
Quantifying Model Error

Kevin McGrattan1

Fire Research Division

Blaza Toman
Statistical Engineering Division

National Institute of Standards and Technology
Gaithersburg, Maryland, 20899

ABSTRACT: A methodology is proposed for reporting the results of fire model validation studies
that consist mainly of comparisons of model predictions and experimental measurements. The
difference between the two is a combination of model error and experimental uncertainty. Assum-
ing that one can quantify the experimental uncertainty, the model error can be estimated using a
relatively simple form of Bayesian analysis.
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1 Introduction
There are various definitions of model validation. For example, ASTM E 1355, “Standard Guide
for Evaluating the Predictive Capability of Deterministic Fire Models,” [1] defines it as “the process
of determining the degree to which a calculation method is an accurate representation of the real
world from the perspective of the intended uses of the calculation method.” The accuracy of a
model is a complicated function of its inputs and its equations. For the sake of clarity, we will use
the word uncertainty in regard to the inputs, and the word error in regards to the equations. The
reason for this is two-fold. For one, it helps to differentiate various terms that are used to quantify
model accuracy; but, more importantly, it highlights the subtle distinction between the roles of the
model and of the modeler. For example, if the modeler chooses to input 10 MW as the heat release
rate of a hypothetical fire, we do not say it is wrong, but rather uncertain because there is no easy
way to know for sure just how big the fire is going to be. The mathematical model, on the other
hand, includes assumptions and approximations that make its predictions less accurate for the sake
of practical implementation.

Our focus at present is not the input uncertainty, but rather the quantification of the model
error. Our strategy is not to decompose the model into its many parts and systematically assess
the error of each. Such an exercise would be extremely difficult, especially for a computational
fluid dynamics (CFD) model, and the results would probably be subject to the same degree of
error as the model itself. Instead, we take the traditional approach in which model predictions
are compared with experimental measurements. However, unlike many model validation studies
performed to date, we suggest a method by which the model error can be distinguished from the
model input uncertainty. The difference between model prediction and experimental measurement
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is a combination of the two, and because the input uncertainty is easier to quantify than the model
error, we can estimate the error by “subtracting off,” in the broad sense, the input uncertainty
from the reported difference between prediction and measurement. The quotation marks in the
previous sentence indicate that model error and input uncertainty do not simply add together, and
to decouple them requires some statistical analysis that will be described below.

2 Model Error
A deterministic fire model is based on fundamental conservation laws of mass, momentum and
energy, applied either to entire compartments or smaller control volumes that make up the com-
partments. A CFD model may use millions of control volumes to compute the solution of the
Navier-Stokes equations. However, it does not actually solve the Navier-Stokes equations, but
rather an approximate form of these equations. The approximation involves simplifying physical
assumptions, like the various techniques for treating subgrid-scale turbulence. The most critical
approximation is the discretization of the governing equations. For example, the partial derivative
of the density, ρ, with respect to the spatial coordinate, x, can be written in approximate form as:

∂ρ

∂x
=

ρi+1−ρi−1

2δx
+O(δx2) (1)

where δx is the grid spacing chosen by the model user. The second term on the right represents
all the terms of order δx2 and higher in the Taylor series expansion and are known collectively as
the discretization error. These extra terms are simply dropped from the equation set, the argument
being that they become smaller and smaller with decreasing grid cell size, δx. The effect of these
neglected terms is captured, to some extent, by the subgrid-scale turbulence model, but that is
yet another approximation of the true physics. What effect do these approximations have on the
predicted results? It is very difficult to determine based on an analysis of the discretized equations.
At best, one can demonstrate convergence towards some analytical solution of the non-turbulent
Navier-Stokes equations at a rate determined by the spatial and temporal differencing schemes,
but this still does not answer a question like, “What is the error of the model prediction of the gas
temperature at a particular location in the room at a particular point in time?”

To make matters worse, there are literally dozens of subroutines that make up a CFD fire
model, from its radiation solver, solid phase heat transfer routines, pyrolysis model, empirical
mass, momentum and energy transfer routines at the wall, and so on. A careful, systematic error
analysis of the combination of all these routines is nearly impossible. Indeed the complexity of
the analysis would approach that of the model itself. For this reason, we rely on comparisons
of model predictions to as many experiments as possible as a means of quantifying model error.
However, before we can definitively quantify the error, we first must quantify the uncertainty of the
measurements against which the model predictions are to be compared. This is discussed below.

