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ABSTRACT 

Line edge roughness (LER) has been identified as a potential source of uncertainty in optical 

scatterometry measurements.  Characterizing the effect of LER on optical scatterometry signals is 

required to assess the uncertainty of the measurement. However, rigorous approaches to modeling 

the structures that are needed to simulate LER can be computationally expensive.  In this work, we 

compare the effect of LER on angle resolved scatterometry signals computed using an effective 

medium approximation to those computed with realizations of rough interfaces.  We find that for 

correlation lengths much less than the wavelength but greater than the rms roughness, that an 

anisotropic effective medium approximation provides a satisfactory approximation in the cases 

studied.  

OCIS Codes: 050.1960, 240.1770 
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1. INTRODUCTION 

 

The optical reflectance of a periodic structure can depend strongly on the profile of that structure.  

By measuring the dependence of the reflectance on polarization and either angle of incidence or 

wavelength, with prior knowledge of the space of possible structures, and solving the inverse 

scattering problem, the profile can be determined.  Typically, the inverse problem is solved by 

parameterizing the structure, solving the forward scattering problem, and searching, via a library 

search or regression analysis, for a best match between the measurement and the forward scattering 

solution.  The method, coined scatterometry, is remarkably sensitive, even when the structure 

features are much smaller than the wavelength of the light, often with precisions in the subnanometer 

regime [1].  For that reason, the semiconductor industry has embraced scatterometry as a method for 

monitoring and controlling process [2,3]. Scatterometry, however, requires significant a priori 

knowledge of the periodic structure, usually a grating, and is subject, like any measurement 

technique, to numerous sources of error.  

Line edge roughness (LER) has been identified as a potentially significant source of uncertainty 

for these measurements [4]. While the models used in the forward scattering problem are typically 

two-dimensional in nature and one-dimensionally periodic, roughness imposes a three-dimensional 

nature with no periodicity to the problem.  As a result, most approaches towards solving Maxwell’s 

equations in the presence of roughness become significantly more difficult to implement.  

Approximate methods, if found to be accurate, are desired.  In previous work, line variations were 

treated by maintaining the two-dimensional nature of the grating, increasing the period to include 

multiple lines, and randomly varying each line’s profile [5].  The resulting simulations agreed very 
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well with a model in which the reflected field was approximated by an average over the field from 

an appropriate distribution of gratings.  However, the two-dimensional nature of these simulations 

limits the validity of the results to long range variations along the lines. Other studies have 

investigated LER both experimentally and theoretically but have limited them to square wave 

modulations of the lines [6-8]. 

In this article, we investigate the effects of short range roughness along the edge of the grating.  

We begin by approximating the rough grating as a two dimensionally periodic structure with random 

variations along the lines.  We perform simulations using an implementation of rigorous coupled-

wave (RCW) theory appropriate for two-dimensionally periodic gratings [9] and average the results 

over realizations of an ensemble of line edge profiles.   Since these computations are extremely time-

consuming, we attempt to approximate the roughness using effective medium boundary layers.  This 

approximation simplifies the problem to one which can be solved using a RCW solution for a one-

dimensionally periodic grating [10-13].   

In Section 2, we briefly outline the RCW theories we used for the one- and two-dimensionally 

periodic structures.  In Section 3, we describe how we generate self-affine line edge profiles and 

show that these structures yield results that differ from simple rectangular or sinusoidal line edge 

profiles. In section 4 we describe the effective medium approximation (EMA) that we used to 

approximate the LER.  In Section 5, we present the comparison between the models. 

2. RCW SIMULATIONS 

 

RCW theories supply approximate solutions to Maxwell’s equations for periodic, layered media, 

which converge to exact solutions provided sufficient field orders are maintained. Complete 
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descriptions of the RCW theories are beyond the scope of this paper and are best left to the original 

references [9-13].  In this section, we describe the key elements needed to replicate the simulations. 

