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Abstract

Rust and Thijsse have previously shown that changes in global annual average temperature anomalies T(ti) compiled by the
Climatic Research Unit vary linearly with atmospheric CO2 concentrations c(ti). The c(ti) can be related to man-made CO2 emissions
F(ti) by a linear regression model whose solution vector gives the unknown retention fractions γ(ti) of the F(ti) in the atmosphere.
Gaps in the c(ti) record make the system underdetermined, but the constraints 0 ≤ γ(ti) ≤ 1 make estimation tractable. The γ(ti) are
estimated by two methods: (1) assuming a finite harmonic expansion for γ(t), and (2) using a constrained least squares algorithm
to compute average values of γ(t) on suitably chosen time subintervals. The final result is an estimate of γ(t) with enough accuracy
to establish the connection between emissions from fossil fuel use and land use changes and increases in global average annual
temperature anomalies.
Published by Elsevier B.V. on behalf of IMACS.
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1. Atmospheric CO2 and global temperatures

Throughout this paper the terms warming and global warming will be used to refer to the well documented [8]
increases in global average annual temperature anomalies from 1850 to the present. Uncertainties in global climate
models are often used to cast doubt on the reality of global warming, but complicated climate models are not needed
to establish that reality. Rust and Thijsse [14,16] have used the measurements of global average temperatures and of
atmospheric carbon dioxide concentrations to confirm that the warming is real and that it is principally caused by the
increasing CO2 concentrations.

The plot in Fig. 1 gives the record of atmospheric CO2 concentrations obtained by combining atmospheric measure-
ments (1958–2004) at the South Pole [9] with reconstructions (1647–1978) from Antarctic ice cores [4,11]. Although
the latter display larger random variations than the former, the two records are consistent in the years where they
overlap. The horizontal dashed line at c0 = 277.04 ppmv is the preindustrial CO2 concentration estimated by averaging

the ice-core measurements for 1647–1764. The solid curve is a cubic regression spline fit obtained from Thijsse’s
spline2 program [16] which chooses the number and locations of the knots to give an optimal separation of signal from
noise. It will be used in the following as the functional representation c(t) of the concentration measurements.
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Fig. 1. Atmospheric CO2 concentrations measured in units of parts per million by volume.

The time series data plotted in Fig. 2 are the Climatic Research Unit’s record [8] of annual average global sur-
ace temperature anomalies. Rust and Thijsse assumed [14] that changes in the temperature anomaly were linearly
roportional to changes in the atmospheric concentration of CO2, i.e., that

dT

dt
= η

dc

dt
, (1)

here η is a constant to be determined by fitting. Choosing the time scale so that t = 0 at epoch 1856.0, and integrating
he above equation give

T (t) = T0 + η [c(t) − c0] , (2)
here c0 = 277.04 is the preindustrial concentration illustrated in Fig. 1 and T0 is the corresponding temperature
nomaly (not the temperature anomaly at t = 0) which is also estimated by fitting. Fitting the above expression to the
easured data in Fig. 2 would give a curve very similar to the dashed curve that is plotted there, but that curve was

ig. 2. Annual global average temperature anomalies. The anomaly for any given year was obtained by subtracting a reference temperature from
he average temperature for that year. The reference temperature used here was the average temperature for the years 1961–1990. The solid curve
s the fit of the model (3) to the data, and the dashed curve is a plot of T̂0 + η̂[c(t) − 277.04] where T̂0 and η̂ are the parameter estimates obtained
rom that fit. The angular frequency ω in the legend was computed from the estimate of the period τ in (3).
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Fig. 3. Annual man-made carbon emissions to the atmosphere. The flux units are megatons of carbon per year. The spline fit in the upper plot, which
was gotten from Thijsse’s spline2 [16], will be used in the following as a functional representation of F(t).

actually obtained by fitting the model

T (t) = T0 + η[c(t) − 277.04] + A sin

[
2π

τ
(t + φ)

]
, (3)

with free parameters T0, η, A, τ, and φ. The sinusoid in this model represents the ≈ 70 year oscillation discovered in
1994 by Schlesinger and Ramankutty [15]. Statistical tests leave no doubt about the reality of this oscillation, but its
cause is unknown.

