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ABSTRACT 
 
Questions about the field performance of a first responder’s body armor prompted 
research to assess the long-term durability and effectiveness of current and future soft 
body armor.  Prior work in this laboratory described a 10 % drop in tensile strength in 
poly(p-phenylene benzobisoxazole) (PBO) fibers after they were subjected to a single 
fold for 24 h.  Regions of internal damage were also seen in the folded fibers.  Here, that 
work is continued by investigating the response of poly(p-phenylene terephthalamide) 
(PPT) fibers to the single fold.  The results presented in this paper show no change in 
tensile strength, modulus, or failure strain in the PPT fibers and a different surface 
morphology in the folded region.   

1. INTRODUCTION 
 

The National Institute of Standards and Technology’s Office of Law Enforcement and 
Standards (NIST-OLES), under the auspices of the National Institute of Justice (NIJ), 
conducts and sponsors research to assess the long-term durability and effectiveness of 
current and future soft body armor.    This program was established in response to the 
field perforation of armor made with poly(p-phenylene benzobisoxazole) (PBO) fibers   
at a threat level it had been designed to defeat. 

A review of potential degradation mechanisms of PBO fibers pointed to ultraviolet (UV) 
exposure, exposure to moisture (associated with perspiration and humidity), elevated 
temperature exposure (resulting from storage in the trunk of an automobile), and folding 
(associated with normal wear) as possible factors that may compromise the structural 
integrity of the ballistic fiber during use.1   

Prior work has focused on the role that folding may play in the degradation observed in 
soft body armor.2  Using the modified single fiber test (m-SFT), the measured strain-to-
failure and ultimate tensile strength of the single-folded virgin PBO fibers were found to 



be reduced by about 10 % relative to the virgin fibers that had not been exposed to the 
fold.  These results indicate that the property changes induced by folding should be 
quantifiable and that the m-SFT is sensitive enough to observe these changes.  One of the 
questions remaining after examining these results was if other high strength fibers, such 
as PPT, show a similar reduction in strength after folding.  The first objective of the work 
presented herein is to examine results from PPT fibers tested following the single fold 
procedure previously implemented for PBO. 

Another aspect of this work is to examine the robustness of the single fiber test technique 
by using a second similar method.  One of the main differences from the first method is 
that the fibers are clamped directly, so tabs are not needed.  Instead of optically 
measuring the fiber diameters directly, they are calculated from linear density 
measurements determined by a vibroscopic method.3  The vibroscopic method consists of 
a system for applying an oscillatory force of known frequency to a filament under tension 
and a means for detecting the mechanical resonance.3  One of the potential drawbacks 
with vibroscopes is that changes in the cross-sectional area along the length of a fiber 
resulted in changes in the frequency measurement and may induce an error in the 
calculation of the average cross-sectional area and hence the average fiber diameter.4   

Finally, it is acknowledged that the testing speed used in the single fiber testing is 
substantially slower than that seen in a real ballistic event.  The purpose for using quasi-
static single fiber measurement methods is to develop a fundamental understanding of 
possible damage accumulation in fibers used for ballistic applications after exposure to 
folding.   

2.  EXPERIMENTATIONi 
 
Two techniques were employed to test the single fibers.  The first is the modified single 
fiber test (m-SFT), a method that has been used extensively in our lab to measure the 
tensile properties of single fibers5 and is designated Method 1.  The second involves a 
machine that is used extensively in industry to measure properties of ballistic fibers and is 
designated Method 2. 

2.1 The Single Fold Exposure 
 
The single fold test has been described previously.2  Briefly, 50 fibers were removed 
from a single yarn of virgin PPT fibers and then were individually placed across two 
pieces of poster board that had been taped together.  The poster boards were then folded 
together around a sheet of paper, and bricks (11.8 kg) were placed on the fiber fold region 
                                                 
i "Certain commercial equipment, instruments, or materials are identified in this paper in 
order to specify the experimental procedure adequately. Such identification is not 
intended to imply recommendation or endorsement by the National Institute of Standards 
and Technology, nor is it intended to imply that the materials or equipment identified are 
necessarily the best available for the purpose." 

 



and left overnight.  Subsequently, the 50 folded and 50 non-folded virgin PPT fibers were 
then tested with each method.  This is an admittedly severe test but is one in which 
potential susceptibility to folding may be exposed. 