3 The Validation Process
Because it is impractical to dissect a complicated fire model into its many components and assess
the accuracy of each individually, a fire model validation study typically consists of comparing
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Figure 1: Example of a typical time history comparison of model prediction and experimental
measurement.

point measurements from a wide variety of fire experiments with corresponding model predic-
tions. Figure 1 is a typical result for a single point measurement, and given that usually dozens
of such measurements are made during each experiment, and potentially dozens of experiments
are conducted as part of a test series, we can expect hundreds of such plots for any given quantity
of interest. In many cases, these plots in themselves provide sufficient information for a potential
model user or authority having jurisdiction (AHJ) to decide if the model is sufficiently accurate for
the given application. Because there is no consensus “acceptance criteria” within the fire protection
community to indicate what constitutes sufficient accuracy, the judgment is left to end user or AHJ.
It can be argued that this is as it should be because each situation is different. For example, some
regulatory authorities prefer models that consistently over-predict the severity of the fire, in which
case the model serves as a “screening tool.” Design engineers, however, usually prefer that the
model predict the outcome of the fire as accurately as possible, even though they may apply some
form of safety factor to the results. In any case, there is certainly no reason why we cannot develop
a process to quantify the accuracy of the model that goes beyond simply publishing hundreds of
plots like the one shown in Fig. 1.

To this end, we first have to decide how to condense all the data represented by these plots into a
more tractable form. Specifically, we have to decide on a metric with which to compare two curves
like the ones shown in Fig. 1. Peacock et al. [2] discuss various possible metrics. A commonly
used metric is simply the difference between the peak measured and predicted values. If the data
is spiky, some form of time-averaging can be used. Regardless of the exact form of the metric,
what results from this exercise is a pair of numbers for each plot, (Ei,Mi), that can be depicted
graphically as shown in Fig. 2. This plot condenses hundreds of plots into just one, but we still
have the problem of quantifying the degree of scatter in the results. At this stage in the analysis,
the diagonal line on the plot shown in Fig. 2 only indicates where a prediction and measurement
agree. But because the model has error, and the measurement has uncertainty, it cannot be said that
the model is perfect if its predictions agree exactly with measurements. There needs to be a way of
quantifying both the error and uncertainty before any conclusions can be drawn. Such an exercise
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Figure 2: Example of a typical scatter plot of model predictions and experimental measurements.

would result in the error/uncertainty bars shown in the figure. At first glance, it would appear that
the horizontal bar associated with each point represents the uncertainty in the measurement, and
the vertical bar represents the error in the model. Unfortunately, it is not a simple task to quantify
these values, nor can it be said that the vertical bar is the result solely of model error. As will
be discussed below, any experiment involves measurements of elevated temperatures, heat flux,
etc., resulting from the fire, but also measurements of parameters, like the heat release rate and
material properties, that are then fed into the model as input. Uncertainty in these input parameters
combines with the error in the model to form the vertical uncertainty/error bar associated with each
point in Fig. 2. Decoupling the error from the uncertainty is the subject of analysis below. Before
presenting this analysis, however, we must first discuss in more detail the subject of experimental
uncertainty.

4 Experimental Uncertainty
For various reasons, documented fire experiments, especially full-scale experiments, contain fairly
limited discussion of uncertainty. Some contain none at all. However, in order to assess the
accuracy of the model whose predictions have been compared to these measurements, there must
be some estimate of the combined effect of the uncertainty in the reported test parameters, like the
heat release rate of the fire, and the reported measurements of the quantities of interest, like the hot
gas layer (HGL) temperature, heat flux, and so forth. Otherwise, the difference between model and
measurement would simply have to be attributed as model error and there is no point in continuing
this exercise.

