
A Multi-Criteria Web Services Composition Problem

Buhwan Jeong and Hyunbo Cho
Department of Industrial and Management Engineering

Pohang University of Science and Technology (POSTECH)
San 31 Hyoja Pohang 290-784 South Korea

{bjeong, hcho}@postech.ac.kr

Boonserm Kulvatunyou and Albert Jones
Manufacturing Systems Integration Division

National Institute of Standards and Technology (NIST)
100 Bureau Dr. Gaithersburg MD 20899

{serm, albert.jones}@nist.gov

Abstract

With its prevalence in enterprise applications integra-
tion, the service-oriented approach has been studied in var-
ious ways. The popularity, however, results in a number
of different standards and implementations. The approach
needs agreed-upon definitions and assumptions. To this
end, the paper presents a multi-criteria service composition
problem and positions to state service engineering functions
associated with the problem in a regular expression. The
paper also introduces an information compatibility concept
to measure the degree of interoperable data exchanges be-
tween services.

1. Introduction

Since its introduction, the service-oriented approach has
been prevailing in deploying enterprise applications and
integrating them within and across organizational bound-
aries. A public registry publishes a number of various ser-
vices provided by anonymous developers and any integra-
tors use them as their own applications via simple message
exchanges. Only an invocation of a service can accomplish
a generic task such as authorization, digital signature, and
payment; however, a complex task often requires numer-
ous interactions among services that collectively complete
the task. Using processes is pivotal to services composition
[16], in which a process model captures component services
and their interaction logics (e.g., control flow, data flow, in-
terdependencies) to meet the required functionalities. For
a composite service to be effective and interoperable, every

component service must be of high quality as well as func-
tionality. However, solving the service composition prob-
lem aligned with discovery and selection is a non-linear en-
gineering process due to many possible combinations with
a number of different services discovered. The worse is that
the problem is often stated in informal expressions.

The paper aims to formulate a multi-criteria composi-
tion problem in regular expressions. We first present a ser-
vice allocation framework and list quality and functional
attributes used in service allocation. Second, we discuss
numerical methods to interpret functional attributes, espe-
cially, information compatibility. Third, we give formal
definitions of service engineering functions. Last, a case
example demonstrates the allocation problem.

The remainder of the paper is organized as follows:
Next, Section 2 briefly states the web service allocation and
lists service attributes. Section 3 presents formulations as-
sociated with the web service allocation problem. A case
example and preliminary validation are given in Section 4,
and Section 5 remarks the conclusion and future works.

2. Web Service Allocation

2.1. Service Allocation Procedure

The service allocation problem is to determine an opti-
mal – both high functionality and quality – combination of
services for a given composition model. Roughly stated,
the allocation consists of discovering high functional ser-
vices from a registry and then selecting a combination of
high quality services from the discovered ones as shown in
Figure 1. Service discovery is responsible for finding po-

tential services that undertake the functionalities required
by the composition model, whereas service selection is for
picking up the best set of services discovered (and their ex-
ecution order) that maximizes the overall utility and quality
of the resulting composite service. Suppose a simple exam-
ple that a TravelPlanner system performs sub-tasks in the
order of booking a flight, booking an accommodation, rent-
ing a car, and buying travel insurance. In this case, a com-
position model may state those tasks in that order. We first
look up services providing the same functionalities as each
task specified, generates various combinations of discov-
ered services, and then chooses the best combination giving
the highest quality.

In detail, the discovery activity explores the registry to
find plausible services that perform desired functional op-
erations. This activity receives a process-based composi-
tion model – referred to as a service-independent compo-
sition model (SICM) – as input and returns output in an-
other composition model – referred to as a service-mapped
composition model (SMCM). In particular, the input SICM
only indicates all sub-tasks (in nodes) and their interaction
logics (in directed arcs) necessary to accomplish a complex
task. We assume that the SICM is complete, in that each
sub-task has one or more corresponding services available,
thereby requiring no further task decomposition. This also
means that all the services available are assumed atomic.
For each sub-task, the activity finds relevant services hav-
ing designated functional attributes, and maps them to the
corresponding task node. After this process, the SICM be-
comes an SMCM, each node of which is aligned with a
set of alternative services discovered. This process is un-
dertaken on MatchMaker that compares the functional at-
tributes such as service names and I/O data definitions.