2.1.1  Preparation of Single Fiber Test Specimens (Method 1) 
 
The procedure for preparing single fiber tensile test specimens using the modified single 
fiber test has been described in detail elsewhere.5  The salient points are as follows: 
individual fibers were temporarily attached to paper templates with double-sided tape.  
Subsequently, small strips of silver reflective tape were applied to the template at the top 
and bottom of the gauge area.  The reflective tape allows a laser extensometer to measure 
elongation while the fiber is undergoing tensile testing.  Using the extensometer obviates 
the need to measure the compliance of the testing system as the actual strain in the fiber 
is measured.  The fibers were then permanently bonded to the template by epoxy glue.  
For the fibers exposed to the fold, the damaged region was positioned to be in the center 
of the gauge section.  A gauge length of 6.0 cm was chosen for comparability to the 
length of fiber that may be deformed during ballistic impact and because the minimum 
gauge length needed with the laser extensometer is 5.1 cm.  

2.1.2  Fiber Diameter Measurements 
Fiber diameter measurements have been described previously.5  Briefly, fiber diameters at 
five equally spaced locations along a 6 cm gauge length specimen were measured.  A 
distinct advantage of making the five measurements along the gauge length is that 
variations can be detected.  In previous research we found that if one of the five 
measurements was less than 11 μm, then there was a drastic reduction in the measured 
strain-to-failure.5  However, for the purposes of statistical analysis, the average value of 
the individual fiber was used, not all of the measurements.   It is noted here and in the 
similar section for Method 2 that there are several sources of uncertainty in diameter 
measurements.  For the optical measurements, uncertainties can come from operator to 
operator variances, non-circularity of the fiber, problems with edge detection, and 
limitations of the video camera system.  As will be seen in the results section, there were 
differences between the diameter measurements using the two methods.  These 
differences will be addressed in another paper. 

2.1.3  The Single Fiber Test for Method 1 
 
The m-SFT samples were tested at a displacement rate of 2 mm/min. Again, we note the 
difference in the displacement rate for these tests with the strain rate the fibers experience 
in their ballistic applications.  

2.2 Method 2 
 
2.2.1  Preparation of Test Specimens 
The fibers tested in the first machine had a 6 cm gauge length, so for comparison 
purposes, the same gauge length for the fibers tested was used for Method 2 (Textechno 
Herbert Stein GmbH & Co. KG).  Yarns were cut to approximately 10 cm in length and 
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df  = SQRT[(4*N)/(9*105*π*ρf)] [2]

where: 
df  = average diameter in cm 
N = fiber denier (g/9 km) 
ρf = fiber density (g/cm3) 
 

One difference between the first method and the second method is that Method 1 can 
detect possible diameter variations along the length of the fiber through multiple 
measurements along the gauge length, whereas the second method reports only a single 
diameter value averaged over the entire gauge length.  One source of uncertainty in this 
method comes from the averaging of the diameter along the gauge length.  As noted 
earlier, a uniform cross-sectional area is assumed, so if there are diameter changes along 
the length of a fiber, then this can cause changes in the frequency measurement.  This 
may induce an error in the calculation of the average cross-sectional area and hence the 
average fiber diameter.4   

2.2.3 The Single Fiber Test for Method 2 
 
Once the linear density measurement has been made, the tension is released by the 
bottom clamp moving back to the start position.  The fiber is then pulled in tension at a 
rate of 2 mm/min until fiber failure.  At that point, the fiber sections are recovered and 
held in place on a mat using double stick tape for further analysis. 

2.3  Scanning Electron Microscopy 
 
The SEM images have been obtained on the Cold Field-Emission Scanning Electron 
Microscope (FE-SEM) Hitachi S4700. To emphasize the topographical features and 
surface morphology, the images were acquired at 1 KeV with the lower Everhart-
Thornley detector.   

2.4 Statistical Analysis9,10  
 
The t test, and Mann-Whitney and Kolmogorov-Smirnov nonparametric tests were used 
to check for significant statistical differences among the four responses measured 
between Method 1 and Method 2 and between virgin and single fold test fibers. The t test 
assumes underlying Gaussian distributions for the data sets, whereas the non-parametric 
tests do not. 

3. RESULTS 
 
The mean tensile strength and modulus values for the two methods and associated 
standard deviations of the mean (s/√N), which are taken as the estimates of the standard 
uncertainties, are displayed in Table 1a, the strain and diameter measurements are shown 
in Table 1b and the force-at-failure is shown in Table 1c.  N is equal to the number of 
fibers tested (47, 48, 42, and 44 for virgin-Method 1, single fold-Method 1, virgin-



Method 2, and single fold-Method 2, respectively).  Modulus values were calculated from 
the linear portions (<1 % strain) of the tensile stress vs. strain curves. 