For one-dimensionally periodic gratings, including those with EMA boundaries, we implemented the 

theory described by Moharam et al. [10,11] with a modification proposed by Li [12] and Lelanne 

and Morris [13].  The theory was further extended to allow for anisotropic media in the grating [14].  

In this study, we limited our scope to binary gratings (those with vertical sidewalls).  We thus 

divided the space into a region above the grating, the grating region itself, and a region below the 

grating.  The fields in each of the three regions were expanded in a truncated Floquet series, 

maintaining 21 orders from −10 to +10.  The 1DRCW theory requires Fourier series expansions 

coefficients for εy(x), εz(x) and 1/εx(x) where εi(x) is the dielectric permittivity for the fields in the i
th 

direction and x is along the grating vector, y is along the lines, and z is out of the sample plane (see 

Fig. 1).   

For two-dimensionally periodic gratings, with random line edge functions, we implemented the 

theory described by Li [9] (2DRCW).   Structures were defined on a 2048×2048 grid, upon which 

the required Fourier series expansions of the dielectric permittivity were performed.  The fields in 

each of the three regions were expanded in a truncated Floquet series, maintaining 861 orders from 

−10 to +10 in the grating direction (x) and from –20 to +20 in the transverse direction (y).  We chose 

the same number of orders (21) in the grating direction as we used for the 1DRCW theory, so that 

the results were identical for a nominal grating evaluated by either theory. We performed a small 

subset of the simulations using ±30 orders in the transverse direction and found that those results 

were well within 0.005 of those obtained using ±20 orders. The dimensions of the rectangular unit 

cell were the nominal grating period in the x direction and 200 nm in the y direction (along the line).  
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Because of the additional transverse field orders required for 2DRCW simulations, and because the 

calculations are dominated by matrix multiplications and inversions, the computational time was 

approximately 861
3
/21

3
 = 68921 times slower than the 1DRCW simulations.  The computer code for 

1DRCW is provided online [15], while that for 2DRCW is forthcoming.  

We applied roughness to a number of nominal binary gratings.  Except where noted, the results 

that we present are limited to a Px = 200 nm pitch binary grating consisting of w = 100 nm wide, h = 

200 nm high silicon lines on a silicon substrate (see Fig. 1).  We calculated the angular dependence 

of the specular, zero-order reflectance for s-polarization (transverse electric, TE, with electric field 

along the y direction) and p-polarization (transverse magnetic, TM, with magnetic field along the y 

direction) at a wavelength of 633 nm.  The grating vector was aligned with the plane of incidence 

(often referred to as classical mounting).  Silicon gratings were chosen because the effects of LER 

were found to be much stronger when there is a large index contrast between the grating and the 

surrounding medium.  For example, we found that the root mean square change in the reflectance 

due to LER is an order of magnitude larger for a silicon grating than for a similar photoresist grating 

on a silicon substrate.  Figure 2 shows the specular reflectance for both polarizations from the 

nominal grating, calculated by 1DRCW.  

3. GENERATION OF ROUGHNESS PROFILES 

 

We simulated reflection from gratings having a variety of line edge profiles.  While some authors 

have suggested more complex models of LER [16], others have suggested that self-affine functions 

provide adequate descriptors for real line edge profiles [17].  A self-affine function has an 

autocorrelation function ( )A ρ  of the form: 
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 ( )2
( ) exp[ / ]A

αρ ρ ξ= −  (1) 

where ρ is the distance between two points along the nominal edge, ξ  is the linear correlation 

length of the rough edge, and α is a roughness exponent.  The roughness exponent, also referred to 

as the Hurst exponent, is related to the fractal dimension of the edge and can be used to describe the 

relative amount of high frequency content in the power spectrum.  Profiles with Gaussian 

autocorrelation functions have 1α = , and profiles with exponential autocorrelation functions have 

relatively more high frequency content and 1/ 2α = .  Various process steps used to lithographically 

fabricate gratings are thought to create edge profiles with different correlation length and roughness 

exponents, and some processes, such as reactive ion etching, may introduce some directionality to 

the roughness [18].  In this paper we examine the effect of a rough edge (modulations along the y 

direction) on the scattering from a sub-wavelength silicon grating.  Calculating the reflectance from 

gratings that exhibit variations in the sidewall (modulations along both the y and z directions) would 

not have been practical, and insight can be gained into the application of the approximation methods 

using the two-dimensionally periodic LER models.    

