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The symmetry of graphene’s two carbon sublattices underlies its unique

electronic structure and half-integer quantum Hall effect. Quantized Hall

resistance requires confinement of cyclotron orbits (Landau levels) in

the sample interior. Such magnetic localization also may be unique in

graphene—especially for LL0, the fourfold-degenerate (spin, valley) Lan-

dau level straddling graphene’s charge-neutrality energy. Here we map

the two-dimensional spatial distribution of LL0, using cryogenic scanning

tunnelling spectroscopy to measure the local density of states (LDOS)

on electronically-decoupled multilayer epitaxial graphene. Unlike disor-

dered LDOS patterns found for conventional 2D electron systems in the

quantum Hall regime, above a threshold magnetic field we find an orga-

nized pattern of localized states and extended states. In each localized

region, an energy gap associated with lattice-scale spatial variation of the

LDOS suggests that the sublattice degeneracy (and LL0 valley degener-

acy) is lifted locally. We propose that this occurs when cyclotron orbits

become small enough to sample regions of small symmetry-breaking po-

tential originating from a graphene-on-graphene moiré. Our observations,

and initial theory, point to rich physics that may come from controlling

graphene’s sublattice symmetry.

In 2D electron systems (2DES) the spatial distribution of Landau level (LL) wavefunctions

plays a crucial role in the integer quantum Hall effect. Magnetic-field induced localization is

essential for the development of well defined Hall conductance plateaus1 and zero longitudinal
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resistance. Transitions between zero-resistance states occur when the Fermi energy coincides

with the energy of a spatially-extended “drift state.” Semiclassically, these are cyclotron or-

bits whose centre drifts along equipotential lines in the sample.2,3 Graphene has a half-integer

quantum Hall effect,4,5 and the nature of carrier confinement is different than in conventional

2DES due to its gapless energy spectrum and double-valley Fermi surface.6 These facts alone

provide incentive for experimental investigations of the LL spatial distributions in graphene,

especially the zero-energy state LL0, which lies exactly at the charge neutrality point (Dirac

point) and has no semiclassical analog.

But the LL0 wavefunctions also are unique because of their real-space structure. The LL0

wavefunction from states in the K+ valley of the graphene Brillouin zone has wavefunction

density on a single sublattice (A) while the wavefunction from the K− valley is mirror-identical

with density solely on the other (B) sublattice. The wavefunctions are both valley polarized7–9

and sublattice polarized, an association that is true only for LL0. As a consequence of the spin

and valley degeneracy of each LL and the position of LL0 at the Dirac point, magneto-transport

measurements4,5,10 show quantized Hall conductance σxy = νe2/h for filling factors ν = 4(N ±

1/2) = ±2,±6,±10, · · ·. Here e and h are, respectively, the fundamental unit of charge and

Planck’s constant, while N = 0,±1,±2, · · · labels successive fourfold-degenerate Landau levels

(upper/lower signs in these expressions denote states above/below the Dirac point). Recent

transport measurements for both monolayer and bilayer graphene reveal apparent interaction

effects that lift the energy degeneracy at other integer filling factors,11–16 and fractional quantum

Hall plateaus have recently been observed.17,18

With these motivations, here we investigate graphene’s LL0 as a function of energy, magnetic

field, and spatial position in two dimensions. Scanning tunnelling spectroscopy (STS) experi-

ments are performed at 4.3 K in magnetic fields up to 8 T [note that STS differential conduc-

tance (dI/dV ) can be associated with the surface local density of states (LDOS)]. Experimental

conditions and sample preparation are identical to earlier work19 that verified the progression

of LL energies, EN ∝
√
|N |B. This is the result expected for the massless charge carriers

of monolayer graphene and has also been observed in decoupled monolayers on graphite.20

Here we study the top layer of multilayer epitaxial graphene, where layer-to-layer rotation re-

duces the coupling between successive graphene sheets, yielding monolayer graphene electrical

properties.21,22 Important experimental details are given under Methods.
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Figure 1a shows a scanning tunnelling microscope (STM) topograph of the 100 nm×100 nm

area under study. A single defect is visible at the bottom of the image and a hexagonal super-

lattice height modulation (10 pm root-mean-square variation) is found throughout the region.

The superlattice is a consequence of the moiré alignment of two graphene layers rotated slightly

with respect to one another. The topographic moiré period of (3.98 ± 0.12) nm corresponds

to a rotation of θ = (3.6 ± 0.1) ◦ between graphene sheets.23,24 Other than the defect seen in

Fig. 1a, the graphene surface is well ordered with the graphene honeycomb lattice apparent in

atomically-resolved images, as shown in Fig. 1b.