Rather than throwing out several decades worth of fire test data, there are ways that we can
estimate the uncertainty of the measurements based on work that has been done to quantify the
accuracy of such devices as heat flux gauges, oxygen-depletion calorimeters, thermocouples and
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gas sensors. In a recent fire model validation study conducted by the U.S. Nuclear Regulatory
Commission [3], Hamins estimated the combined uncertainty of the quantities of interest for the
large scale fire experiments involved in the study. Referring to Fig. 2, there were two uncertainty
estimates needed for each quantity. The first was an estimate, expressed in the form of a 95 %
confidence interval, of the uncertainty in the measured quantity itself. For example, reported gas
and surface temperatures were made with thermocouples of various designs (bare-bead, shielded,
aspirated) with different size beads, metals, and so on. For each, one can estimate the uncertainty
in the reported measurement. Next, the uncertainty of the measurements of the reported conditions
was estimated, including the heat release rate, leakage area, ventilation rate, material properties,
and so on. The effect of these uncertainties on the reported measured quantity had to be assessed
as well. For example, most of the experiments used oxygen consumption calorimetry as the means
of measuring the heat release rate. Estimates of the uncertainty in large scale calorimeters is on the
order of 15 %. It has been shown [4] that the hot gas layer temperature rise due to a compartment
fire is proportional to the HRR raised to the two-thirds power, thus a 15 % uncertainty in the HRR
would lead to a 2/3×15 %=10 % uncertainty in the model prediction. This uncertainty now needs
to be combined with the uncertainty in the thermocouple measurement itself. Let us say that this is
also 10 %. Because the two forms of uncertainty are uncorrelated, they are combined by quadrature
(summing of squares) to yield a combined uncertainty of 14 %. An other way to look at this is
to recognize that the combined uncertainty is represented as the diagonal of the rectangle formed
from the horizontal and vertical uncertainty/error bars in Fig. 2.

Hamins performed this exercise for ten quantities of interest in the U.S. NRC validation study.
The results are summarized in Table 1, with each combined uncertainty reported in the form of a
95 % confidence interval (i.e. 2 σ̃E). The tilde above the σ denotes a relative uncertainty, which is
a convenient way to report it because we are assuming that the uncertainty in the reported value is
proportional to its magnitude. This assumption is made throughout the analysis for both measure-
ment uncertainty and model error. The assumption is based on a qualitative assessment of dozens
of scatter plots similar to that shown in Fig. 2 that show the scattered points to form an expanding
“wedge” about the diagonal line, or some other off-diagonal line due to an assumed bias in the
model predictions. This assessment is a critical component of the analysis described in the next
section.

5 Calculating Model Error
We are now ready to describe a method for calculating the model error using the estimated experi-
mental uncertainties listed in Table 1. We make two important assumptions:

1. All uncertainties and errors can be expressed in relative terms, and

2. All uncertainties and errors are assumed to be normally distributed.

Given the complexity of the models and the experiments, it would be difficult to justify any partic-
ular distribution. In fact, the very reason why we have developed this method of quantifying model
error based on validation experiments is because the model algorithm itself is too complicated to
work with directly as a means of estimating the error.

With these assumptions in mind, we proceed with the statistical analysis of the data. Assume
that the set of model predictions and the corresponding set of experimental measurements are
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Table 1: Summary of Hamins’ uncertainty estimates [3].

Measured Quantity Combined Relative
Uncertainty, 2 σ̃E

HGL Temperature 0.14
HGL Depth 0.13
Ceiling Jet Temperature 0.16
Plume Temperature 0.14
Gas Concentrations 0.09
Smoke Concentration 0.33
Pressure with Ventilation 0.80
Pressure without Ventilation 0.40
Heat Flux 0.20
Surface Temperature 0.14

denoted Mi and Ei, respectively, where i ranges from 1 to n and both Mi and Ei are positive numbers
expressing the increase in the value of a quantity above its ambient. We assume that a given
experimental measurement, Ei, is normally distributed2 about the “true” value, θi, and there is no
systematic bias:

E|θ∼ N(θ,σ2
E) (2)

The notation E|θ means that E is conditional on a particular value of θ. This is the usual way of
defining a likelihood function. It is convenient to use the so-called delta method3 to obtain the
approximate distribution

ln(E)|θ∼ N
(
ln(θ), σ̃2

E
)

(3)

The purpose of applying the natural log to the random variable is so that we can express its variance
in terms of the relative uncertainty, σ̃E = σE/θ. This is convenient because we have assumed that
the relative uncertainty is constant for each quantity of interest. The quantities and uncertainty
values are listed in Table 1. Using a Bayesian argument4 with a non-informative prior on ln(θ), we
obtain the posterior distribution as

ln(θ)|E ∼ N
(
ln(E), σ̃2

E
)

(4)

The assumption of a non-informative prior implies that we do not have sufficient information about
the prior distribution (i.e. the true value) of θ to assume anything other than unity.

We cannot assume, as in the case of the experimental measurements, that the model predictions
have no systematic bias. Instead, we assume that the model predictions are normally distributed

2N(µ,σ2) denotes a normal (Gaussian) distribution with mean, µ, and standard deviation, σ.
3Given the random variable X ∼ N(µ,σ2), the delta method says that approximately g(X) ∼

N
(
g(µ) , (g′(µ)σ)2

)
[5].

