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a b s t r a c t

A question of fundamental importance for meta-analysis of heterogeneous multi-

dimensional data studies is how to form a best consensus estimator of common

parameters, and what uncertainty to attach to the estimate. This issue is addressed for a

class of unbalanced linear designs which include classical growth curve models. The

solution obtained is similar to the popular DerSimonian and Laird (1986) method for a

simple meta-analysis model. By using almost unbiased variance estimators, an

estimator of the covariance matrix of this procedure is derived. Combination of these

methods is illustrated by two examples and are compared via simulation.

Published by Elsevier B.V.

1. Introduction: the model and its matrix formulation

The use and importance of linear mixed models is well documented (McCulloch and Searle, 2001; Jiang, 2007). One of
their important applications is meta-analysis to combine measurements made in several studies which commonly exhibit
not only non-negligible between-study variability, but also have different within-study precisions.

Laird and Ware (1982) discussed several statistical methods of fitting linear mixed models by using classical techniques
of (empirical) Bayes or maximum likelihood estimation. The algorithms for the maximum likelihood and the restricted
maximum likelihood are implemented in R-language (Pinheiro and Bates, 2000).

Consider a mixed effects linear model where several measurements are made in each of p studies with the i-th study
performing measurements ni times, i¼1,y,p, so that the data vector from study i has the form

Yi ¼ BiyþCibiþei: ð1Þ

Here Bi is the i-th study ni� q design matrix, the ni� r matrix Ci is discussed later, and the q-dimensional parameter y is of
interest. The independent r-dimensional vectors bi represent random between-study effects with zero mean and some
covariance matrix X, while the errors ei are independent and normally distributed. The usual motivation of (1) is provided
by two-stage modeling with the first stage introducing all parameters and variables for fixed bi, and the second stage
specifying the distribution of these effects.
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For a general growth curve model in (1) Bi ¼ CiAi with given r� q matrices Ai, i¼ 1, . . . ,p, i.e., the column space of the
design matrix of fixed effects is contained in that of random effects matrix. If the rank of Bi is q (and we impose this
condition), then qrr, or the dimension of random effects must be at least as large as that of the structural parameter. In
many applications the reverse inequality is more natural. Indeed in the simplest case of linear regression (q¼2), the
random effects affecting the slope may change the nature of the regression line (i.e., make some regression lines
decreasing and some increasing), so that models involving more than two random effects hardly are promising.

In this paper we assume that Ci ¼ BiAi with known q� r matrices Ai, i¼ 1, . . . ,p. The ensuing condition, rrq, may be in
better agreement with the idea that simpler models with fairly small between-study effects are most useful. See also
Section 5. Thus, we study a heterogeneous random coefficient model of the form

Yi ¼ Biðyþ‘iÞþei, ð2Þ

with Bi and y having the same meaning as in (1), and independent normal random vectors ‘i ¼ Aibi have zero mean and the
covariance matrix AiXAT

i . It is also assumed that the errors ei are independent and normally distributed with the variance
depending only on the study (but not on the design row), ei �Nni

ð0,s2
i IÞ: The statistical goal is to estimate the parameter y

and to provide a standard error of this estimate leading to a confidence region for this parameter or for a function thereof.
This model extends the well-studied balanced scenario (ni � n, s2

i � s
2) (Longford, 1994). When q¼r, it falls into the

class of classical growth curve models (Demidenko, 2005; Pan and Fang, 2002), with available results on maximum
likelihood and method of moments estimators. In more general balanced growth models, the n�m matrix data Y can be
represented as eByeAþe, where y is a r� q parametric matrix, eB and eA are n� r and q�m known matrices, and e is the error
term. The model (2) can be considered as a heterogeneous version of reduced-rank growth curve models.

In matrix notation (1) can be written as a particular case of the mixed linear model,

Y¼ ByþCbþe:

Here Y is the total data vector of dimension N¼ n1þ � � � þnp; B is a matrix of size N� q formed by stacked in a column
matrices B1,y,Bp; C is the block diagonal matrix of size N� rp with the i-th block of size ni� r consisting of the matrix Ci.
The rp-dimensional random vector b is composed of stacked p components formed by bi, i¼1,y,p. Thus y is the unknown
parameter (fixed effects) vector, and b is random normal effect vector uncorrelated with the zero mean normal error
vector e whose block-diagonal covariance matrix consists of blocks s2

i Ini
:

When there is just one unknown mean parameter (q¼1), DerSimonian and Laird (1986) suggested an estimation
method of y, which became immensely popular in biostatistics, especially in analysis of multicenter clinical trials. This
popularity is due mainly to the fact that this is a simple non-iterative procedure, which exhibits good properties relative to
the classical maximum likelihood estimator of y (e.g., Jackson et al., 2010), and admits generalizations to non-normal
models (Böhning et al., 2002). Our primary goal is to extend this method to a multiparameter situation in the linear model
context (2).