An SMCM can represent various execution plans that
are feasible combinations of different services in different
execution orders. Each execution plan provides the same
functionalities, but may give a different overall quality as-
sessment. In addition, each plan needs to support seamless
data exchanges between component services. A directed
acyclic graph (DAG) is used to represent an execution plan,
in which a node specifies a service and an arc indicates ex-
ecution precedence and information exchange between two
services [16]. The plan allows concurrent executions (i.e.,
AND relations) if possible, but not alternative executions
(i.e., OR relations). From an SCMC, Scheduler generates
all the feasible execution plans.

Last, Optimizer evaluates those execution plans based
on their quality assessments, QoS, and selects the best one
as the final composite service. Selecting the final execution
plan can be formulated as a multi-objective optimization
problem to trade off between multiple quality attributes. In
addition, since the evaluation uses averaged QoS in simula-
tions and/or historical data, the final plan may not be the op-

timal one in a run-time. Therefore, Optimizer either should
evaluate them in a run-time, or needs to prepare alternative
plan(s) and/or to specify alternative service(s) for each task
for run-time recovery.

2.2. Service Attributes

Service attributes include functional, non-functional, op-
erational, and architectural requirements. We focus on func-
tional attributes and quality attributes in this paper. First, the
quality attributes, also called quality of service (QoS), rep-
resent non-functional properties of services. They are criti-
cal to select an optimal set of services among services pro-
viding the same functionalities, given resource constraints
such as total operation cost and lead time. Typical quality
attributes include operation cost to invoke a service, per-
formance in terms of latency and throughput, availability
in probability whether the service is ready for an immedi-
ate use, accessibility indicating the capability of serving re-
quests, security in terms of confidentiality, authenticity, and
integrity, interoperability between services, reliability of
both message and service, and so forth [8] [10] [11] [16].

Second, the functional attributes represent the properties
associated with a service’s functionalities. Although a ser-
vice is transparent to any users, they cannot recognize how
the service exactly implements intended functionalities. In
other words, ”the only part of a service that is visible to the
outside world is what is expressed via the service’s descrip-
tion and formal contact, but the underlying process logics
are typically invisible to service requesters [11]”. There-
fore, service discovery has to rely completely on explicit
descriptions about a service, for example, its capability, its
input and output. Such descriptions are available in WSDL
(Web Service Description Language) [1], UDDI (Universal
Description, Discovery, and Integration) [2], and OWL-S
(Web Ontology Language for Services) [9]. Functional at-
tributes include service classification such as the business
domains to which the service belongs, service name that
is used as a unique identifier and provides a high-level de-
scription of the service’s functionalities, operation name
for specific operations in a service, data definitions of in-
put and output messages in XML Schema, and annotation
for auxiliary descriptions about the service.

2.3. Interpreting Functional Attributes

Measuring quality of a service numerically may be
straightforward by aggregating simulated data and/or his-
torical operation data or more complicated when services
have some interdependency. This is an issue of research
not considered in this paper. On the other hand, matching
functional attributes is different. The match degree can be
quantified by means of semantic similarity of each func-

Discover Services

Generate

Execution Plans

Evaluate Execution

Plans and Select

Optimal One

Service-Independent

Composition Model
Service-Mapped

Composition Model

Execution Plans

Execution Plan

(Composite service)

Quality Constraints

MatchMaker

Scheduler

Optimizer

Functional Attributes

A1

A2

A3

Figure 1. Allocating and optimizing web service composition

tional attribute. The functional attributes are classified into
atomic labels (e.g., service category, service name), struc-
tured XML data (i.e., input and output definition), and tex-
tual data (i.e., plain annotation). For each of them, we need
to approach in different ways to exploit its semantics.

First, the term similarity is used to quantify the common-
ality between atomic labels using purely lexical informa-
tion. Term similarity measures include lexical form-based
ones (e.g., prefix, suffix, n-gram, term edit distance) and
semantics-based ones (e.g., word sense, synonym, infor-
mation content) [4]. Generally, the semantics-based mea-
sures provide more accurate predictions, but require well-
compiled lexical knowledge resources (e.g., WordNet).

Second, the input and output definitions, usually XML
schemas, are expressed and structured in a tree, so that
the best way to exploit such tree structures is to measure
a tree similarity. A tree similarity counts the commonality
in parent-to-child and right-to-left orders of nodes as well as
in individual nodes themselves. For this reason, a tree simi-
larity is more conservative than a term similarity. Examples
include node/edge/path matching, inclusive path matching,
tree edit distance, and kernel-based one [4] [5].