The solid curve in Fig. 2 is the nonlinear least squares fit of the model (3) to the data. The parameter estimates
and their standard uncertainties, which were obtained from the usual quadratic approximation [1] to the least squares
response function in the neighborhood of the estimate vector, were

T̂0 = (−0.507 ± .016) (◦C),

η̂ = (0.01039 ± .00042) (◦C/ppmv),

Â = (0.099 ± .012) (◦C),

τ̂ = (71.5 ± 2.2) (year),

φ̂ = (−1.0 ± 1.4) (year),

(4)

and the sum of squared residuals and coefficient of determination were

SSR = 1.2674 and R2 = 0.8519,

so the model explains ≈85% of the variance in the data. The sinusoid accounts for ≈8% of that variance, and the
baseline T̂0 + η̂[c(t) − 277.04] accounts for ≈77%. The baseline indicates that: (1) there is a linear relationship
between global warming and increasing atmospheric CO2, (2) the total warming since 1856 has been ≈0.9 ◦C, and
(3) that the warming is accelerating.

2. Man-made carbon emissions to the atmosphere

Annual total man-made carbon emissions to the atmosphere, for the years 1850–2000, are shown in the upper curve
in Fig. 3. The total F(t) is the sum of annual fossil fuel emissions P(t) [10] and emissions L(t) due to changes in land
use [7]. In order to compare these emissions with the atmospheric concentrations plotted in Fig. 1, it is necessary to

use the unit conversion relationship 1 ppmv = 2130 Mt C [3, p. 467]. Knowing that, the people at the Carbon Dioxide
Information Analysis Center were able to show [2] that in the period 1850–2000, the total man-made CO2 emissions to
the atmosphere were 44,150 Mt C and that the total increase in atmospheric CO2 was 17,400 Mt C. Thus, on average,
approximately 39 % of the emissions in any given year remains in the atmosphere. Actually, the fraction remaining in
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he atmosphere is not constant over time. Since t = 0 at epoch 1856.0, then t = − 6 at epoch 1850.0, and for any later
ime t, the atmospheric concentration would be

c(t) = c1850 +
∫ t

−6
γ(τ)F (τ) dτ, (5)

here γ(τ) is the unknown fraction remaining in the atmosphere. It is important to note that γ(τ) must satisfy the
onstraints

0 ≤ γ(τ) ≤ 1, for all τ satisfying 1850 ≤ 1856 + τ ≤ 2000. (6)

ince the eruption of Mt. Pinatubo on June 15, 1991 had a discernible effect on c(t) for the two succeeding years, a
ore precise model is

c(t) = c1850 +
∫ t

−6
γ(τ)F (τ) dτ + δS(t), (7)

here S(t) is the declining ramp function

S(t) =

⎧⎪⎪⎨
⎪⎪⎩

0, 1856 + t < 1991.54,

−1

2
(1856 + t − 1991.54), 1991.54 ≤ 1856 + t ≤ 1993.54,

−1, 1993.54 < 1856 + t,

(8)

nd δ is an unknown amplitude constant to be determined by fitting. The ramp function declines because aerosols injected
nto the atmosphere by the eruption diffused the incoming sunlight in a way which increased the photosynthetic uptake
f CO2 by the biosphere [6].

Although the unknown constants c1850 and δ complicate the problem, Eq. (7) is basically a first kind integral equation.
stimating the solution is difficult because that solution is exquisitely sensitive to errors in the measured function c(t).
here are two approaches to estimating γ(τ): (1) estimating the parameters in a finite parametric approximation of
(τ) and (2) solving the inverse problem directly.