Random coefficient models are widely used in econometrics, biological, social and management studies, etc. (see Bliese
and Ployhart, 2002 for a survey). Our motivation is collaborative studies of meta-analysis, in particular arising in
metrology applications. As a first motivating example, we use a study by Paule and Mandel (1971) in which several
laboratories performed (via different techniques) measurements of silver vapor pressure P as a function of the absolute
temperature T. According to the heat law, the logarithm of pressure, Y ¼ logP, is a linear function of 1/T. After removal of
obvious outliers there are 298 different temperature points provided by p¼8 laboratories as given in Table 4, Paule and
Mandel (1971). We assume here that the error variance depends only on the laboratory (and not on the temperature
value). This study then fits the model (2) with q¼2, if the matrix Bi is formed by ones and the T-reciprocals employed by
i-th laboratory. The slope and intercept estimators derived by different methods are discussed in Section 6.1.

The collaborative studies in the area of acoustics, ultrasound and vibration present many important applications of
heterogeneous mixed effect models. A typical example is the accelerometers key comparisons study SIM-AUV.V-K1, Evans
et al. (2009) in which the sensitivity (electrical output per unit acceleration input) of three accelerometers was measured
as a function of frequency. A quadratic polynomial fit of the combined data of seven National Metrology Institutes for the
charge sensitivity as a function of frequency is discussed in Section 6.2. Another metrology oriented application of
heterogeneous growth curve models is in round-robin studies.

In the next section we reduce the parameter estimation problem to that of a common vector mean estimation and
review the weighted means statistics. Section 3 develops a multivariate version of the meta-analytic method by
DerSimonian and Laird. Estimation of the covariance matrix of this statistic is investigated in Section 4, and a feature of
best linear unbiased predictors of random effects is discussed in Section 5. The concluding Section 7 reports some Monte
Carlo simulation results.

2. Sufficient statistics and matrix weighted means

For fixed ‘i, i¼1,y,p, the statistics Xi ¼ ðB
T
i BiÞ

�1BT
i Yi (the ordinary least squares estimators) and

s2
i ¼ ðYi�BiXiÞ

T
ðYi�BiXiÞ

A.L. Rukhin / Journal of Statistical Planning and Inference 141 (2011) 3181–31923182



Author's personal copy

are sufficient in the model (2). IndeedX
i

s�2
i ðYi�Biy�Bi‘iÞ

T
ðYi�Biy�Bi‘iÞ ¼

X
i

s�2
i ðYi�BiXiÞ

T
ðYi�BiXiÞþ

X
i

s�2
i ðXi�y�Ai‘iÞ

T BT
i BiðXi�y�Ai‘iÞ:

While Xi has the normal distribution Nqðy,s2
i ðB

T
i BiÞ

�1
þAiXAT

i Þ, because of our assumptions, s2
i has a s2

i w
2-distribution with

ni ¼ ni�q degrees of freedom. Thus the problem reduces to estimation of the common vector mean y on the basis of p

independent normal vectors Xi with this mean and covariance matrices s2
i ðB

T
i BiÞ

�1
þAiXAT

i ,i¼ 1, . . . ,p: Notice that

s2
i ðB

T
i BiÞ

�1 can be estimated via available s2
i . Indeed one can use the matrix estimator Si of s2

i ðB
T
i BiÞ

�1,

S�1
i ¼ bs�2

i BT
i Bi

with bs2
i ¼ s2

i =ni.

Let Wi be non-negative definite symmetric matrix weights such that
Pp

i ¼ 1 Wi is a non-singular matrix. Consider the
class of weighted means eX of the form

eX ¼ Xp

i ¼ 1

Wi

 !�1 Xp

i ¼ 1

WiXi: ð3Þ

These statistics maintain the optimality property of the weighted mean as the best linear unbiased estimator of the
common mean y for the matrix-valued loss function corresponding to the covariance matrix (see for example, Hall, 2007).
Indeed, if independent Xi have a common mean y and known covariance matrices Si, then the best linear estimator of y has
form (3) with Wi ¼S�1

i . In this situation the covariance matrix, VarðeX Þ has the form

VarðeX Þ ¼ Xp

i ¼ 1

Wi

 !�1

: ð4Þ

The ‘‘averaging’’ property of eX is expressed by inequalities,

min
i

XiðjÞr eX jrmax
i

XiðjÞ, j¼ 1, . . . ,q:

Here eX ¼ ðeX 1, . . . ,eX qÞ
T , Xi ¼ ðXið1Þ, . . . ,XiðqÞÞ

T .
Estimators of the form (3) include the traditional estimator of the common vector mean suggested when q¼1 by