4The form of Bayes theorem used here states that the posterior distribution is the product of the prior distribution
and the likelihood function, normalized by their integral: f (θ|E) = p(θ) f (E|θ)/

∫
p(θ) f (E|θ)dθ. A constant prior is

also known as a Jeffreys prior.

6



about the true values multiplied by a bias factor, δ:

M|θ∼ N
(
δθ,σ2

M
)

(5)

The standard deviation, σM, is the model-intrinsic uncertainty, i.e. model error. This and the bias
factor, δ, are the parameters that we seek to quantify. Again, using the log transformation we obtain

ln(M)|θ∼ N
(

ln(δ)+ ln(θ)− 1
2

σ̃2
M

δ2 ,
σ̃2

M
δ2

)
; σ̃M =

σM

θ
(6)

Note that the estimate of the mean includes an extra term in the Taylor series expansion to obtain
a more precise estimate of δ. Because ln(θ) is random, and we have its posterior distribution from
Eq. (4), we can obtain the marginal distribution5

ln(M)∼ N
(

ln(δ)+ ln(E)− 1
2

σ̃2
M

δ2 ,
σ̃2

M
δ2 + σ̃

2
E

)
(7)

Notice that we have expressed the total relative uncertainty of the model predictions as a combi-
nation of model error and experimental uncertainty. What we need now is a way to estimate this
error and the bias factor, δ. First, define:

M =
1
n

n

∑
i=1

ln(Mi) ; E =
1
n

n

∑
i=1

ln(Ei) (8)

The least squares estimate of the standard deviation of ln(M) is

u(M) =

√
σ̃2

M
δ2 + σ̃2

E ≈

√
1

n−1

n

∑
i=1

[
(ln(Mi)−M)− (ln(Ei)−E)

]2 (9)

Note that u(M) is the total relative uncertainty of M. Next, compute the estimate for the model
error:

σ̃M

δ
≈
√

u(M)2− σ̃2
E (10)

An estimate of ln(δ) is M−E + σ̃2
M/2δ2, and, thus, the estimate of δ is

δ̂≈ exp
(

M−E +
σ̃2

M
2δ2

)
(11)

In essence, this procedure gives us a way to estimate the “true” value, θ, using only a predicted
value, M, and the bias factor and relative error for that particular quantity that have been obtained
using past validation experiments. The “truth” is a random variable with the following distribution:

θ∼ N

(
M

δ̂
,

(
M σ̃M

δ̂

)2
)

(12)

This is essentially a recipe for estimating the error associated with a model prediction, M. Below,
we describe how one might make use of this formula in practice. First, however, we need to verify
the accuracy of the procedure just described.

5 f (M) =
∫

f (M|θ) f (θ) dθ
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6 Verifying the Procedure
The statistical analysis described in the previous section is difficult to understand without a fairly
good background in Bayesian analysis. However, the calculation itself is no more difficult than
determining means and standard deviations of a few columns of numbers and it can be easily done
with a simple spreadsheet program.

To better illustrate the process, and also to verify this procedure, suppose we generate 1000
uniformly distributed random numbers, θi, between 0 and 1000. We say that these numbers repre-
sent a particular quantity of interest, like a gas temperature at a particular point and at a particular
time, and we also say that these values have no uncertainty – they are the “truth.” Of course, we
can never know the true values, but for this hypothetical exercise assume we can. Next, for each
θi, we randomly choose a value that is to represent a hypothetical measurement, Ei, from a normal
distribution whose mean is θi and whose relative uncertainty, σ̃E , is assumed known. In the same
way, we randomly choose a value that is to represent a hypothetical model prediction, Mi, from
a normal distribution whose mean is δθi and whose relative error, σ̃M, is specified for this hypo-
thetical exercise. What we have now created are 1000 pairs of (Ei,Mi) with which we can test the
procedure outlined in the previous section. In other words, we ought to be able to take our 1000
pairs of values, and the experimental uncertainty, σ̃E , and estimate the model bias, δ̂, and relative
error, σ̃M.