A perpendicular magnetic field applied to this 2D system creates a spectrum of narrow

Landau levels.19 For magnetic fields of 4 T, 6 T, and 8 T, we acquired dI/dV spectra at each

point on a 251×251 grid over the area shown in Fig.1a. Relevant portions of the dI/dV data are

shown in Fig. 2, and a more complete data set is available as an animation in Supplementary

Information. Figure 2a shows grid-averaged spectra of LL0 for each magnetic field (we use

LLav
0 to distinguish averaged spectra from single-point spectra). The central LLav

0 peak grows

in intensity and shifts to slightly higher energy with increasing magnetic field due to field-

dependent screening of electric fields from the buried SiC/graphene interface and to some

extent from the STM tip.19 LL0 is the first LL observed above the Fermi energy EF (which

lies at zero sample bias), indicating a filling factor ν = −2 for all three magnetic fields. Small

satellite peaks observed in the LL0 spectra are discussed in the Supplementary Information (see

Supplementary Fig. S5). Circles on the spectra label the energies of the dI/dV maps displayed

in parts b to d (4 T), f to h (6 T), and i to l (8 T) of Fig. 2.

All of the dI/dV maps show prominent rings around the defect imaged in the topograph of

Fig. 1a. These are related to the defect potential and charge state,25 but a complete analysis is

deferred to a later publication. Here we focus on general features of the LL0 spatial distribution.

The 4 T dI/dV maps in Figs. 2(b,c,d) display spatial patterns similar to LLs in a conventional

2DES.26–29 Localized drift states in the tails of the LLav follow closed paths around potential

energy minima (low energy tail, Fig. 2b) or maxima (high-energy tail, Fig. 2d). The bright

triangular ring of large LDOS seen upper-left in Fig. 2b is a good example. The width of the

closed path is approximately the magnetic length (`B =
√
h/(2πeB)), which is the size of the

LL0 wavefunction (see `B bars in right column). Bright and dark regions in Fig. 2d and Fig. 2b

are complementary, consistent with the localization picture presented. At the central energy,
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Fig. 2c shows that the extent of the drift state expands drastically. In the integer quantum

Hall effect, coupling of edge states through this extended state destroys the zero longitudinal

magnetoresistance.

The wavefunction size `B determines how accurately drift states can follow the local potential

landscape, as shown schematically in Fig. 2e. The same features found at 4 T are seen more

clearly resolved in the dI/dV maps at 6 T [Figs. 2(f,g,h)] and 8 T [Figs. 2(i,j,k,l)] (cf., the

ring at upper-left in b,f,i,j). New features also appear: The extended state in Figs. 2g and 2k

develops a pattern with high density of states confined to narrow channels separating lower-

density patches of diameter > `B. These patches form a distorted hexagonal array and show

large pixel-to-pixel fluctuation of intensity (the fluctuations are most apparent in Figs. 2f and

2j; see also the data animation file included in Supplementary Information). Magnetically

induced LDOS variation on a length scale � `B is unexpected and qualitatively different from

any previous measurements on a conventional 2DES.

In Fig. 3a we track the energy of the LL0 peak as a function of position [E0(x, y); see

Supplementary Information] for the 8 T map data. A region of high peak-energy is apparent

near the topographic defect (see Fig. 1a). A second broad maximum can be seen in the upper-

right quadrant of Fig. 3a, while a dip in E0(x, y) occurs near the top-centre. Within the drift

state picture, LL0 follows equipotential lines for length scales greater than `B, therefore we

associate these broad E0(x, y) features with hills and valleys in the electron potential energy

landscape. The increase in E0 over the topographic defect (bottom-centre) is consistent with a

negatively-charged configuration. The sources of the second potential energy maximum (upper-

right) and the potential energy minimum (top-centre) are not resolved in the topograph, but a

natural explanation would be the presence of other isolated defects or intercalant atoms.

Inside each of the patches identified above, the peak-tracking map shows a speckled pattern,

indicating large pixel-to-pixel variation of E0. An expanded view of the speckle within box I

of part (a) is shown in Fig. 3b. From this patch and from a region that shows no speckle (box

II), we produce histograms of E0 values, as shown in Fig. 3c. In region II, all LL0 peaks are

found to lie close to the mean energy. Within patch I, however, E0 values cluster around two

distinct energies separated by more than 6 meV.

These observations firmly establish that the LDOS energy distribution varies on the atomic

scale within each speckled patch. Clearly, this behaviour falls outside of the drift state picture
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and—unlike the broad maxima and minima in E0(x, y)—does not appear to be associated

with isolated defects. At 0.4 nm pixel spacing, the atomic lattice (0.246 nm lattice constant,

0.142 nm C-C bond length) is under-sampled in these LDOS maps due to time constraints in

data acquisition, but the resolution is� 0.4 nm (cf. Fig. 1b, acquired with the same STM tip),

i.e., a large sampling increment does not broaden underlying features. Therefore, the exact

atomic LDOS is not determined directly in the present data, but the bimodal distribution of

LL0 peak energies clearly suggests different LDOS on the A and B carbon sublattices. Given

the association of valley and sublattice in LL0, the histogram energy gap is “valley-splitting.”

Figure 3d shows the average spectrum from the high-count bin at the center of the low-energy

peak of the histogram (labelled A; see Supplementary Information) and the average spectrum

from the high-count bin in the high-energy peak (B). With the caveat above, we interpret these

as the LDOS spectra from A and B sublattices.

The spatial and magnetic field variation of valley-splitting in the LL0 states can be seen in

profiles of the dI/dV intensity versus energy along a line crossing one of the speckled patches.