Graybill and Deal (1959),

eX 0 ¼
Xp

i ¼ 1

S�1
i

 !�1 Xp

i ¼ 1

S�1
i Xi, ð5Þ

as well as the vector sample mean,

X ¼
1

p

Xp

i ¼ 1

Xi:

Since Si ¼ ½s2
i ðB

T
i BiÞ

�1
þAiXAT

i �, it makes sense to employ matrix weights of the form

Wi ¼WiðVÞ ¼ ðSiþAiVAT
i Þ
�1, ð6Þ

for some non-negative definite r� r matrix V designed to estimate X.
An estimator eX of y from the class (3) has the following representation:

eX ¼Xp

i ¼ 1

oiXi, ð7Þ

where oi ¼ ð
Pp

k ¼ 1 WkÞ
�1Wi, i¼ 1, . . . ,p,

Pp
k ¼ 1 ok ¼ I. The matrices oi do not have to be symmetric or to commute, but

their eigenvalues must be positive.
There are general results on maximum likelihood and restricted maximum likelihood estimation in the variance

components setting and algorithms for their calculation (Pinheiro and Bates, 2000). However the following procedure,
which has the form (7) with data dependent weights, is tailored to our specific problem, and is much easier to evaluate. It
also escapes potential (false or singular) convergence problems.

3. DerSimonian–Laird procedure

If for the matrix weights Wi the symmetric matrix W ¼
P

iWi is non-singular, then with eX defined by (3),X
i

W1=2
i EðXi�

eX ÞðXi�
eX ÞT ðWT

i Þ
1=2
¼
Xp

i ¼ 1

W1=2
i ðI�W�1WiÞVarðXiÞðI�W�1WiÞ

T
ðWT

i Þ
1=2
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þ
Xp

i ¼ 1

W1=2
i W�1

X
k:kai

WkVarðXkÞW
T
k

 !
ðWT Þ

�1
ðWT

i Þ
1=2: ð8Þ

In particular, when Wi ¼ s�2
i BT

i Bi, VarðXiÞ ¼ s2
i ðB

T
i BiÞ

�1
þAiXAT

i ,X
i

s�2
i ðB

T
i BiÞ

1=2
ðI�s�2

i W�1BT
i BiÞAiXAT

i ðI�s
�2
i W�1BT

i BiÞ
T
ðBT

i BiÞ
1=2

þ
X

i

s�2
i ðB

T
i BiÞ

1=2W�1
X

k:kai

s�4
k BT

k BkAiXAT
i BT

k Bk

 !
W�1ðBT

i BiÞ
�1=2

¼
X

i

s�2
i ðB

T
i BiÞ

1=2EðXi�
eX ÞðXi�

eX ÞT ðBT
i BiÞ

1=2
�pIþ

X
i

s�2
i ðB

T
i BiÞ

1=2W�1ðBT
i BiÞ

1=2: ð9Þ

Provided that s2
i are replaced by bs2

i , the identity (9) can be used as an estimating equation for the parameters y and X
in the following way. Let eX 0 be the Graybill–Deal estimator (5). Put

C ¼
X

i

bs�2
i ðB

T
i BiÞ

1=2
ðXi�

eX 0ÞðXi�
eX 0Þ

T
ðBT

i BiÞ
1=2
�pIþ

X
i

bs�2
i ðB

T
i BiÞ

1=2
X

k

bs�2
k BT

k Bk

 !�1

ðBT
i BiÞ

1=2,

so that this symmetric matrix estimates the right-hand side of (9). Similarly the matrix-valued weights

eo i ¼
X

k

bs�2
k BT

k Bk

 !�1bs�2
i BT

i Bi ¼
Xp

k ¼ 1

S�1
k

 !�1

S�1
i

can be employed to approximate the left-hand side of (9) leading to the equation

X
i

bs�2
i ðB

T
i BiÞ

1=2
ðI� eoiÞAiVAT

i ðI� eoiÞ
T
ðBT

i BiÞ
1=2
þ
X

i

bs�2
i ðB

T
i BiÞ

1=2
X
j:jai

eo jAiVAT
i
eoT

j

0@ 1AðBT
i BiÞ

1=2
¼ C: ð10Þ

This equation allows one to determine a symmetric matrix solution V (an estimator of X). We put VDL ¼ Vþ to be the
positive part of V, i.e., let VDL have the same spectral decomposition as V, with eigenvalues being positive parts of V

eigenvalues. The matrix weights of the estimator eX DL then have the form (6),

Wi ¼ ðAiVDLAT
i þSiÞ

�1: ð11Þ

Eq. (10) extends the procedure suggested by DerSimonian and Laird (1986) when q¼1. Similar, moment-type
estimating equations are considered by Rukhin (2007) when Bi � B, BT B¼ I, and by Demidenko (2005, pp. 192, 288)
under condition that all s2

i are known. Notice that the quadratic form in the residuals Xi�
eX used here to obtain (10) is

different from the one employed by Demidenko (2005) whose moment-type estimator does not coincide with the
DerSimonian–Laird solution when q¼1.