We consider two examples. For the first example, assume that the model has no bias (δ = 1) and
that the relative uncertainty of the measurements and the relative error of the model are both 0.1, or
10 %. The scatter plot on the left side of Fig. 3 displays the model predicted values compared to the
true values. The dashed lines indicate the 95 % confidence interval; that is, it is expected that 95 %
of the points should fall between these lines, whose slopes are plus and minus 20 % (2 σ̃M) of the
diagonal line. Of course, this plot cannot exist in a real situation, because the true values are never
known. Instead, the only way to present the data is via the scatter plot on the right side of Fig. 3.
Here, the measured values, Ei, are compared with the predicted values, Mi. The same dashed lines
are carried over from the plot on the left. Because the predicted values are being compared with
measurements that have uncertainty, it appears that the model error is greater than it actually is.
In this hypothetical example, the model is assumed to be as accurate as the measurements, yet the
comparison makes it seem as if the model is less accurate than the experiments. The procedure
outlined above, which makes use of only the measured and predicted values, is able to extract from
the data the fact that the hypothetical model has a relative error of 10 %, not the roughly 15 % that
one would infer from the plot if the experimental uncertainty were not taken into account.

For the second example, we make our hypothetical model predictions and experimental mea-
surements more realistic. Assume now that the measured value is the HGL temperature, and that
the relative uncertainty of the measured values, σ̃E = 0.07, is obtained from Table 1. We assume
the model has a bias factor of 1.03 and its relative error is 0.10 in order to generate a set of hy-
pothetical model predictions. A graphical representation of the data is shown in Fig. 4. Note that
the experimental uncertainty bounds are represented by thick, dashed lines, and the model bias and
relative error is shown by the lighter, dashed lines. Each are expressed as 95 % confidence intervals
(2 σ̃).

The statistical procedure outlined above ought to provide estimates of the values of the bias
factor, δ, and the model error, σ̃M, whose values we used in creating the hypothetical model predic-
tions. The results of seven random trials are shown in Table 2. It is not expected that the estimates
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Figure 3: (Left) A comparison of predicted and “true” values for 1000 hypothetical experiments in
which the model predictions and experimental measurements have the same accuracy. (Right) The
same data, except now the predicted values are compared to measured values. On both plots, the
uncertainty bounds apply to both the predicted and measured values.

will be exact because they are based on truncated Taylor series approximations. However, given
the fact that the experimental uncertainty estimate, σ̃E , is often only a gross approximation in its
own right, the accuracy of the procedure is more than adequate.

7 Making Use of the Model Error
The previous sections describes a method of quantifying the model error by comparing its predic-
tions with experimental measurements. But how does one make use the computed model bias and
relative error? This is best answered with an example. Suppose the model is being used to estimate
the likelihood that electrical control cables could be damaged due to a fire in a particular compart-
ment. Damage is assumed to occur when the surface temperature of any cable reaches 400 ◦C. It
is also assumed that the fire is ignited within an electrical cabinet and the heat release rate of the
fire is a specified function of time, and that all other input parameters for the model are known and
provided. Finally, it is assumed, for the time being, that there is no uncertainty associated with
any of these assumptions. What is the likelihood that the cables would be damaged if that fire
were to occur? The calculation is performed, and the model predicts that the maximum surface
temperature of the cables is 350 ◦C. Does this mean that there is no chance of damage, assuming
that the input parameters and assumptions are not in question at the moment? The answer is no,
because we know that the model itself is subject to error. So what is the chance that the cables
could actually reach temperatures greater than 400 ◦C?

Before we can answer this question, we need to consider past experiments for which model
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Figure 4: (Left) A comparison of predicted and “true” values for 1000 hypothetical experiments.
The short dashed lines indicate the bias, δ = 1.03, and the relative error, 2σ̃M = 0.20, of the
model predictions. The solid, off-diagonal lines indicate the relative uncertainty, 2σ̃E = 0.14 of the
experimental measurements. (Right) The same data, except now the predicted values are compared
to measured values. On both plots, the uncertainty bounds are the same.

predictions have been compared to measured surface temperatures of objects with similar thermal
characteristics as the cables in question. How “similar” the experiment is to the hypothetical
scenario under study can be quantified by way of various parameters, like the thermal inertia of
the object, the size of the fire, the size of the compartment, and so on. Next, the results of the
validation study can be analyzed following the procedure spelled out above, which provides us with
an estimate of the bias factor, δ, and relative error, σ̃M, for the model predictions of this particular
quantity. Let us say, for the sake of argument, that the bias factor is 1.03; that is, on average,
the model has been shown to over-predict surface temperatures by 3 %. Let us also say that the
relative error has been calculated and it is 0.10 . These are the same values that were assumed
in the second example of the previous section. Now, consider the graph shown in Fig. 5. The
vertical lines indicate the “threshold” temperature at which damage is assumed to occur (400 ◦C),
and the temperature predicted by the model (350 ◦C). Given an ambient temperature of 20 ◦C, the
predicted temperature rise, M, is 330 ◦C. The bell curve is a normal distribution obtained from
Eq. (12) above. Its mean and standard deviation are

20+
M
δ

= 20+
330
1.03

; σ̃M
M
δ

= 0.10
330
1.03

(13)

respectively. The shaded area beneath the bell curve is the probability (0.03 in this case) that the
“true” temperature can exceed 400 ◦C. This means that there is an 3 % chance that the cables could
become damaged based solely on the fact that the model is not a perfect representation of reality.