Figures 4(a,b,c) show these spectral profiles taken from dI/dV maps at magnetic fields of,

respectively, 4 T, 6 T, and 8 T. In the 4 T profile, the peak energy E0 dips slightly over the patch,

but does not split. At 6 T a clear energy gap develops, reaching a maximum of ≈ 8 meV, but

no gap is found in unspeckled regions. By 8 T the splitting has increased slightly to ≈ 10 meV.

Hence the valley-splitting occurs only above a threshold field B∗ where 4 T < B∗ < 6 T and may

saturate at high fields to a value somewhat larger than 10 meV. (Close examination of Figs. 4b

and 4c also shows anticorrelation of the dI/dV intensity in the two bands, as expected from

the pixel-to-pixel fluctuations seen in the 2D dI/dV maps of Fig. 2–see also Supplementary

Figs. S1 and S2.)

Any explanation of this newly-discovered valley-splitting must also address the large scale

spatial distribution of the valley-split patches. The characteristics of this pattern are summa-

rized in the “gap map”30 of Fig. 5a. In this 8 T map, colour corresponds to the local energy

gap ∆ = E0(B)−E0(A), where E0(A) and E0(B) are the energies of the respective histogram

peaks (e.g., Fig. 3c). As indicated in 5a, the valley-split patches form a large hexagon (slightly

distorted), with sides of length ≈ 40 nm. In Fig. S3, we show that partial patches at the

edges of the gap map are consistent with a repeating pattern of patches with a 70 nm period.

Gap maps for magnetic fields of 6 T and 4 T can be found in Fig. S4, which shows that the
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long-range pattern is nearly identical at 8 T and 6 T (with similar maximum energy gaps), but

at 4 T the valley-split patches vanish entirely, as seen also in Fig. 4a.

Before delving into theoretical possibilities, we summarize our new experimental discoveries:

1) We have imaged the LL0 drift states of graphene, identifying magnetically-localized states

above and below the Dirac point, and an extended state that lies at the peak energy of LLav
0 .

The drift states follow equipotentials over length scales larger than the magnetic length `B.

2) Above a threshold magnetic field B∗ >∼ 4 T, we find spatial variation of the LL0 energy on

the atomic scale. These variations occur only within small patches of size comparable to the

magnetic length. Within each patch, two distinct spectra are found, with the difference in LL0

energies apparently saturating to ≈ 10 meV for fields greater than B∗. The two spectra appear

to be due to different local density of states on the A and B carbon sublattices. The valley-split

patches themselves form a larger hexagonal pattern that appears to repeat with a period of

≈ 70 nm.

The presence of magnetically-localized states and the extended state are essential for the

observation of the half-integer quantum Hall effect in graphene. From our results it appears

that the basics of the drift-state picture remain valid at energies both above and below LLav
0 .

However, atomic-scale spatial variation of LL0 with the accompanying large-area pattern of

valley-split patches is both unexpected and unpredicted. In what follows, we discuss potential

explanations of this valley-splitting.

Pauli exclusion and Coulomb correlations in a many-electron system typically lift the degen-

eracies of independent-electron states. For graphene, the theory of correlated states continues

to evolve,6 and in most cases no spatial inhomogeneity is predicted. A few models, such as

a ground state Wigner crystal/bubble phase31 or a pseudospin vortex lattice,32 could produce

spatial inhomogeneity comparable to the pattern that we observe. We do not exclude a many-

body state as the source our findings, but there are at least three issues that may discount any

such explanation: 1) The Fermi energy lies 44 meV to 56 meV below the LLav
0 density-of-states

peak (Fig. 2a). Creation of an energy gap in the unfilled states of LL0 would not lower the

total energy of the system. 2) The spatial distribution of valley-split patches does not vary

with magnetic field from 6 T to 8 T. In the absence of pinning centres, a pattern created by

density-dependent interactions should change with magnetic field since the LL density of states

varies with field. 3) A high density electron-doped layer (n ≈ 5×1012 cm−2) lies at the interface
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with the silicon carbide substrate, less than 4 nm below the top graphene layer in the multilayer

stack.21,22 Screening by this interface layer should reduce Coulomb correlations. This doesn’t

preclude an interaction-driven state, but formation of a pattern with a unit cell much larger

than the film thickness would be less probable.

In light of these issues, we look for an explanation within the independent-electron picture.

A small contribution of intervalley orbital currents is known to lift the LL0 valley degeneracy,33

but the predicted energy gap is even smaller than the ordinary Zeeman splitting (i.e., <∼ µBB,

where µB is the Bohr magneton), which itself is unobserved in these four-Kelvin experiments.

We propose instead that our observations indicate a subtle interaction of graphene with the

layers below, which comprise an atomically-smooth and ordered substrate.