To solve (10), denote by VecðFÞ the q2 � 1 vector formed by stacking the columns of the q� q matrix F under each other,
and by F � G the tensor (Kronecker) product of matrices F and G.

Then, according to Lemma 16.1.2 and Theorem 16.2.1 of Harville (1997),

VecðS�1=2
i ðI� eoiÞAiVAT

i ðI� eoiÞ
T S�1=2

i Þ ¼ ½S�1=2
i ðI� eoiÞAi � S�1=2

i ðI� eo iÞAi�VecðVÞ

and

Vec
X

i

S�1=2
i

X
jai

eo jAiVAT
i
eoT

j

0@ 1AS�1=2
i

0@ 1A¼X
i

X
jai

ðS�1=2
i

eo jAi � S�1=2
i

eojAiÞVecðVÞ:

Thus, with

R¼
X

i

S�1=2
i ðI� eoiÞAi � S�1=2

i ðI� eoiÞAiþ
X
iaj

S�1=2
i

eojAi � S�1=2
i

eo jAi, ð12Þ

the ‘‘vectorized’’ version of (10) can be written as

RVecðVÞ ¼ VecðCÞ:

Assuming that the matrix R is invertible, one obtains

VecðVÞ ¼ R�1VecðCÞ: ð13Þ

Eq. (10) can be solved by using matrices of smaller size. Denote by VechðFÞ the qðqþ1Þ=2� 1 vector formed by stacking
the subdiagonal elements of a q� q symmetric matrix F under each other, VechðFÞ ¼ ðf11,f21, . . . ,fq1, f22, . . . ,f2q, . . . ,fqqÞ

T . Then
for every symmetric matrix F, VecðFÞ ¼ GqVechðFÞ, with the duplicating matrix Gq of size q2 � qðqþ1Þ=2 (see Harville, 1997,
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Section 16.4). If Hq is a left inverse of Gq, (10) means that

HqRGqVechðVÞ ¼ VechðCÞ,

and Vech(V) can be obtained from this equation.
For example, when q¼2, the elements rij of the 4�4 matrix R are such that r12 ¼ r13, r21 ¼ r31, r24 ¼ r34, r42 ¼ r43,

r22 ¼ r33, r23 ¼ r32. Indeed R is a sum of tensor squares, so that

H2RG2 ¼

r11 2r12 r14

r21 r22þr23 r24

r41 2r42 r44

0B@
1CA,

and (13) reduces to three simultaneous linear equations.
If Ai � A and BT

i ¼ ðB, . . . ,BÞT with the same m� q design matrix B of rank q repeated ri times (ni¼rim), the formulas above
simplify dramatically. Indeed put Yi ¼ ðY

ðiÞ
1 , . . . ,Y ðiÞri

Þ
T , Y i ¼

Pri

k ¼ 1 Y ðiÞk =ri. Then BT
i Bi ¼ riB

T B, Xi ¼ ðB
T BÞ�1BT Y i, and

bs2
i ¼

Pri

k ¼ 1ðY
ðiÞ
k �BðBT BÞ�1BT Y iÞ

T
ðY ðiÞk �BðBT BÞ�1BT Y iÞ

ni�q
:

The Graybill–Deal weights are

wi ¼
X

k

rkbs2
k

 !�1
ribs2

i

, i¼ 1, . . . ,p,

so that

eX 0 ¼
X

i

wiXi ¼ ðB
T BÞ�1BT

X
i

wiY i:

Put eY 0 ¼
P

wiY i to get

C ¼ ðBT BÞ�1=2BT
X

i

ribs2
i

ðY i�
eY 0ÞðY i�

eY 0Þ
T BðBT BÞ�1=2

�ðp�1ÞI:

The solution V¼VDL in (10),

AVDLAT ¼
X

i

ribs2
i

�
X

i

ribs2
i

�
�1X

i

r2
ibs4
i

" !�1

�
X

i

ribs2
i

ðXi�
eX 0ÞðXi�

eX 0Þ
T
�ðp�1ÞBT B

" #
þ

0@

¼
X

i

ribs2
i

�
2

�
X

i

r2
ibs4
i

" !�1

�
X
io j

rirjbs2
i bs2

j

ðXi�XjÞðXi�XjÞ
T
�ðp�1Þ

X
i

ribs2
i

ðBT BÞ�1

24 35
þ

,

0@ ð14Þ

is the direct extension of DerSimonian and Laird (1986, p 183) formula. Notice that

