
′

i (k)|0 ≤ k ≤
65}, 0 ≤ i ≤ 23 indicate the arrangements of views for
all (24) possible poses of a normalized model, and D(·, ·)
measures the dissimilarity between two views. For more
details about this multi-view shape matching scheme, we
refer the reader to our previous papers [LRS] [LGS].

5.2.2. A Local feature based Method: CM-BOF

In our CM-BOF algorithm, each view is described as a word
histogram obtained by the vector quantization of the view’s
salient local features, and the distance between two his-
tograms H1,H2 with Nw bins is evaluated by the formula,

D(H1,H2) = 1−
∑Nw−1

j=0 min(H1( j),H2( j))

max(∑Nw−1
j=0 H1( j),∑Nw−1

j=0 H2( j))
.

Note that, the 2D salient local feature is calculated using
the VLFeat matlab source code developed by Vedaldi and
Fulkerson [VF]. On average, this 3D shape descriptor con-
tains about 2618 integers when Nw = 1500.

5.2.3. A Global feature based Method: GSMD

In our GSMD algorithm, each view is represented as a global
feature vector with 47 elements including 35 Zernike mo-
ments, 10 Fourier coefficients, eccentricity and compact-
ness, and the dissimilarity between two feature vectors is
measured by their L1 difference.

Note that, the global feature vector is calculated using the
C++ source code provided by [DYM03], and the vector is
normalized to its unit L1 norm. The dimension of this 3D
shape descriptor is 3102.

5.2.4. A Composite Method: VLGD

Our VLGD algorithm is a composite method based on a
linear combination of CM-BOF and GSMD. More specifi-
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Figure 3: The uniform framework of our methods.

cally, in this method, a view is expressed by a feature vec-
tor consisting of two kinds of shape descriptors, which are
used in CM-BOF and GSMD, with pre-specified weights.
We experimentally select the weights as Wlocal = 7.0 and
Wglobal = 1.0 for local and global features, respectively, by
maximizing the retrieval accuracy on PSB train set with base
classification.

5.2.5. A Modified Manifold Ranking: MMR

Given a query model M0 and a database with N target
models, the initial retrieval result can be derived by sort-
ing the dissimilarities between the query and other models
in ascending order. The sorted data set can be denoted as
DM = {M0,M1,M2, ...,MN}. We observe that the manifold
ranking method (originally presented in [ZWG∗03]) can fur-
ther improve the 3D shape retrieval performance. In order to
make the algorithm more effective and efficient for our ap-
plication, we slightly modify the original approach in three
aspects:

1. Instead of iterating to create a connected graph, our man-
ifold is formed by connecting edges between the mod-
els and their Nk nearest neighbors. This modification not
only accelerates the graph construction but also ensures
enough connections for each model.

2. Instead of directly using the distance of every pair of
models to compute the weights of the edges, we assign
weight values to the edges according to their correspond-
ing initial ranking order with respect to the reference
model. That means the graph is normalized and an edge
may have different weights in its two directions.

3. Instead of just considering the query model as labeled
data, we also label the nearest neighbor as the query. It is
reasonable and actually effective because the initial over-
all successful rate of best matches is above 90%.

Let the ranking scores of the data set DM be denoted by
S = {s0,s1,s2, ...,sN}, where si(t) is the score after t iter-
ations and si(0) = 1 if i ∈ {0,1}, else si(0) = 0. We also
compute a matrix X = [xi j](N+1)×(N+1) in which xi j stands
for the position of M j in a retrieval ranking list given that the
query model is Mi. For example, xii = 0 and xi j = 1 when M j
is the nearest neighbor of Mi. Our modified manifold ranking
method performs in the following five steps:

1. Create edges between the models and their Nk nearest
neighbors to form a graph G = (M,E).

2. Define the matrix K computed by ki j = exp(−||xi j||2/σ)
if there is an edge e(i, j) ∈ E or else ki j = 0.

3. Calculate the matrix L = D−1Kwhere D is the diagonal
matrix with dii = ∑N

j=0 ki j .
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4. Iterate si(t + 1) = ∑1
j=0 li js j(0)+α∑N

j=2 li js j(t) , where
α ∈ [0,1] and t ≤ Nr, for all unlabeled models (1 < i ≤
N).