Considering any two layers in multilayer epitaxial graphene (not necessarily adjacent layers)

rotated by a small angle, there are alternating regions of high atomic alignment between the

layers. These regions fall into two categories: 1) locally sublattice-equivalent alignment where

every top-layer atom lies directly above an atom in the lower layer. We refer to these regions

as AA. 2) locally sublattice-inequivalent alignment where A atoms from the top layer lie over

B atoms in the lower layer or vice-versa. These areas we refer to as AB/BA. A model moiré

superlattice is shown in Fig. 5b. Regions of AA, AB, and BA stacking are apparent within

the superlattice cell, such that the sublattices remain equivalent over the full supercell and the

linear band dispersion of graphene is preserved near the Dirac point24,34–38 (superlattice van

Hove singularities39 were not found within the energy range of our dI/dV maps). Figure 5c

illustrates how multiple layers typically have different rotational alignment. STM topographs

over other regions of this sample show the effect of one moiré interfering with another below it

(a double moiré), easily creating superlattice periods of tens of nanometres19 and requiring the

participation of at least 3 graphene layers, as illustrated.

AB/BA stacking creates different environments for atoms on different sublattices, which can

be modelled phenomenologically as a small difference in on-site potential (the “staggered po-

tential”). For magnetic fields where `B is much larger than the size of the AB/BA patches, the

staggered potential has little effect, but at fields where the wavefunction size becomes smaller

than an AB/BA patch, the staggered potential is important. Figures 5d and 5e illustrate the

LL0 LDOS distribution over the A/B sublattices and the effect on the energy spectrum induced

by the staggered potential. This simple picture explains the appearance above a threshold field



8

of a hexagonal array of valley-split patches over the AB/BA regions. As shown in Fig. 5b, strain-

ing one graphene lattice uniaxially by less than 0.25% with respect to the other accounts for

the distortion of the superlattice cell from a regular hexagon.40 Considering a perturbative ap-

proach, the sublattice-polarized LDOS distribution of LL0 is also explained since wavefunctions

are unaffected in the first-order of perturbation (in fact, to all orders for a uniform staggered

potential). However, the observed valley-splitting is smaller than one might naively anticipate

from an interaction between first (top) and second graphene layers. More importantly, the size

of the presumed moiré pattern is much larger than the single moiré superlattice imaged in the

topography (which we attribute to the first and second graphene layers). Therefore, although

in Fig. 1 we do not directly image the moiré between first and third graphene layers, we suggest

that this is the interaction responsible for the spatially inhomogeneous valley splitting.

The proposed mechanism has some similarities to a lattice-scale charge density wave.41–43 It

is conceivable that the interlayer interaction could locally promote this type of instability, but

in the present case, no energy would be gained by opening a gap in the unoccupied LL0. In

Supplementary Information, we develop a phenomenological model to investigate the influence

of a small staggered potential and spatial inhomogeneity in the staggered potential arising from

the moiré alignment of graphene layers. Consideration of the microscopic foundations of the

model (using tight-binding parameters fitted to experiment)44,45 shows that our observed valley

splitting of ≈ 10 meV is consistent with a first-layer/third-layer interaction. The model also

produces a sublattice-polarized LDOS and an exponential suppression of the valley-splitting

for moiré period ` <∼ `B. The latter result implies a threshold magnetic field B∗ determined by

`B ≈ `, which furthermore explains the negligible influence of the 4 nm first-layer/second-layer

moiré on the valley splitting since `B � 4 nm at all fields studied here.

Our experimental evidence for local lifting of the valley degeneracy in graphene’s zero–

Landau level has important implications for transport phenomena. Spatial modulation of the

sublattice symmetry may account for prior observations of fractal-like structure in magnetore-

sistance measurements of this material.46 The underlying physics discovered here should apply

to other atomically-flat substrates or overlayers—such as twisted bilayer graphene or graphene

on boron nitride—and suggests that strain and accidental layer slip (e.g., at contacts) may be

important to consider in measurements of nominally graphite-stacked graphene bilayers. The

alternating pattern of AB- and BA-aligned regions in the moiré also implies that bands of the
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same energy have opposite sublattice symmetry in neighbouring valley-split patches. With gate

control of the carrier density, one could position the Fermi energy between the valley-split levels

to create a pattern of orthogonal Fermi fluids having graphene-like superlattice symmetry. The

physics of both single-layer and interlayer correlations and coherence in such a system would

be interesting.

Methods

Graphene was prepared by epitaxial growth via thermal decomposition of a hydrogen-etched 4H-

SiC(0001̄) surface in a low vacuum induction furnace.21,46,47 The sample was then outgassed at 1250 ◦C

for 5 min in ultrahigh vacuum (UHV) to remove adsorbates. During growth, multiple graphene layers

form and stack in a non-graphitic sequence of rotated layers. Rotational stacking results in moiré

alignments of layers that largely decouples their electronic properties. The moiré is often visible in

STM topographs as a small hexagonal superlattice modulation in the apparent surface height (10 pm

RMS in the area studied). As measured by ellipsometry, the sample thickness was 10± 1 layers. The

sample was studied in UHV at a temperature of 4.3 K using a custom-built cryogenic STM at NIST.

The Ir tip was prepared ex situ using electrochemical etching, and then heated in situ by electron

bombardment and further cleaned by field evaporation during imaging via field ion microscopy.