. Finite harmonic approximations

Parametric approximations usually assume that γ(τ) can be approximated by a finite linear combination of (usually
rthogonal) basis functions and seeks to estimate the coefficients in that combination by fitting it to the measurements
(ti). For the present problem, it is natural to define angular frequencies

ωk ≡ 2πk

150
, k = 1, 2, . . . , nh, (9)

nd assume a harmonic expansion

γ(t) = A0 +
nh∑

k=1

[Ak cos(ωkt) + Bk sin(ωkt)], 1850 ≤ t ≤ 2000, (10)

ith unknown parameters A0, Ak, Bk. Substituting this expansion into (7) and discretizing the relation to the years ti in
hich actual observations c(ti) are available gives

c(ti) = c1850 + A0

∫ ti

−6
F (τ) dτ +

nh∑
k=1

Ak

∫ ti

−6
cos(ωkτ)F (τ), dτ

+
nh∑

k=1

Bk

∫ ti

−6
sin(ωkτ)F (τ) dτ + δS(ti), i = 1, 2, . . . , 119, (11)
here the indicated integrals can be evaluated by using the spline fit in the top plot of Fig. 3 to represent F(τ). Clearly
h must be chosen so that 2nh + 3 is less than the number of observed c(ti). Such a choice leads to a linear least squares
roblem which can be solved to get estimates for c0, δ, and the Ak and Bk. Choosing nh too large produces implausibly
scillating estimates for γ(t) which violate the constraints 0 ≤ γ(t) ≤ 1.
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Table 1
F-test results for the fits in Fig. 4.

nh H0 SSR u F0.95 Action

0 291.906
1 A1 = 0, B1 = 0 124.381 76.7715 3.0759 Reject H0

2 A2 = 0, B2 = 0 107.959 8.5185 3.0773 Reject H0

3 A3 = 0, B3 = 0 98.506 5.2780 3.0788 Reject H0
4 A4 = 0, B4 = 0 93.366 2.9730 3.0804 Accept H0

The appropriate value for nh was chosen by successively fitting Eq. (11) with nh = 0, 1, 2, . . . and, for each fit after
the first, checking whether or not the two new parameters produced a statistically significant reduction in the sum of
squared residuals. The results from this procedure are summarized in Table 1 where the second column gives the null
hypothesis H0 that is tested at each step of the procedure. The third column gives the sum of squared residuals SSR
for the fit and the fourth column gives the statistic

u = (SSR)H − (SSR)F
(SSR)F

· m − n

k
,

where (SSR)F is the SSR for the full model (on the same line in the table) and (SSR)H is the SSR for the hypothesis
model (on the previous line in the table). The value m = 119 is the number of measured [ti, c(ti)] data points, the value
n = 2nh + 3 is the number of free parameters in the full model, and the value k = 2 is the number of degrees of freedom
associated with H0. The fifth column of the table gives the 0.95 percentile of the F(k, m − n) probability distribution.
The F-test compares this value with the u-statistic from column 4 and rejects H0 so long as u > F0.95. The table clearly
indicates that nh = 3 is the best choice for the number of harmonics in the model.

The fits for nh = 0, 1, 2, and 3 are plotted in Fig. 4 and the corresponding estimates of the function γ(t) are plotted
in Fig. 5 using the same color coding. For the best fit (nh = 3) the parameter estimates, and their standard uncertainties
[5, Section 6.5] were

ĉ1850 = 285.69 ± .40 Â0 = 0.4369 ± .0094

Â1 = 0.062 ± .019 B̂1 = 0.116 ± .013

Â2 = −0.000086 ± .019257 B̂2 = −0.0029 ± .0225 (12)
Â3 = −0.060 ± .019 B̂3 = 0.018 ± .018

δ̂ = −1.59 ± .96.
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Fig. 4. Harmonic approximation fits to the atmospheric CO2 concentrations for the period 1850–1960. After 1960 the extremely precise atmospheric
measurements from the South Pole dominate the fits, causing them all to merge so closely that it is difficult to distinguish the separate curves.
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Fig. 5. Fraction of CO2 emissions remaining in the atmosphere.

ith SSR = 98.506, the coefficient of determination was R2 = 0.9979 which means that the fit explains 99.79% of the
ariance in the data.