Last, for plain annotations, we can adopt techniques used
in text mining. A typical one is the bag-of-words approach,
particularly, including a vector space model (VSM) [13] and
latent semantic analysis/indexing (LSA/LSI) [7]. The final
text similarity is often computed as the cosine of angle de-
fined by two vector representations.

2.4. Information Compatibility

We introduce an important analysis, namely informa-
tion compatibility, in order to build a seamless and inter-
operable composite service. A number of services may ex-
ist that offer the same functionalities with slightly differ-

ent data interfaces. That implies an inappropriate selec-
tion of component services may prevent a composite ser-
vice from seamless data exchanges among its component
services. The information compatibility analysis ensures
correct data transfers from a service to succeeding services
by mapping each information item in source data to corre-
sponding one(s) in destination data.

Take a simple service connection as shown in Figure 2, in
which the mapping tool merges, fragments, and transforms
source data into destination data consumable by Service B.
First, the compatibility analysis identifies the relation from
sources to a destination, which is beyond the degree of sim-
ilarity between them. For seamless connection, the sources
must be sufficient for the destination. In other words, it is
desirable that either a source or several sources collectively
are identical to the destination (i.e., exact or full match), or
the sources fully cover the destination (i.e., general match).
At least, the sources should have overlaps with the desti-
nation (i.e., partial match). Second, the match must incor-
porate the information essentiality. For example, a manda-
tory information item in the destination must be available
in the sources. Otherwise, a run-time transaction may fail.
The information compatibility is measured as the portion
of matched information items in the sources over the des-
tination. In addition, we define information discontinuity
as the opposite to information compatibility. Having large
discontinuity means that more external inputs and/or infor-
mation transformations are required.

3. Formulating Mulit-Criteria Composition

This Section provides formal statements necessary to de-
fine the service composition problem. The paper limit keeps
us from providing in-depth descriptions of the statements
and necessary equations.

Information

Mapping ToolService A
Service B

External inputs and/or

outputs from previous services

Sources Destination

Figure 2. Service connection via information
mapping

3.1. Service Composition and Invocation

A composite service is an ordered collection of services,
and each service receives a message and returns a resulting
message. This resembles a state machine, in that it transits
from a state to another as if a service transforms an input
message to an output message. Therefore, using the nota-
tions of the state machine, we formulate the service com-
position problem as a quintuple C = (D,Din, Dout,Σ, δ),
where D is a finite set of messages/data, Din ∈ D denotes
an initial input, Dout ⊂ D is a finite set of the final out-
puts, Σ is a finite set of atomic services (or operations), and
δ : D × Σ → D is a data transition function, i.e., an op-
eration trigger to transform an input to an output [4]. In
particular, the top-level composite service produces Dout

from Din. An extension to this model is service invocation,
defined as an octuple I = (D,Din, Dout,Σ, δ, A, P, γ),
where A is a set of operation actions that invoke services, P
is a set of preconditions for invocation, and γ : D×Σ → A
is an operation-action transition function. Note that the def-
initions are not complete, but tentative to explain the under-
pinning ideas.

3.2. Service Discovery: A1

Service discovery finds potential services that not only
meet functional requirements specified in a service query,
but also are compatible with other connected services in-
voked already and/or to be invoked. A successive discovery
and selection procedure that incorporates the functional at-
tributes is presented as follows:

1. Service Classification. For a service query in an
SICM node, look up all the services belonging to ser-
vice categories – both explicit categories specified in
the query and associated categories with the explicit
ones. This look-up process compares the query with
tModel’s in the UDDI registry.

2. Service/Operation Name. Sort services out that have
names semantically equivalent to the name in the
query. WSDL annotations, if available, are also used
here, and human intervention may be required. The
result is an SMCM.

3. I/O Compatibility. Identify service(s) whose input
and output definitions are highly compatible with those
of connected services as well as similar to those spec-
ified in the service query. This step may be iterative
due to the intricate data transfers among services. This
produces a set of execution plans.

4. Quality Attributes. Finally, optimize and select the
best configuration for the composition model using the
quality attributes.

3.3. Execution Plan Generation: A2

As described, an execution plan is a feasible composition
of services that completes the task specified in the compo-
sition model. The feasibility is granted just by serializing
the composition model and assigning one of any discov-
ered services to each node. However, this can produce a
number of less useful plans having large information dis-
continuity, thereby resulting in lack of interoperability be-
tween component services. Hence, an acceptable execution
plan should be both functionally feasible and information
compatible. Therefore, we can formulate this as: Generate
execution plans such that, for every source-destination
pair (Ds, Dd), its information discontinuity is no more
than a tolerance ε and the plan is able to accomplish the
given task. An execution plan needs additional inputs from
external applications if information discontinuity exists.