Table 1a: Tensile Strength and Modulus values (PPT Fibers) 
 
 Virgin Single Fold Virgin Single Fold 
 Tensile Strength 

(GPa) 
Tensile Strength 

(GPa) 
Modulus 

(GPa) 
Modulus 

(GPa) 
Method 

1 
2.77 ± 0.04 2.73 ± 0.04 69.60 ± 0.65 68.95 ± 0.61 

Method 
2 

2.91 ± 0.04 2.95 ± 0.02 77.14 ± 0.56 77.69 ± 0.48 

 
Table 1b: Strain and Diameter values (PPT Fibers) 

 
 Virgin Single Fold Virgin Single Fold 
 strain % strain % Diameter 

(μm) 
Diameter 

(μm) 
Method 

1 
3.69 ± 0.04 3.66 ± 0.05 12.99 ± 0.07 13.09 ± 0.05 

Method 
2 

3.56 ± 0.05 3.58 ± 0.03 12.76 ± 0.06 12.76 ± 0.05 

 
Table 1c: Force Values (PPT fibers) 

 
 Virgin Single Fold 
 Force (N) Force (N) 
Method 1 0.37 ± 0.01 0.37 ± 0.01 
Method 2 0.37 ± 0.01 0.38 ± 0.01 

 
Within each test method, there was no significant statistical difference between the PPT 
virgin and single fold samples.  As was reported earlier, PBO fibers had shown a 10 % 
drop in tensile strength.  There were significant statistical differences when comparing 
the results between the two methods.  The main source of variation appears to be due to 
the difference in the values of the diameters.  Since the tensile strength and modulus 
values are derived from the diameter measurements, we should expect these values to be 
statistically different, and they are.  As can be seen in Table 1c, however, the force-at-
failure values are not statistically different, thus clearly pointing to the difference in 
diameter measurements as something to examine further.   

The result that the strain-to-failure values were different was surprising.  Initial statistical 
analysis resulted in a disagreement between the t-test and the non-parametric tests.  For 
the results from the t-test to be strictly valid, the populations underlying the two data sets 
must be normal (Gaussian). Figures 2 and 3 show plots wherein the Y axis represents the 
sorted experimental strains, the X axis the normal predictions for strain. If the data are 



normal, the lines will be straight and both the t-test and non-parametric tests would be 
valid.  When a graphical analysis of the virgin fiber strain data was performed, the strain 
data using Method 2 was not straight (Figure 2), thus making the nonparametric analyses 
(and statistical graphics) the more appropriate as these methods make no assumption of 
normality. In this case the results were not significantly statistically different.   When a 
graphical analysis of the single fold strain data was performed, the strain data using 
Method 1 was not straight (Figure 3), again making the nonparametric analysis the more 
appropriate approach.  In this case the results were significantly statistically different.  
These differences may be real or may indicate a need to test more samples. 

 
Figure 2: Graphical representation of the non-Gaussian distribution for strain values 

using Method 2 for the Virgin samples.  The Y axis represents the sorted 
experimental strains, the X axis the normal predictions for strain. 

 



 
Figure 3: Graphical representation of the non-Gaussian distribution for strain values 

using Method 1 for the single fold samples.  The Y axis represents the sorted 
experimental strains, the X axis the normal predictions for strain. 

 
Interestingly, when measuring the fiber diameters, a different morphology was noted in 
the folded region for PPT fibers (Figure 4) than what had been observed previously with 
PBO fibers (Figure 5).  The morphology of the PPT fibers exhibits significant surface 
damage similar to that observed by Iyer and Viljayan after they ultrasonically agitated 
PPT fibers.11  They termed this type of damage kink bands.  With the PBO fibers, we 
observed what has been termed macrobuckling by Iyer and Viljayan.  SEM images of the 
PPT fibers before and after folding (Figure 6) and the before and after fold SEM images 
of the PBO fibers (Figure 7) give further indication of the damage being localized on the 
surface of the PPT fibers versus internal in the PBO fibers.   
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strain-to-failure was measured as 2.6 % ± 0.5 %.  This reduction could be indicative of 
hydrolytic degradation of the fibers over time.  The acid source for this degradation has 
recently been identified as polyphosphoric acid chemically bound to the PBO polymer 
chain.12   

4. CONCLUSIONS 
 
In previous work in this laboratory, a drop in tensile strength properties in PBO fibers 
after a single fold on the order of 10 % was found.  In the current work, no loss was 
observed in strength, modulus, or strain within the identical test methods for PPT fibers.  
Whereas significant internal damage was observed in the folded region of the single fold 
PBO specimens, only surface wrinkling was observed in the folded region on the single 
fold PPT specimens.  Although a single fold induced what appeared to be a specific 
damage zone, the observed point of failure was essentially a random process independent 
of damage zone.  Follow-up analysis of the PBO fibers showed the same phenomena.   
Statistically different responses in strain values were observed when comparing results of 
the single fold fibers from the two methods.  Finally, indications of hydrolytic 
degradation were observed in the PBO fibers. 
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