The obvious question to ask at this point is what do we do if we cannot assume that the speci-
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Table 2: Estimated bias and relative error from six trials used to verify the analysis.

Trial Bias Factor Relative Error
Exact 1.030 0.100

1 1.030 0.103
2 1.035 0.102
3 1.033 0.105
4 1.037 0.104
5 1.041 0.105
6 1.034 0.101
7 1.034 0.103

Figure 5: Plot showing how one might make use of the model error.

fied fire, material properties, and other input parameters are known exactly? How does that affect
our estimate of the likelihood of cable damage? The procedure above has only provided a way of
expressing the model error. What about the so-called “user effects”? What if the specified fire in
the electrical cabinet is actually chosen from a distribution of heat release rates? What if the mate-
rial properties of the cables are not known exactly? Assuming one could quantify the uncertainty
of all of the input parameters, and assuming that the model error and the input uncertainty are un-
correlated, it is possible to combine the two following the procedure that was described above that
is used to determine the combined experimental uncertainty. Of course, the uncertainty associated
with the input parameters would need to be quantified and propagated through the model. The end
result would be a widening of the distribution shown in Fig. 5 and an increase in the likelihood of
cable damage, assuming that the parameters used in the “base case” were all taken as the mean val-
ues of their respective distributions. In fact, depending on the scenario, the uncertainty associated
with the input parameters far outweighs the model error.
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8 Limitations
The above verification exercises are valuable in assuring that the procedure works as designed, but
it also points out a few issues that need to be addressed. First, any statistical procedure is based on
the law of averages, or, in other words, more data is better than less. It is usually not possible to
conduct a large number of fire experiments to assess the accuracy of the model in predicting each
quantity of interest. Sometimes we only have a few data points with which to estimate the model
error. Worse yet, we may not have the necessary information about the experimental procedure to
estimate the uncertainty of the reported measurements. In such cases, it may be better to simply
present the comparison of model prediction and experimental measurement as a series of plots like
Fig. 1, or in the form of a scatter plot (Fig. 2) without any uncertainty or error bars. The value
of the entire validation process as outlined above is that it is possible at any step along the way to
simply stop and accept the raw output of the study as the basis for making an assessment of the
model. The uncertainty analysis and error quantification is valid only to the extent that sufficient
experimental data with quantified uncertainty estimates is available. It does more harm than good
to attempt to quantify the model error with insufficient means to do so.

Another concern with the above procedure is that an over-estimate of the experimental uncer-
tainty will naturally result in an under-estimate of the model error. Keep in mind that the model can
never be declared more accurate than the experimental measurements against which it is compared.
This rule is demonstrated mathematically by Eq. (10) where it is observed that an over-estimate
of the experimental uncertainty, σ̃E , can result in the square root of a negative number, an imag-
inary number. In the case that the computed model error is less than the estimated experimental
uncertainty, then the latter must be re-evaluated, or the number of data points needs to be seriously
questioned.

9 Conclusion
We have outlined a procedure to estimate model error by way of comparisons of model predictions
with experimental measurements whose uncertainty has been quantified. For clarity of presenta-
tion, issues associated with the selection of experiments, metrics of comparison, and presentation
of results, have not been discussed in detail because these decisions are application-specific and
best left to the end user or AHJ. The overall procedure is not a dramatic departure from current
methods of model validation, but it does present a very tractable method of distinguishing the
model error from the uncertainty of the model inputs and the measurements against which the
model is compared. Too often these various forms of uncertainty are lumped together, in which
case there is no way to know what part of the model, if any, needs improvement. For this reason,
this methodology is of tremendous value to model developers because, in a sense, it strips away
what are often referred to as “user effects” to reveal inadequacies of the model itself. The goal of
the model developers is to reduce the model error as much as possible, even though uncertainties
in the input parameters may never be eliminated completely.
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