. The inverse problem

Since there are 83 independent measurements of c(t) in the interval 1850 ≤ t ≤ 2000, Eq. (7) can be replaced by

c(ti) = c1850 +
∫ ti

1850
γ(τ)F (τ) dτ + δS(ti) + εi, i = 1, 2, . . . , 83, (13)

here the εi are the measurement errors which are assumed to be independently normally distributed with means zero
nd a diagonal covariance matrix Σ2. In choosing the 83 measurements, we discarded the ice core reconstructions in
he time interval overlapping the atmospheric measurements because the latter are much more accurate than the former.
o determine Σ2 we assumed constant variance for each of the two subsets of data and estimated those two variances
rom the deviations of the data from two separately fitted optimal smoothing splines obtained from spline2 [16]. Those
ts and the calculated standard uncertainties,

σi = 1.0888, i = 1, 2, . . . , 40 and σi = 0.2552, i = 41, 42, . . . , 83,

re plotted in Fig. 6.
For the inverse problem, the integrals in (13) are approximated with quadrature sums. Choosing �τ = 1, replacing

he continuous variable τ with a mesh

τj = 1850.0 + (j − 1)�τ, j = 1, 2, . . . , 151,

nd using a rectangular quadrature rule gives
c(ti) = c1850 +
151∑
j=1

γ(τj)F (ti, τj)�τ + δS(ti) + εi, i = 1, 2, . . . , 83, (14)
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Fig. 6. Atmospheric CO2 concentrations with their standard uncertainties. The dashed curve is a plot of the two spline2 fits.

where

F (ti, τj) =
{

F (τj), τj ≤ ti,

0, τj > ti, j = 1, 2, . . . , 151, i = 1, 2, . . . , 83.
(15)

Writing Eq. (14) in vector-matrix notation gives

c = [1, F, s]

⎡
⎢⎣

c1850

γ

δ

⎤
⎥⎦+ ε, ε∼N(0, �2), (16)

where c is an order-83 column vector of concentration measurements, 1 is a vector of ones, F is the 83 × 151 matrix
defined by (15), s is a vector whose elements are defined by the ramp function (8), γ is an unknown, order-151 column
vector whose elements define a discrete approximation to the function γ(t), and ε is a vector of measurement errors.
This is a highly underdetermined linear regression model, but estimation is possible because 0 ≤ γ ≤ 1, and it is easy
to see from the concentration data that 280 ≤ c1850 ≤ 290 and 0 ≤ δ ≤ 3. These box constraints can be incorporated into
the model by a regularization method [13], to be described below, which biases the estimate to lie close to the center
of the box.

To simplify the notation, premultiply (16) by Σ−1, and define

b ≡ �−1c, A ≡ �−1[1, F, s], x ≡

⎡
⎢⎣

c1850

γ

δ

⎤
⎥⎦ , η ≡ �−1ε, (17)

to get

b = Ax + η, η∼N(0, I83), (18)

where I83 is the order-83 identity matrix. And defining the order-153 vectors

p ≡ (280, 0, 0, . . . , 0, 0)T , (19)

q ≡ (290, 1, 1, . . . , 1, 3)T , (20)
allows the box constraints to be written

Pr{p ≤ x ≤ q} = 1.0. (21)
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method for incorporating this kind of a priori information into the estimate for x was developed many years ago by
ierce and Rust [13]. That method, which was named FERDIT, replaces (18) with a regularized model(

b

λQ−1d

)
=
(

A

λQ−1

)
x(λ) +

(
η

λμ

)
,

(
η

λμ

)
∼N

[(
0

0

)
,

(
I83 O

O I153

)]
, (22)

here

d ≡ (285, 0.5, 0.5, . . . , 0.5, 1.5)T (23)