Spectra of the local differential conductance (dI/dV ) are collected by fixing the tip-sample distance

and sweeping the bias voltage. Using a lock-in amplifier to modulate the sample bias (fmod = 500 Hz,

Vmod = 2 mV), the resulting signal (dI/dV vs. V ) is collected. Spectra were collected in a 251× 251

grid over a 100 nm× 100 nm area at (x, y) sample increments of 0.4 nm and for magnetic fields of 4 T,

6 T and 8 T. dI/dV map acquisition times were ≈ 65 h (100-point spectra) at each magnetic field. The

topography was recorded simultaneously at 0.1 nm increments with a sample bias of Vs = 0.35 V and

a tunnelling current of Is = 400 pA.
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FIG. 1: Topographic STM images of the multilayer epitaxial graphene sample grown on SiC. (a) A
100 nm× 100 nm real-space image of the surface studied, taken at a sample bias of Vs = 0.35 V and a
tunnel current Is = 400 pA. This image was acquired simultaneously with the 8 T dI/dV maps shown
in Fig. 2. Periodic height variations are a moiré pattern of ≈ 4 nm period. A defect at bottom-centre
distorts the topograph due to an electronic perturbation. Arrows label the line corresponding to the
spectral profiles of Fig. 4. (b) A 5 nm×5 nm image (Vs = 0.10 V, Is = 100 pA, x, y sampling increment
25 pm) showing the atomic lattice.
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FIG. 2: STS dI/dV maps showing an extended state at the LLav
0 peak energy (Eav

0 ) and localized
states at energies above and below Eav

0 . (a) Spectra of LLav
0 at magnetic fields of 4 T, 6 T and 8 T

averaged over the area in Fig. 1a. Energy (throughout the paper) is eVs, where Vs is the sample
voltage bias. Labels at marked energies (open circles) correspond to the displayed maps. Lines are
spline interpolants of the raw data (filled circles). STS dI/dV maps of the 100 nm×100 nm region are
displayed for magnetic fields of 4 T (b–d), 6 T (f–h), and 8 T (i–l). These maps taken from a larger data
set were selected at energies bracketing Eav

0 for each magnetic field (note that areas probed at different
fields are not in exact registry; the defect position can be used as an alignment guide). The magnetic
lengths (`B) shown in d,h,l correspond to values of 13 nm,10.5 nm and 9 nm, respectively. (e) Schematic
of the LL0 wavefunction shrinking under increasing magnetic field. Smaller drift-state wavefunctions
track equipotentials deeper within an extremum in the potential-energy landscape. Following the maps
down columns (e.g., c,g,k at the LLav

0 peak energy Eav
0 ) shows that dI/dV features sharpen due to

decreasing `B. Left to right across rows, the maps show the change from states localized in potential
energy minima, to extended states at Eav

0 , to states localized around potential energy maxima (note
the inversion of dI/dV intensity from Eav

0 − 4 meV to Eav
0 + 4 meV). Rings at upper-left in (i) and (j)

can be viewed as tracing equipotential lines that differ by 4 mV. At energy Eav
0 , the drift state follows

an equipotential that may span the sample. In 6 T and 8 T maps, patches with large pixel-to-pixel
intensity variation appear.
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FIG. 3: Spatial variation of the LL0 energy and the local lifting of valley degeneracy. (a) Spatial
map of the LL0 peak energy E0(x, y) (colour scale) derived from 8 T dI/dV map data. Over much
of the area, E0 varies smoothly, reaching a maximum at the position of the defect seen in Fig. 1a
(omitting the defect core). A second maximum (top-right) and a minimum (top-centre) could be due
to unresolved defects. Several speckled patches can be seen, where E0 varies over distances shorter
than the 0.4 nm sampling distance. (b) Expanded view of the speckle displaying large pixel-to-pixel
variations of E0. (c) Histograms of E0 values from boxes I & II in part (a). In the speckled patch I,
the histogram (top) has two distinct peaks (A & B) separated by 6 meV. A single peak is found in
the bottom histogram from unspeckled region II. (d) Average dI/dV spectrum obtained from pixels
in the high-count bin (52.5 meV < E0 < 52.75 meV) under histogram peak A (blue) and from pixels
in the high-count bin (58.5 meV < E0 < 58.75 meV) under peak B (green). We associate these with
the valley-split LL0 LDOS on sublattices A and B.

FIG. 4: Magnetic field dependence of the spatially varying LL0 peak energy. Panels show the dI/dV
magnitude (colour) versus energy (vertical) and position (horizontal) along the line marked by arrows
in Fig. 1a. The spectral profiles were extracted from dI/dV maps at (a) 4 T, (b) 6 T, and (c) 8 T. The
bright dI/dV peak is LL0. Within a speckled patch centred at 35–40 nm, an energy gap is observed
for fields above 4 T. The dI/dV intensity of the two bands is anticorrelated: At any spatial position
(pixel), large dI/dV in one band corresponds to small dI/dV in the other. Note that the ≈ 5 nm
intensity modulation of the bands is an aliasing artifact due to undersampling of the graphene lattice.
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FIG. 5: Energy-gap map and proposed model of the local valley splitting. (a) A gap map derived from
the 8 T dI/dV data, displaying the size of the LL0 valley-split energy gap, ∆ = E0(B)− E0(A), as a
function of spatial position (Supplementary Fig. S4 shows gap maps at 4 T and 6 T). ∆ is determined
over a (moving) box of size 1.2 nm × 1.2 nm (9 pixels). (b) Model of the moiré alignment of two
graphene sheets. The top model layer (green) is aligned with the sample crystallographic axes, but
the atomic unit cell is larger for illustration. The second model layer (blue) is slightly rotated with
respect to the top layer and strained uniaxially by 0.25%. The model shows that the observed quasi-
hexagonal symmetry in (a) follows naturally from a large moiré superlattice with small relative strain.40