5. Denote the iteration result si(Nr) by s∗i which is consid-
ered as the final ranking score of the model Mi. Then out-
put the ranking list by sorting s∗i (0 < i ≤ N) in descend-
ing order.

Note that the parameters are experimentally selected as
α = 0.995, σ = 32, Nk = 100 and Nr = 300.

5.3. Principal Component Analysis of Depth Images by
H. Dutagaci and A.Godil

One of the methods in this track is based on Principal Com-
ponent Analysis of depth images. PCA is used as a data
driven subspace model to describe the shape information of
the views. The depth images obtained from various points of
the view sphere are treated as 2D intensity images. A PCA-
based subspace is trained to extract the inherent structure of
the views within a database.

5.3.1. View sampling

Prior to view sampling, a 3D triangular mesh is rotated into
a reference frame via CPCA pose normalization, which was
proposed by [Vra05]. Then the views are obtained using the
vertices of a geodesic sphere surrounding the model. A regu-
lar octahedron is subdivided to obtain finer geodesic spheres
with more vertices. In this competition, a geodesic sphere
with 18 vertices is used for view sampling. The depth im-
ages are captured as seen from the vertices of these two
spheres, then they are mapped onto a regular grid of reso-
lution 128x128. Figure 4 shows two examples of the view
extraction process.

Figure 4: View sampling.

5.3.2. Principal Component Analysis

Subspace methods find a set of vectors that describe the sig-
nificant statistical variations among the observations. These
vectors form the basis of a subspace where most of the mean-
ingful information for certain class of processes is preserved.

These methods have the additional advantage of greatly re-
ducing the dimensionality of the observations. In this spe-
cific application, the observations are the depth images gen-
erated from the complete 3D models.

A data matrix X is constructed by collecting N depth im-
ages from a training set, converting them to one dimensional
vectors of length M, and putting these vectors {x1,x2, · · ·xN}
into the columns of the data matrix X . Then, PCA is applied
to the data matrix.

PCA is an analysis technique that is based on the decorre-
lation of the data using second order statistics. The eigenvec-
tors of the M×M covariance matrix, G = (X − X̄)(X − X̄)T

gives the principal directions of variations. Here, X̄ denotes
the mean of the training vectors. Let {v1,v2, · · ·vK} be the
first K eigenvectors of G with corresponding eigenvalues
{α1 ≥ α2 . . .αK}. These vectors model the largest variations
among the training samples, therefore are considered to cap-
ture most of the significant information. The amount of in-
formation maintained depends on K and the spread of eigen-
values. The projection of an input vector x onto the PCA
subspace is given by b =V T x, where V represents the M×K
projection matrix formed as [v1,v2, · · ·vK ].

A separate data set other than the target dataset provided
by SHREC track organizers were used to extract the PCA
subspace. The data matrix X is formed by collecting six
canonical views of each of the 907 training models in the
Princeton Shape Benchmark (PSB) [2], so there are 6 907
observations to be analyzed. Figure 2 shows the first four
principal modes of variations among the depth images of
PSB training models.

Figure 5: View sampling.

5.3.3. Axis rotations and reflections

One problematic issue with the CPCA normalization is the
ambiguity of axis ordering and reflections. Most of the mis-
alignment errors are due to inconsistent within-class axis
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orderings and orientations given by the normalization pro-
cedure. These axis ordering and reflection ambiguities are
resolved by reordering and reconfiguring the views of the
model according to the 48 possible reflections and orienta-
tions of the objects. Then subspace features are extracted for
each of the 48 sets of depth images. The feautures of a query
model are then compared to each of the 48 sets of feature
vectors and the one giving the minimum distance is chosen.

6. Results

In this section, we present the performance evaluation re-
sults of the SHREC’10- Generic 3D Warehouse track. Three
research groups participated in the contest and submitted 7
dissimilarity matrices obtained by different methods. In ad-
dition to the methods of the participants we tested 5 state-of-
the-art methods on our benchmark and obtained the corre-
sponding distance matrices. The dissimilarity matrices were
analyzed based on the following evaluation measures: Near-
est Neighbor (NN), First-Tier (FT), Second-Tier (ST), E-
Measure (EM), Discounted Cumulative Gain (DCG) and
Precision Recall Curve.