X
io j

rirj

s2
i s

2
j

EðXi�XjÞðXi�XjÞ
T
¼
X
io j

rirj

s2
i s

2
j

2AYAT
þ

ri

s2
i

þ
rj

s2
j

 !
ðBT BÞ�1

" #
¼

X
i

ri

s2
i

 !2

�
r2

i

s4
i

24 35AYAT
þðp�1Þ

X
i

ri

s2
i

ðBT BÞ�1,

so that

AðEV�YÞAT

p�1
¼ E

P
iri

1

s2
i

�
1bs2

i

 !
P

i

ribs2
i

" #2

�
P

i

r2
ibs4
i

ðBT BÞ�1:

When p¼2,

AVDLAT ¼
1

2
ðBT BÞ�1=2

ðBT BÞ1=2
ðX1�X2ÞðX1�X2Þ

T
ðBT BÞ1=2

�
bs2

1

r1
þ
bs2

2

r2

 !
I

" #
þ

ðBT BÞ�1=2,

which shows that VDL¼0, if

ðX1�X2Þ
T BT BðX1�X2Þr

bs2
1

r1
þ
bs2

2

r2
:
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Otherwise the rank of VDL is one. More generally, if Q is the Moore–Penrose generalized inverse of the matrixP
ribs�2

i ðXi�
eX 0ÞðXi�

eX 0Þ
T , then the matrix in the right-hand side of (14) isX ribs2

i

ðBT BÞ1=2
ðXi�

eX 0Þ½ðp�1ÞI�Q �þ ðXi�
eX 0Þ

T
ðBT BÞ1=2:

It follows that the rank of VDL cannot exceed minðq,p�1Þ. When p4q, there are solutions VDL of full rank q.

Proposition 3.1. In the notation of Section2, the DerSimonian–Laird estimator eX DL of the parameter y is the weighted means

statistic (3) whose matrix weights are

Wi ¼ ½AiVDLAT
i þ bs2

i ðB
T
i BiÞ

�1
��1, i¼ 1, . . . ,p,

with the non-negative matrix VDL satisfying Eq. (10). If the matrix (12) is non-singular, VDL can be found from (13). In the

balanced case (Ai � A, BT
i ¼ ðB, . . . ,BÞT ,ni ¼ rim), the matrix AVDLAT is determined by (14).

In the next section we discuss a method to estimate the variance of a matrix weighted estimators.

4. Estimation of the covariance matrix: almost unbiased statistic

Here we suggest an estimator of the covariance matrix VarðeX Þ similar to the one advocated in a more general setting of
linear models (such as (1)) by Horn et al. (1975).

Let oi be fixed normalized matrix weights,
P

ioi ¼ I. To estimate the matrix VarðeX Þ ¼PioiVarðXiÞoT
i , for the (unbiased)

weighted means statistic eX , one can use the almost unbiased estimate of VarðXiÞ. For a fixed i¼ 1, . . . ,p,

VarðXi�
eX Þ ¼ ðI�oiÞVarðXiÞðI�oiÞ

T
þ
X
kai

okVarðXkÞoT
k ¼

X
k

okVarðXkÞoT
kþVarðXiÞ�oiVarðXiÞ�VarðXiÞoT

i :

When oi ¼ ½
P

kVarðXkÞ
�1
��1VarðXiÞ

�1, the first term in the right-hand side simplifies to

X
k

okVarðXkÞoT
k ¼

X
k

VarðXkÞ
�1

" #�1

¼
1

2
oiVarðXiÞþ

1

2
VarðXiÞoT

i ,

which holds for all i¼1,y,p. By substituting this expression in the previous formula, one obtains

VarðXi�
eX Þ ¼ VarðXiÞ�

1
2½oiVarðXiÞþVarðXiÞoT

i �:

Horn et al. (1975, p. 382) (see also Mandel, 1964) argue that by continuity if the weights are only approximately correct,
this is an approximate identity. Thus, an almost unbiased estimator Vi of VarðXiÞ is derived by solving the following
equation:

ðXi�
eX ÞðXi�

eX ÞT ¼ Vi�
1
2ðoiViþVioT

i Þ:

To find this solution, let

VechðdVarðXiÞÞ ¼ ½HqfðI�1
2 oiÞ � ðI�

1
2 oiÞ�

1
4oi �oigGq�

�1 � VechððXi�
eX ÞðXi�

eX ÞT Þ: ð15Þ

As in Section 3, taking the positive part of a non-positively defined symmetric matrix, makes sense here too. Actually, as in
our situation, VarðXiÞZs2

i ðB
T
i BiÞ

�1, and an unbiased estimate bs2
i of s2

i is available, it seems reasonable to use as the final
estimate of VarðXiÞ,dVarðXiÞ ¼max½Vi,bs2

i ðB
T
i BiÞ

�1
� ¼ bs2

i ðB
T
i BiÞ

�1
þ½Vi�bs2

i ðB
T
i BiÞ

�1
�þ

with Vi determined from (15) (cf. Rukhin, 2007).
An alternative form of the estimator in (15) comes from the formula