The valley-split patches in (a) correspond to AB/BA patches in the model. Since this large moiré
superlattice is not seen in the topography, the energy gaps are most likely a consequence of interaction
between the first (top) and third graphene layers. (c) Schematic of an orientation of the top three
layers that would produce the observed short-period (STM) and long-period (STS) moire patterns.
(d) Schematic wavefunctions of LL0 in graphene. A and B label the sublattice atoms; blue denotes
states from the K+ valley of the graphene Brillouin zone and green corresponds to states from the K−
valley. (e) Schematic of LL0 states at the K± points with zero potential difference between sublattices
(zero staggered potential). (f) LL0 states at the K± points with nonzero staggered potential.
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I. DATA ANALYSIS

E0(x, y) Maps: For Fig. 3a, the energy of the LL0 dI/dV maximum (E0) was determined by fit-

ting a Lorentzian peak to the spectrum at each (x, y) pixel, using a nonlinear least squares algorithm

(Levenberg-Marquardt in MINPACK). Fit parameters were the peak-center energy E0, the Lorentzian

width, and the peak amplitude. Figure 3a plots the fitted E0 values at each pixel.

A/B Spectra: The blue spectrum (“A”) in Fig. 3d is the average of those spectra from region I whose

E0 value lies in the high-count bin of the “A” peak of the bimodal (upper) histogram in Fig. 3c. From

the figure, this includes 25 spectra with 52.5 meV < E0 < 52.75 meV. The green spectrum (“B”) in

Fig. 3d is the average of those spectra from region I whose E0 lies in the high-count bin of the “B”

peak of the histogram in Fig. 3c. From the figure, this includes 25 spectra with 58.5 meV < E0 <

58.75 meV. In Fig. 3d, the LL0 peaks appear to be separated by a slightly larger energy than the 6 meV

separation of the histogram maxima. This is because for the histogram, we use Lorentzian peak-fitting

over a small energy range to extract an accurate E0 at each spatial pixel, but for the average spectra we

simply average the raw (uninterpolated) data points. The blue and green lines in Fig. 3d are spline fits

to the average spectra given as guides to the eye. The detailed spectral shape is ultimately limited by

our energy sampling, but the fact that there are two distinct spectra with different E0 is unassailable.

Comparison with the histogram of E0 values obtained from region II makes this very clear.

Gap maps: Figs. 5a and S4 were generated from the E0(x, y) maps described above. The standard

deviation of E0 over a box of size 3 pixels × 3 pixels, centered on each pixel, was collected over

the extent of the image. The standard deviation was multiplied by 2
√

2 in order to obtain the local

energy gap. This scaling is exact only for a perfectly bimodal distribution of E0 values. Fig. 3c (top)

shows that histogram peaks A and B have finite widths. Because these widths also contribute to the
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standard deviation, the energy gap ∆ = E0(B) − E0(A) is slightly overestimated [E0(A) and E0(B)

denote energies of the respective histogram peaks]. The size of the calculation box and the influence

of defect potentials creates some artifacts, but ∆ obtained from the rapid spatial variations is generally

large by comparison.

Data animation: The data animation provided with this Supplementary Information is raw dI/dV

map data, spline interpolated in energy to obtain a higher point (frame) density. This provides

smoother transitions between frames without introducing artifacts in the spatial distribution because

the LL0 peaks are well-defined at each pixel.

II. SUPPLEMENTARY DATA

In this section we present further discussion and data demonstrating the spatially-periodic lifting

of the valley degeneracy and addressing other issues.

Filling factor. The filling factor depends on the location of the Fermi energy within the LLav

spectrum. For all of the magnetic fields presented, the Fermi energy lies between the N = 0 and

N = −1 levels, so the filling factor is constant at ν = −2. The Fermi energy EF occurs at zero sample

bias in tunnelling spectra, well below LLav
0 , as is apparent from Fig. 2a (the N = −1 LLav lies tens of

meV below EF). At zero magnetic field LLav
0 lies ≈ 6 meV below EF . As in prior work,1 the energy

of LL0 is found to depend on the magnetic field. This is discussed in Ref.1. The matter awaits a full

theoretical calculation, however, the general explanation is that the field-dependent position of LL0 is

a consequence of screening the electric fields from the substrate (which induces electron doping) and

to some extent from the STM tip (which would tend to induce hole-doping due to the workfunction

difference). The defect in the imaged area may also contribute to the charge density, partially pinning

the Fermi level to an energy below LLav
0 .