3.4. Service Selection: A3

For functionally guaranteed execution plans, service se-
lection is to evaluate them and select the best one in terms
of QoS such as performance and availability. The original
selection problem can be stated as: Select the best exe-
cution plan such that it maximizes overall quality and
utility (QoS) within resource constraints while minimiz-
ing total information discontinuity. The problem is very
complicated because it must optimize both of the two dif-
ferent objectives. However, we already obtained acceptable
execution plans whose total information discontinuity is no
more than Υ (=

∑
ε)1 in the previous step. Accordingly, the

problem approximately becomes: Select the best execu-
tion plan from candidates such that it maximizes overall
quality and utility within resource constraints. It is noted
that this approximate problem is still a multi-objective opti-
mization problem that must simultaneously maximize mul-
tiple quality attributes.

1By Liebig’s Law of Minimum, this may be re-stated as ’maximum
information discontinuity between any pair of services is no more than ε’.

4. Preliminary Validation

4.1. Illustrative Example

Take the TravelPlanner application for a case example.
As shown in Figure 3, the TravelPlanner application, by
passing messages, orchestrates all the other services Air-
lineBooking, HotelReservation, and CarRental, either con-
currently or sequentially, to complete a travel itinerary.
The messages exchanged include TI (travel information),
TIX (travel information provided to a service), AS (airline
schedule), HRC (hotel reservation confirmation), etc.

TravelPlanner

AirlineBooking

HotelReservation

CarRental

TI

Itinerary

TIA

TIH

TIC

AS

HRC

CRC

User

Figure 3. A service composition example

First, we can depict an SICM in a state diagram, partic-
ularly a Petri net [12]2, as shown in Figure 4, in which a
transition node represents a service (or a corresponding op-
eration in the service) and a place node represents an I/O
message going to or coming from a service. The composi-
tion model needs to have functional descriptions about each
node for discovery. Particularly, a data node contains cor-
responding data definitions in XML schema, whereas a ser-
vice node has descriptions about the service such as service
classification, service name, and annotation.

Second, several services may correspond with a service
node. For example, reserving an accommodation may have
different services – HotelReservation and Accommodation-
Booking, which use either the same I/O definitions or dif-
ferent I/O definitions. Third, suppose that TI, the external
input, has only date fields for specifying dates to depart and
return. If the HotelReservation service requires only those
dates, whereas the AccommodationBooking service requires
both dates and times, then we prefer to use HotelReserva-
tion. Or, if the AirlineBooking service returns flight times
as output and if the CarRental service requires the times to
rent and return, then invoking CarRental after AirlineBook-
ing is more seamless than the opposite. Last, the service

2See [3] for basic Petri net notations for modeling a service composi-
tion model.

User

TravelPlanner

(Split)

AirlineBooking

HotelReservation

CarRental

TIA

Itinerary

AS

HRC

CRC

TravelPlanner

(Merge)

TIH

TIC

TI

Transition : Service

Place : Data

Reject

Accept

Legends

User

Figure 4. A Petri net model of service compo-
sition

selection is straightforward to evaluate alternative execu-
tion plans and pick the best one up. For example, if the
allowable cost to invoke a service to reserve a room is up to
$2 and if HotelReservation and AccommodationBooking re-
quire $1 and $2, respectively, then the final solution prefers
to include HotelReservation. However, the selection prob-
lem becomes more complex as more quality attributes are
considered, for example, their respective availability are 0.6
and 0.9.

4.2. Service Discovery Simulation

We conduct an experiment using a collection of web ser-
vices from XMethods3 [6] [14]. It has a total of 38 ser-
vices from five categories: weather information finder (6),
currency rate converter (7), DNA information searcher (5),
SMS sender (10), and ZIP code finder (10). We use the op-
eration name, input message type, and output message type
as functional attributes. In particular, Wu and Palmer’s al-
gorithm [15] is used to compute term similarity between op-
eration names, while the kernel-based measure [5] is used
as a tree similarity measure for input and output message
types. An average and a weighted-average are also used to
aggregate those individual measures. Fig. 5 depicts a pair-
wise proximity matrix for the operation name. The matrix
shows us that web services in the same category tend to be
more similar (dark color), whereas services between differ-
ent categories are less.