s the center of the box,

Q ≡ diag(5.0, 0.5, 0.5, . . . , 0.5, 1.5) (24)

as diagonal elements equal to the half widths of the sides of the box, and λ is a regularization parameter which must
e chosen from the interval 0 ≤ λ < ∞. Having made that choice, it is easy to see that the regularized estimate is

x̃(λ) = [AT A + λ2Q−2]
−1

[AT b + λ2Q−2d]. (25)

or any λ, this is a biased estimate, biased toward the center d of the bounding box, with the strength of the bias
etermined by the value of λ. As with most regularization methods, a wide range of λ values give similar good results,
ut it is possible to choose an optimal λ by a method to be described in the following.

The FERDIT method was originally designed to compute suboptimal, but conservative, confidence intervals for
ach element of x. Suppose that w is a given n-vector and the goal is to compute a confidence interval for φ = wT x

hich holds with probability α. Classical linear regression theory solves this problem by first computing a least squares
stimate

x̂ = arg min{(b − Ax)T (b − Ax)}, r0 ≡ min
x

{(b − Ax)T (b − Ax)}, (26)

nd then choosing the α level percentile κ from the standard normal distribution and defining

φ̂lo = min
x

{wT x|(b − Ax)T (b − Ax) ≤ r0 + κ2}, (27)

φ̂up = max
x

{wT x|(b − Ax)T (b − Ax) ≤ r0 + κ2}, (28)

o be the extreme values of wT x when x is constrained to lie inside or on the surface of the confidence ellipsoid

{x|(b − Ax)T (b − Ax) ≤ r0 + κ2}. (29)

ut since the regression model (18) is underdetermined, that ellipsoid is open-ended in most directions and the intervals
btained for most w vectors would be [φ̂lo, φ̂

up] = [−∞, +∞]. To get nontrivial confidence bounds, it is necessary
o impose the constraints (21), defining

φ̃lo = min
x

{wT x|(b − Ax)T (b − Ax) ≤ r0 + κ2, p ≤ x ≤ q}, (30)

φ̃up = max
x

{wT x|(b − Ax)T (b − Ax) ≤ r0 + κ2, p ≤ x ≤ q}. (31)

hese are very difficult numerical problems which the FERDIT algorithm avoids by extending the classical analysis
o the regularized model (22) to get suboptimal approximations to the above bounds. More precisely, it works by
uccessively choosing the vectors wi to be the columns ei of the matrix I153 and computing, for each separate xi =
T
i x, the value λ which produces the smallest approximate confidence interval. This is done by noting that every
in the interval [0, ∞ ) corresponds to a distinct, unique convex combination of the confidence ellipsoid (29) and

he circumscribing ellipsoid for the a priori constraint region in (21). Each such convex combination contains the
ntersection of the two parent ellipsoids, so it is also an α-level confidence ellipsoid for the estimate, and hence can

e used to compute α-level confidence intervals by the usual classical method. The FERDIT method seeks, for each
eparate window vector wi = ei, the value of λ which gives the tightest possible confidence interval for xi = wT

i x. It
s not possible to write closed form expressions for the optimal λs, but their values can be easily and stably computed
y the secant method. The results obtained from applying these procedures to the present problem are plotted as the
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Fig. 7. Inverse problem estimates for the vector γ . The lowest and highest solid curves are the BRAKET-LS 95% confidence bounds (κ = 1.960),
and the dashed curve is the FERDIT estimate (25). The smooth solid curve is the nh = 3 harmonic approximation estimate for γ(t), i.e., the magenta
curve in Fig. 5.
Fig. 8. BRAKET-LS bounds and FERDIT estimates for 6 nonoverlapping 25-year averages of γ(t). The upper and lower piecewise constant curves
are the 95% confidence bounds (κ = 1.960), and the dashed piecewise constant curve is the estimate. The smooth curve is the nh = 3 forward problem
estimate for γ(t).

dashed curve in Fig. 7, where the indicated upper and lower bounds are not the FERDIT approximations, but rather
are the optimal bounds computed directly from Eqs. (30) and (31) using O’Leary’s BRAKET-LS algorithm [12]. Note
that the O’Leary algorithm was not able to really improve on the initial a priori bounds until the beginning, in 1958, of
the yearly atmospheric measurements at the South Pole. Before that, the uncertainties in the concentration data were
about 4 times larger and there were measured data for only 40 of the 108 years.