Valley splitting: In Fig. S1 we show a second series of spectral profiles (compare Fig. 4) taken

FIG. S1: Spectral profiles through the center of the map for magnetic fields of (a) 4 T, (b) 6 T, (c) 8 T.
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along a horizontal line near the center of the Fig. 1a (the line passes through box I in Fig. 3a). From

the nearly constant energy of LL0 in Fig. S1a it is apparent that the mean potential varies little in

this region. Consequently, the energy gap appears symmetric in the 8 T spectral profile of Fig. S1c.

The enhanced intensity of the high-energy satellite peak seen in Fig. S1b is still unexplained (see

next subsection). As in Fig. 4, anticorrelation of intensity in the two bands is apparent. Aliasing is

apparent in the bunching of bright/dark regions along the lines in each band. These bunches do not

correlate with the short-period moiré, and their period can vary slightly [compare, e.g., the bunching

in regions to the left (beginning) and right sides of the profiles].

The pixel-to-pixel variation of the LL0 peak intensity can be seen directly in the raw dI/dV maps

by overlaying maps acquired near E0(A) and E0(B). This is shown for 8 T maps in Fig. S2. Part (a)

of the figure shows Eav
0 − 4 meV ≈ E0(A) in red and part (b) shows Eav

0 + 4 meV ≈ E0(B). The two

FIG. S2: Sublattice polarization seen in the raw dI/dV data acquired at a magnetic field of 8 T. Images were

taken (a) at 52 meV, ≈ 4 meV below the LLav
0 peak (see Fig. 2a), and (b) at 60 meV, ≈ 4 meV above the LLav

0

peak. In (a)/(b), zero differential conductance is shown as black and the maximum differential conductance of

5 nS is red/green. (c) The sum of red and green images in (a) and (b). The speckled patch marked by a white

box is shown expanded in (d).

maps are overlaid in Fig. S2c, and an expanded view of a speckled patch is shown in Fig. S2d. Color

intensities are summed in the overlay images, producing yellow when the red and green intensities

are equal. One can see distinct red and green pixels in the speckled region, consistent with sublattice

polarization of the LDOS.
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FIG. S3: The 8 T gap map of Fig. S4c (black outline) shown on top of the same map shifted in position by a

moiré superlattice period (white arrow).

FIG. S4: Gap maps (∆(x, y)) for magnetic fields of (a) 4 T, (b) 6 T, (c) 8 T. The quasi-hexagonal figures in (b)

and (c) are identical. Note that maps at different magnetic fields are not in exact registry; the defect (bottom-

center) can be used to judge positional displacement between maps.

Figure S3 demonstrates that the faint regions of increasing brightness seen at the upper-right edges

of Fig. 5a [see also Figs. S4(b,c)] are consistent with an extended periodic moiré pattern. Similar

shifts match with other edge-truncated patches in the map.

Figure S4(a,b,c) shows ∆(x, y) gap maps at respectively, 4 T, 6 T, and 8 T (the 8 T gap map is

identical to Fig. 5a, reproduced here for convenience). In Fig. S4a, ∆ remains close to zero, except

near the defect at bottom-center. Over the defect the spectrum changes character, causing artifacts.

The color scale should not be interpreted as the valley splitting ∆ within a radius of order `B from the

defect. A clear change in the spatial pattern is apparent in Fig. S4b, with distinct patches of large ∆.

This pattern is unchanged in Fig. S4c except for a slight increase in the magnitude of ∆ within the

patches.
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FIG. S5: dI/dV maps of the low-energy satellite peak taken at a magnetic field of 8 T. With respect to the

spatially-averaged spectrum (Fig. 2a), the map energies progress from (a) just below the satellite peak, to (b)

near the maximum of the satellite peak, to (c) just above the peak.

Satellite Peaks: The origin of the satellite peaks is not yet known. In Fig. S5 we show dI/dV

maps for energies progressing over the low-energy satellite peak. Although the signal-to-noise ratio

is smaller, the progression of spatial patterns is similar to that seen in Figs. 2(j,k,l) for the main LLav
0

peak. The same speckled patches can be seen, especially in Fig. S5a. Hence, the origin of this

satellite seems to be related to the main LLav
0 peak. Equivalent data for the high-energy satellite is less

revealing, perhaps because it lies in the tail of the main peak.

Tentatively excluding interaction effects for reasons mentioned in the main text, there are still sev-

eral possibilities for the origin of these satellites. For example, they could be due to coherent coupling

to lower layers,2 they may be defect-related,3 Coulomb-charging may play a role (due to weak cou-

pling of a tip-induced quantum dot to its surroundings), and inelastic events can’t yet be excluded.

Coupling of wavefunctions from different AB/BA patches may also contribute. A resolution of these

issues requires further experiments.

III. THEORY

Here we outline the phenomenological model of sublattice symmetry breaking suggested in the

main text as a possible explanation of our findings. With the motivation given in the main text we

assume that the observed sublattice polarization is due to the coupling of the top graphene layer to

the third layer counted from the top. In the intuitive picture presented in the main text, this interlayer

coupling creates a staggered potential VAB that differs in sign between the A and the B sublattices
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and thus breaks the sublattice symmetry. Since the interlayer registry varies spatially within the

corresponding moiré pattern, VAB varies on a hexagonal superlattice associated with the interlayer

rotation. In our experiment the period of that superlattice is ` ≈ 70 nm (the spacing between AB and

BA patches is ≈ 40 nm). In a first, minimalistic analysis of our model, presented below, we attempt

to capture only the essential physics needed to understand the experimental data. For this reason we

disregard the space dependence of VAB in the direction perpendicular to the lines along which the

spectra of Fig. 4 were taken: VAB = VAB cos 2πx/`.