Using the PAM (Partitioning Around Medoids) algo-
rithm, we cluster those web services. In short, ratios of cor-
rect classifications are approximately from 0.74, 0.84, 0.76,
0.89, and 0.89 for operation name, input type, output type,
average, and weighted average, respectively. Although each
functional attribute alone discriminates those services well,
the integrated measures outperform individuals.

3http://www.xmethods.com

Weather information finderWeather information finder

Currency rate converterCurrency rate converter

DNA information searcherDNA information searcher

SMS senderSMS sender

ZIP code finderZIP code finder

Figure 5. A demonstrative proximity matrix of
the operation name: Deeper color indicates
more similar.

5. Conclusion

The service-oriented approach (SOA) has undeniably
been the popular choice these days to develop, integrate,
and deploy enterprise applications. To share common un-
derstandings of SOA across researchers is important. For
that purpose, the paper addressed the multi-criteria service
allocation problem, which subordinates the problems of ser-
vice composition, discovery, and selection. In particular,
services are selected based on functional attributes as well
as quality attributes. The paper provided provisional defini-
tions to state and solve those problems. Even though the pa-
per is not the first one dealing with such problems, it makes
quite an impact on their formalization. The definitions are
tentative, yet solid, and not in depth; therefore, we need to
consolidate them further and apply to real integration sce-
narios. The formal techniques need to be represented in a
machine-interpretable manner and geared with semantic de-
scriptions of service attributes for automated engineering.

Disclaimer

Certain commercial software products are identified in
this paper. These products were used only for demonstra-
tion purposes. This use does not imply approval or endorse-
ment by NIST, nor does it imply that these products are nec-
essarily the best available for the purpose.

References

[1] E. Christensen, F. Curbera, G. Meredith, and S. Weer-
awarana. Web Service Description Language (WSDL) 1.1,
Mar. 2001.

[2] L. Clement, A. Hately, C. von Riegen, and T. Rogers.
Universal Description, Discovery, and Integration (UDDI)
3.0.2, Oct. 2004.

[3] H. Gou, B. Huang, W. Liu, S. Ren, and Y. Li. Petri net-
based business process modeling for virtual enterprises. In
Proceedings of IEEE International Conference on Systems,
Man, and Cybernetics (SMC2000), pages 3183–3188, Oct.
2000.

[4] B. Jeong. Machine Learning-based Semantic Similarity
Measures to Assist Discovery and Reuse of Data Exchange
XML Schemas. PhD thesis, Department of Industrial and
Management Engineering, Pohang University of Science
and Technology, June 2006.

[5] B. Jeong, D. Lee, H. Cho, and B. Kulvatunyou. A kernel
method for measuring structural similarity between xml doc-
uments. In Proceedings of the 20th International Conference
on Industrial, Engineering & Other Applications of Applied
Intelligent Systems (IEA/AIE-2007), June 2007.

[6] N. Kokash. A comparison of web service interface similarity
measures. In Proceedings of the European Starting AI Re-
searcher Symposium (STAIRS), pages 220–231, Aug. 2006.

[7] T. Landauer, P. Foltz, and D. Laham. An introduction to
latent semantic analysis. Discourse Processes, 25:259–284,
1998.

[8] A. Mani and A. Nagarajan. Understanding quality of service
for web services. Technical report, IBM, Jan. 2002.

[9] D. Martin. OWL-S: Semantic Markup for Web Services, Oct.
2003.

[10] D. Menasce. QoS issues in web services. IEEE Internet
Computing, pages 72–75, Nov. 2002.

[11] L. O’Brien, L. Bass, and P. Merson. Quality attributes and
service-oriented architectures. Technical Report CMU/SEI-
2005-TN-014, Carnegie Mellon University, Sept. 2005.

[12] J. Peterson. Petri nets. ACM Computing Survey, 9(3):223–
252, 1977.

[13] G. Salton, A. Wong, and C. Yang. A vector space model
for automatic indexing. Communications of the ACM,
18(11):613–620, 1975.

[14] J. Wu and Z. Wu. Similarity-based web service matchmak-
ing. In Proceedings of the 2005 IEEE International Confer-
ence on Service Computing (SCC’05), pages 287–294, July
2005.

[15] Z. Wu and M. Palmer. Verb semantics and lexical selection.
In Proceedings of the 32nd Annual Meeting of the Associa-
tions for Computational Linguistics, pages 133–138, 1994.

[16] L. Zeng, B. Benatallah, M. Dumas, J. Kalagnanam, and
Q. Sheng. Quality driven web services composition. In Pro-
ceedings of WWW2003, pages 411–421, May 2003.