Table 2 shows the retrieval statistics yielded by the meth-
ods of the participants, four previous methods proposed
by Vranic [Vra04] and the Light Field Descriptor (LFD)
[DYM03]. All the methods except the view-based PCA gave
better results than all of the Vranic’s methods and the LFD.
The high retrieval results suggest that emerging 3D retrieval
algorithms are capable of handling databases containing
thousands of models.

PARTICIPANT METHOD NN FT ST E DCG

Ohbuchi BF!DSIFT!E 0.884 0.531 0.668 0.360 0.841

MR!BF!DSIFT!E 0.897 0.606 0.733 0.389 0.869

Dutagaci View!based PCA ! 18 view 0.825 0.433 0.557 0.314 0.789

Lian GSMD 0.875 0.491 0.624 0.344 0.824

CM!BOF 0.862 0.534 0.662 0.358 0.836

VLGD 0.889 0.565 0.696 0.377 0.855

VLGD+MMR 0.889 0.647 0.791 0.390 0.880

AUTHOR PREVIOUS METHODS NN FT ST E DCG

Vranic DSR472 with L1 0.871 0.498 0.639 0.356 0.831

DBD438 with L1 0.809 0.407 0.532 0.306 0.770

SIL300 with L1 0.807 0.412 0.548 0.300 0.780

RSH136 with L1 0.783 0.385 0.508 0.275 0.758

Chen LFD 0.864 0.48 0.613 0.336 0.816

Table 2: The retrieval statistics for all the methods and runs.

We have selected the best runs of each participant and dis-
played them in Figure 6, which shows their performances re-
sults in a bar graph. Figure 7 gives the precision-recall curves
of the all methods. Observing these figures, we can state
that Lian’s VLGD+MMR method yielded highest results in
terms of all the measures but Nearest Neighbor. In terms of
Nearest Neighbor, Ohbuchi’s MR-BF-DSIFT-E method per-
formed best.

The view-based PCA didn’t perform as well as other par-
ticipants’ methods. One main reason is that the PCA basis
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Figure 6: Bar plot of the Nearest Neighbor (NN), First Tier
(FT), Second Tier (ST), E-measure(E) and Discounted Cu-
mulative Gain (DCG) for the best runs of each participant.
We also include the results of LFD descriptor of Chen and
the DSR472 descriptor of Vranic.

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Precision ! Recall

BF DSIFT E

MR BF DSIFT E

DSR472

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Precision ! Recall

BF DSIFT E

MR BF DSIFT E

DSR472

DBD438

SIL300

RSH136

View based!PCA! 18!views

GSMD

CM BOF

VLGD

VLGD+MMR

LFD

Figure 7: Precision-recall curves of the best runs of each
participant.

was trained on a different dataset (the PSB training set) other
than the target database; therefore the shape structure of the
target database is not well-represented by the PCA basis.
The participant didn’t choose to train the PCA basis using
the target database, since it would require to conduct long
leave-one-out experiments where the query object is left out
and the PCA basis is trained using the rest of the objects.

The GSMD method is based on global descriptors of
views whereas the CM-BOF of Lian and SIFT-based de-
scriptors of Ohbuchi use bag of words approach to desribe
local features of the views. We can consider these four meth-
ods and the view-based PCA approach as individual meth-
ods. Among these individual methods, Ohbuchi’s MR-BF-
DSIFT-E method performed better. Lian’s VLGD method is
a combination of the GSMD and CM-BOF; i.e. it is a hy-
brid method that fuses local and global characteristics of the
object. The results in Table 2 show that the hybrid method
performed better than the individual methods of Lian. It is
also apparent that application of the Non-Manifold Ranking
to the hybrid method boosted the performance.
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7. Conclusions

In this paper, we have described and compared the perfor-
mance of different algorithms submitted by three research
groups that participated in this track. The participants have
submitted 7 sets of dissimilarity matrices in total, based on
different methods and parameters. We hope that the track
database will provide valuable contributions to the 3D shape
retrieval community.
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