Vi ¼ ðI�
1
2 oiÞ

�1
ðXi�

eX ÞðXi�
eX ÞT ðI�1

2 o
T
i Þ
�1
þ1

4 ðI�
1
2 oiÞ

�1oiVioT
i ðI�

1
2o

T
i Þ
�1,

leading to the iteration scheme

V ðnþ1Þ
i ¼ ðI�1

2 oiÞ
�1
ðXi�

eX ÞðXi�
eX ÞT ðI�1

2 o
T
i Þ
�1
þ1

4 ðI�
1
2 oiÞ

�1oimax½V ðnÞi ,bs2
i ðB

T
i BiÞ

�1
�oT

i ðI�
1
2o

T
i Þ
�1,

n¼ 0,1, . . . ,V ð0Þi ¼ 0, which typically converges very fast.
The resulting formula for the VarðeX Þ estimator has the formdVarðeX Þ ¼X

i

oi
dVarðXiÞoT

i , ð16Þ

which can be recovered from its vectorized version via (15),

VechðdVarðeX ÞÞ ¼X
i

Hqðoi �oiÞGq � Hq I�
oi

2

� �
� I�

oi

2

� �
�
oi �oi

4

� �
Gq

� ��1

VechððXi�
eX ÞðXi�

eX ÞT Þ: ð17Þ
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The statistic (16) gives an estimate of the covariance matrix of any weighted means statistic for fixed weights oi. This
estimate is uniquely defined when I�2�1oi � I�2�1I�oi is invertible (which holds provided that I�oi is non-singular.)

Proposition 4.1. The almost unbiased estimator (16) of VarðeX Þ satisfies (15), and its vectorized version is given by (17).

If oi ¼wiI with positive scalar weights wi,
P

wk ¼ 1, then the formula for dVarðeX Þ simplifies

dVarðeX Þ ¼X
i

w2
i max

1

1�wi
ðXi�

eX ÞðXi�
eX ÞT ,bs2

i ðB
T
i BiÞ

�1

� �
:

For example if wi � p�1, i.e. eX ¼ X is the sample mean, gVarðeX Þ ¼ ½pðp�1Þ��1P
iðXi�X ÞðXi�X ÞT is the classical sample

covariance matrix.
An alternative estimator (4) of VarðeX Þ for a weighted means statistic (3) is commonly used, in particular when eX is the

maximum likelihood estimator or eX ¼ eX 0. Simulations reported in Section 7 indicate that (16) is a better estimate of the
covariance matrix than (4) in terms of the coverage probability of resulting confidence regions.

An approximate ð1�aÞ confidence ellipsoid for y has the form

ðeX�yÞT ½dVarðeX Þ��1ðeX�yÞrqFq,p�qðaÞ,

where Fq,p�qðaÞ denotes the critical point of F-distribution with indicated degrees of freedom. This suggestion also parallels
the case q¼1 (Follmann and Proshan, 1999).

A confidence interval for a linear function of y, say, aTy, follows as dVarðaT eX Þ ¼ aTdVarðeX Þa. An approximate ð1�aÞ
confidence interval has the form

aT eX 7ta=2ðp�qÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aTdVarðeX Þaq

: ð18Þ

Simultaneous confidence intervals for several linear functions can be derived similarly. For example, when a¼ XT b, these
simultaneous intervals are

aT eX 7
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qFq,p�qðaÞaTdVarðeX Þaq

:

5. Estimation of random effects

There are situations when the random effects bi are of interest (see Robinson, 1991; Beran, 1995). In animal breeding
they are used to estimate generic merits. In metrology applications the random effects can be interpreted as the deviations
of individual lab measurements from the consensus mean y, which are to be estimated according to the protocol in many
collaborative studies.

The formulas for the best linear unbiased predictors (BLUP) bbi are well known. In the model (1) they are found as
minimizers in

min
y,b1 ,...,bp

X
i

s�2
i ðYi�Biy�CibiÞ

T
ðYi�Biy�CibiÞþ

X
i

bT
i X
�1bi

" #

¼ min
y,b1 ,...,bp ,c

X
i

bT
i X
�1biþ

X
i

s�2
i ðYi�Biy�Bic�CibiÞ

T
ðYi�Biy�Bic�CibiÞ

" #

¼ min
y,b1 ,...,bp ,

c:Bic ¼ Cidi ,i ¼ 1,...,p

X
i

bT
i X
�1biþ

X
i

s�2
i ðYi�Biy�CiðbiþdiÞÞ

T
ðYi�Biy�CiðbiþdiÞÞ

" #

¼ min
y,b1 ,...,bp

X
i

s�2
i ðYi�Biy�CibiÞ

T
ðYi�Biy�CibiÞþ min

di :Cidi ¼ Bic,i ¼ 1,...,p

X
i

ðbiþdiÞ
TX�1

ðbiþdiÞ

" #
:

If bi ¼
bbi, the last minimum is attained when di¼0. If for i¼1,y,p, Cidi ¼ Bic, then one must haveX

i

dT
i X
�1bbi ¼ 0:

Therefore BLUP of some linear combinations of random effects are identically equal to zero. This phenomenon is discussed
by Searle (1997) who uses the explicit formula for the BLUP. If Bi ¼ CiAi, then one can put di ¼ Aic, so that in the traditional
growth curve models there are always non-trivial linear combinations of random effects whose best linear predictor is
zero. Our model, in which Ci ¼ BiAi, leads to a smaller dimension of the subspace formed by such combinations.

6. Examples

In a typical application of heterogeneous growth curve models in meta-analysis there are p studies (laboratories,
medical centers, etc.). The j-th study makes its measurements at nj settings (frequencies, temperatures, dose or treatment
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levels, etc.). With the matrix Bj formed by q columns, each representing the values of the corresponding regression
function at given settings, one can employ model (2) for the nj-dimensional vector Yj which is formed by the j-th study
data and whose independent components are assumed to have the same variance. With the grouped data set, data.dat,
formed by the columns: lab, setting, response, the following R-program evaluates the maximum likelihood estimates and
their uncertainties for a linear regression model (q¼2).

require(nlme)

data¼read.table(‘‘data.dat’’, header¼TRUE)

GD o� groupedData(response settingjlab, data)

mlest o� lme(response setting, GD, random¼(1þsetting)jlab,

weights¼varIdent(form¼ 1jlab), control¼ lmeControl(returnObject¼TRUE))

summary(mlest)

There are situations when lab j makes rj runs of measurements, with k-th run made at mðjÞk settings. Then the total
number of observations for j-th study is nj ¼mðjÞ1 þ � � � þmðjÞrj

, and the grouped data set is formed by four columns: lab,
setting, run, response.

This generic setup is illustrated by the following real life examples.

6.1. Silver vapor pressure study

In the silver vapor pressure study (Paule and Mandel, 1971) several laboratories performed via different technique
measurements of silver vapor pressure as a function of the absolute temperature T in the (individual for each laboratory)
range from 800 to 1600 K. After removal of dubious results of one laboratory, there are a total of 298 different temperature
points Tij, i¼ 1, . . . ,8, j¼ 1, . . . ,ni,n1þ � � � þn8 ¼ 298 given in Table 4 in Paule and Mandel (1971) which employs 1/T104 in
K�1 units.

As the logarithm of pressure is supposed to be a linear function of 1/T, the design matrix Bi is formed by pairs ð1,1=TijÞ,
j¼ 1, . . . ,ni. A natural assumption is that the error variance depends only on the individual laboratory (and not on the
temperature value). This study then fits the model (2) with p¼8 and q¼2. Fig. 1 displays the data set.
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Fig. 1. Silver vapor pressure data.
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Here are the estimates of the intercept y0 and the slope y1 with the (restricted) maximum likelihood estimator bX found
from the R-language function lme,

eX eX 0 X bX
y0 13:46 15:68 15:02 14:07

y1 �3:21 �3:42 �3:43 �3:28

:

Numerical evaluation of bX would not be possible without the removal of the mentioned outliers, as with the full data, an
error message in lme function indicated false convergence.

The estimated between lab variance X is

2:00 �0:26

�0:26 0:03

	 

,

the lme estimator is

0:79 �0:07

�0:07 0:01

	 

:

Quantification of heterogeneity effect in interlaboratory studies is quite important. Paule and Mandel (1971) (who were
unaware of the size of X) write ‘‘..a typical laboratory’s ability to reproduce its own vapor pressure measurements exceeds
its ability to reproduce other laboratories’ measurements’’.

The almost unbiased estimator (16) of VarðeX Þ of eX (1/T10 in K�1 units) is

1:43 �0:19

�0:19 0:02

	 

:

The covariance matrix of bx of the restricted maximum likelihood estimator reported by the lme procedure is much smaller,

0:11 �0:01

�0:01 0:00

	 

:

The formula (18) leads to an approximate confidence ellipsoid for y based on a F-distribution with q¼2 and p�q¼6
degrees of freedom. It is portrayed in Fig. 2. This ellipsoid provides useful information about the joint nature of the slope
and the intercept which was not available in the original study.

6.2. SIM-AUV.V-K1 key comparison study

The goal of the accelerometers study SIM.AUV.V-K1, Evans et al. (2009) was to compare the results of measurements of
sensitivity of uniaxial linear accelerometers over a range of frequencies using sinusoidal input signals. The sensitivity of
each accelerometer was determined in terms of electrical charge output as a function of acceleration input at each
frequency.