Better results can be gotten from the less ambitious problems obtained by using vectors wk designed to give
estimates of the average values of γ(t) over time subintervals of the total record. The results for 6 nonoverlapping 25-
year subintervals are shown in Fig. 8. The pre-1925 uncertainties are large, but the bounds and the FERDIT estimates
give good agreement with the γ(t) estimated from the nh = 3 harmonic expansion approximation.
5. Summary and conclusions

The results in Fig. 8 indicate that the estimates in (12) provide a γ̂(t) that reliably establishes a direct connection
between man-made CO2 emissions (from fossil fuel use and land use changes) and global warming. That connection
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Fig. 9. Man-made CO2 emissions. The uppermost curve is a plot of the total emission measurements F(ti). The smooth curve in the middle is the
γ

e

i
o
t

F
e
e
u

ˆ (t) generated by the estimates (12). It is the same as the magenta curve in Fig. 5. The lower curve is a plot of the products γ(ti)F(ti), the estimated
missions remaining in the atmosphere.

s illustrated in Figs. 9 and 10. The lower curve in Fig. 9 is a plot of the products γ(ti)F(ti) which were integrated to
btain the dashed curve in the upper plot of Fig. 10. That curve was substituted into Eq. (3) to get the model for the
emperature anomaly fit shown as a solid curve in the lower plot. Thus the temperature model was effectively

T (t) = T0 + η

[
ĉ1850 + Â0

∫ t

0
F (τ) dτ +

3∑
k=1

Âk

∫ t

0
cos(ωkτ)F (τ) dτ

+
3∑

B̂k

∫ t

0
sin(ωkτ)F (τ) dτ + δ̂S(t) − 277.04

]
+ A sin

[
2π

τ
(t + φ)

]
,

k=1

ig. 10. The connection between CO2 emissions and global warming. The dashed curve in the upper plot was generated by Eq. (11) using the
stimates in (12). It is the same as the magenta curve in Fig. 4. The concentration measurements in the upper plot were used only to determine the
stimates (12). The solid curve in the lower plot is the fit of the model (3) to the temperature anomaly measurements using the dashed curve in the
pper plot for c(t). The dashed curve in the lower plot is the baseline part of the temperature fit.



[

[

[

[
[

[
[

2336 B.W. Rust / Mathematics and Computers in Simulation 81 (2011) 2326–2336

with ĉ1850, Â0, the Âk and B̂k, and δ̂ given by (12). Fitting this model, with t = 0 at epoch 1850.0, to the measured T(ti)
gave estimates

T̂0 = (−0.511 ± .017) (◦C),

η̂ = (0.01055 ± .00046) (◦C/ppmv),

Â = (0.100 ± .012) (◦C),

τ̂ = (71.2 ± 2.2) (yr),

φ̂ = (−7.1 ± 2.6) (yr),

(32)

which are not very different from those in Eq. (4). And the fit itself is very similar to the one in Fig. 2. The main
difference is that here, man-made emissions are indicated as the cause of the warming.

Finally, the γ(t) estimates shown in Fig. 8 appear to exhibit a slight overall downward trend. This impression is
reinforced by the confidence interval bounds, even though the intervals are quite broad in the first half of the record.
If the effect is real, it might be a mixed blessing. Retaining a smaller fraction of the ever increasing emissions might
slow down the global warming, but the CO2 not retained in the atmosphere must go somewhere else. If it goes into the
oceans, it could further exacerbate the problems of growing oceanic acidity.
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