The low-energy Hamiltonian of graphene, the so-called Dirac Hamiltonian, reads

Hγ = vFσγ ·

(
~

i
∇ − eA(r)

)
+ m(r)v2

Fσz + V(r), (1)

where σγ = (σx, γσy) is a vector of Pauli matrices, γ = ± an orbital degree of freedom called valley

spin, −e the electron charge, and vF the electron velocity in graphene. We have included a scalar and a

vector potential V and A, respectively, and a mass m for the Dirac electrons. The Hamiltonian Hγ acts

on two-component spinor wavefunctions, containing the separate amplitudes for an electron to be on

the A- and the B-sublattice, respectively. A staggered potential with VAB > 0 has a positive value on

the A-sublattice and a negative value on the B-sublattice. In the above low-energy spinor description,

VAB is thus accounted for by a term ∝ σz. We therefore describe the top layer of the measured samples

by Hγ, Eq. (1), with A(r) = (0, Bx), V(r) = 0, and a mass term m(r)v2
F = VAB cos 2πx/`. We extract

VAB phenomenologically from the magnitude of the observed splitting of LL0 by means of Eq. (2).

In our experiment we have VAB`/~vF � 1 and thus we solve the corresponding Schrödinger equation

perturbatively, to first order in the parameter χ = min{`, `B} × VAB/~vF . To that accuracy we find the

eigenenergies

εγ = γVABe−π
2`2

B/`
2
cos

2πx0

`
(2)

of the wavefunctions in LL0 that are centered around x = x0. We observe that LL0 indeed consists

of two bands of wavefunctions with a spatially modulated energy splitting between each other, as

observed experimentally (see Figs. 3, 4, and S1). The corresponding wavefunctions are distinguished

by the valley degree of freedom γ. The total electron density in LL0 with γ = 1 (i.e., the density of

states integrated over energies within the peak of LL0 at γ = 1 in case that peak is clearly split from

LL0 at γ = −1) is found to be ρA = (1/π`2
B)[1 + O(χ)2] on the A sublattice and ρB = O(χ)2 � ρA

on the B sublattice, confirming the sublattice polarization of the two branches of LL0 assumed in the

main text. The densities found for LL0 in the γ = −1 valley are identical to the above, but the roles
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of the A and the B sublattices are interchanged. The above model thus reproduces three of the main

qualitative features of the spectra shown in Fig. 4:

• There is an oscillatory splitting of the zeroth Landau level into two bands of wavefunctions

with energies ±VAB cos 2πx0
`

at ` � `B.

• The wavefunctions in each of the split bands separately are sublattice-polarized. This implies

an anticorrelation between the densities of states in those two bands on the lattice scale, also

indicated by the STS measurement.

• There is an exponential suppression of the level splitting at weak magnetic fields by the factor

exp(−π2`2
B/`

2). Also such a suppression at small magnetic field is clearly observed experimen-

tally (note that the experimental energy resolution in Fig. 4 is 4 meV, such that the observed

absence of a gap at B = 4 T is entirely consistent with the above theory if the predicted sup-

pression of the gap is sufficiently strong.).

The effects of the smaller moiré pattern observed in STM topography with ˜̀ ≈ 4 nm (most likely

due to interaction with the second graphene layer from the top) can be analyzed similarly. One finds

that it has a negligible effect because ˜̀� `B.

The above phenomenological model can be placed on a microscopic foundation by integrating out

the third graphene layer in a tight-binding model of the sample, arriving at an effective Hamiltonian

Heff of the top layer. In such a derivation the postulated staggered potential VAB results from the

local (in space) and energy-independent contributions to Heff . Strictly speaking, neither the energy-

dependence nor the non-local contributions to Heff can be neglected (the non-locality increases with

decreasing magnetic field, such that the above intuition invoking a staggered potential is in general

not useful for a bilayer in zero field). Nevertheless, a careful analysis (to be presented elsewhere)

shows that the conclusions drawn from the simplified, local model presented above are qualitatively

correct. The magnitude of the staggered potential obtained by integrating out the third graphene layer

is readily estimated in perturbation theory, when the on-site energies of atoms receive (sublattice-

dependent) corrections of order |γ5|
2/∆ε. Here, γ5 ≈ 25 meV4,5 is the next-nearest layer hopping

amplitude. The scale of the energy denominator ∆ε is set by the difference ∆V between the chemical

potentials of layer 1 and layer 3 (the energy ≈ 50 meV needed to tunnel into LL0 of the top layer

suggests ∆V ≈ γ5), and the cyclotron energy. The value of VAB extracted above phenomenologically
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is thus of the microscopically expected order of magnitude VAB ≈ |γ5|
2/∆ε.
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