We consider determining the growth curve model for charge sensitivity as a function of the frequency for single-ended
accelerometers. Only the results for the frequencies 40, 50, 63, 80, 100, 125, 160, 200, 250, 315, 400, 500, 630 and 800 Hz
and single-ended accelerometers are considered here. In this example we took q¼3 with y corresponding to the
coefficients of a quadratic function based on data from p¼7 National Metrology Institutes (PTB, BNM-CESTA, CSIRO-NML,

12.7475 12.748 12.7485 12.749 12.7495 12.75

−3.1212

−3.1211

−3.1211

−3.121

−3.121

−3.1209

intercept

sl
op

e

Fig. 2. Confidence ellipsoid for the slope and the intercept in the silver vapor pressure study.
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CMI, CENAM, KRISS, NMI-VSL) which used different methods. The quadratic fit is commonly used in piezoelectric
accelerometer studies (Serridge and Licht, 1987).

The model (2) was used with the matrices Bi ¼ ðB, . . . ,BÞT , where the same 14�2 design B formed by the coefficients of
functions 1,f ,f 2 at the common frequencies f above is repeated ri times, BT

i Bi ¼ riB
T B (r1 ¼ 9,ri ¼ 5,i¼ 2, . . . ,7.)

Here are the estimates of the parameters in =pC=ðm=s2Þ units,eX eX 0 X

y0 0:128778128169481 0:128980657524115 0:128951225634616

y1 0:000000550710309 0:000000229182584 0:000000157035304

y2 0:000000000719480 0:000000000080217 0:000000000310173

:

The almost unbiased estimator (16) of VarðeX Þ of eX is

0:559466287614520 �0:001042337415196 �0:000001435646429

�0:001042337415196 0:000002112899641 0:000000002533601

�0:000001435646429 0:000000002533601 0:000000000003997

0B@
1CA,

while the estimated within lab variance X is

0:356768587940128 �0:000737691375583 0:000000759918668

�0:000737691375583 0:000004532689216 �0:000000004683996

0:000000759918668 �0:000000004683996 0:000000000005507

0B@
1CA:

The units for these matrices are 10�7=pC=ðm=s2Þ; gVarðeX Þ mentioned in the end of Section 4 is of an order smaller.
Determination of the (restricted) maximum likelihood estimators is prohibited by iteration limit reached without
convergence. The simultaneous confidence bands are portrayed in Fig. 3. It is believed that this study provided ‘‘robust
reference values’’ for charge sensitivity. Moreover, behavior of accelerometer deviations as modeled in (2) for high
frequencies has assisted the laboratories in investigating and improving their calibration facilities.

7. Simulation results

The results of a Monte Carlo simulation study for p¼7, y¼ ð0,1ÞT are reported here for a linear regression model with
the same 5�2 design matrix B whose first column is formed by ones and the second is (2, 2.5, 3, 5, 7.5). The number of
repeats ri is a random permutation of integers from 1 to 7, so that the sample sizes are ni¼7ri. The covariance matrix of the
between studies effect was chosen to be X¼ ½0:5,0:05;0:05,0:015�. The error variances s2

i were taken to be different
multiples r of w2-distribution with 2 degrees of freedom. The sample variances s2

i were realizations of multiples of
w2-random variables, s2

i � s
2
i w

2ðni�2Þ=ðni�2Þ:
The studied estimators are eX , eX 0, and X . Inclusion of bX turned out to be prohibitively difficult in view of frequent false

or singular convergence problem. These problems are due to possible multimodality of the (restricted) likelihood function
or to ill-conditioned covariance matrices. Out of considered procedures, eX or X did not experience serious computational
difficulties although occasionally the matrix R in (12) happened to be almost singular in which case its Moore–Penrose
pseudoinverse was used in (13). There was numerical instability in calculation of eX 0 for very small bs2

i , and this is one of the
reasons why the Graybill–Deal estimator eX 0 is not recommended.

Fig. 4 portrays the coverage probability of the confidence ellipsoids with a nominal confidence coefficient of 95% based
on eX , eX 0, and X . For the estimator eX we used two different confidence regions, one based on (16), another on (4). The

0 100 200 300 400 500 600 700 800
0.128

0.1285

0.129

0.1295

0.13

0.1305

0.131

Fig. 3. The SIM.AUV.V-K1 data set and the estimated common curve along with 95% confidence band.
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confidence region based on eX exhibits the best performance. The sample mean provides a good alternative, but eX based on
(4), and eX 0 are unsatisfactory.

Fig. 5 displays the mean squared errors of these estimators (i.e., the sum of squares of coordinatewise errors). This
characteristic is quite close for eX and X , but the Graybill–Deal estimator eX 0 performs very poorly. A similar pattern was
observed in other simulations for different error variance distributions and design matrices.
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