An examination of the literature on LER [16,18-22]  indicates that typical values for the 

correlation length range between 5 nm and 30 nm, roughness exponents range between 0.15 and 1, 

and typical rms roughness values are around 2.5 nm.  For the simulations presented here, we will 

examine a grating with LER characterized by σ = 2.5 nm, ξ = 20 nm, and α = 0.5.  

Random profiles are numerically generated by calculating the power spectral density ( )P k  

function from the Fourier transform of ( )A ρ (Wiener-Khinchin theorem): 

( ) ( ) exp( )P k A ik dρ ρ ρ= ∫  
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The square root of ( )P k  is proportional to the absolute value of the Fourier transform of the random 

function we are seeking. To randomize the function, we apply a random phase to each frequency 

component.  Thus, the edge profile function ( )x y∆ can be found from the inverse Fourier transform 

of the result, 

1/ 2( ) [ ( )] exp[ ( ) ]x y a P k i k iky dkφ∆ = −∫  

where ( ) ( )k kφ φ∗= −  is a random phase uniform on the range [0, 2 )π .  The constant a was chosen to 

ensure a specific root-mean-square roughness σ .  Separate functions are created for each of the two 

edges of the line.  Figure 3 shows four examples of line edge profiles with different correlation 

lengths and roughness exponents.    

Because the edge profile functions are random, it is necessary for us to average the optical 

simulation results over a number of realizations of the ensemble.  We found that 15 realizations were 

sufficient to obtain reasonable convergence of the mean.  The inclusion of ensemble averaging is an 

additional, but necessary, computational burden to performing these simulations.  To test the 

necessity of performing the simulations with random edge profiles, rather than square wave or 

sinusoidal edge profiles, we performed a comparison of the optical responses from square wave and 

sinusoidal edge profiles (with rms amplitudes of 2.5 nm and periods Py = 20 nm) with the ensemble 

average of random profiles ( 20 nm, 1/ 2,  2.5 nmξ α σ= = = ).  The square wave and sinusoidal 

variations were correlated between the two edges of the line.  Figure 4 shows the results from that 

comparison, expressed as a change in reflectance rough nomR R− , where roughR  is the reflectance 

calculated for the rough line and nomR  is that calculated for the nominal line.  The results for the 

random modulations clearly differ from those of the sinusoidal and square wave modulations.  For 

that reason, and because natural roughness is typically not periodic, we choose to focus our attention 
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in the remaining paper on the self-affine randomly modulated edge functions. Note that for the RCW 

simulations even these randomly modulated edge functions are repeated on a periodic basis.  

However, we have attempted to minimize the effects of this periodicity by using a period along the 

length of the line that is as large as possible without excessively increasing the number of transverse 

orders needed for the solution to converge. 

4. EFFECTIVE MEDIUM APPROXIMATION 

The optical properties of composite materials can often be approximated by a uniform effective 

medium when the length scales associated with the local variations in permittivity are small 

compared to the wavelength of the light in the media.  In ellipsometric measurements of thin film 

stacks, the reflection and transmission coefficients of a rough surface are often calculated by 

replacing the rough interface by a thin film having a thickness related to the amplitude of the 

roughness and a permittivity derived from an appropriate effective medium approximation 

(EMA) [23-25].  In a similar manner, as illustrated in Fig. 1, this paper compares the 2DRCW 

simulations performed using random edge profiles with a much simpler EMA-based model that can 

be evaluated using 1DRCW.   

We will use a generalized anisotropic Bruggeman EMA to model the effective medium layers.  

This model can be derived from the generalized form of Maxwell Garnett’s effective medium 

approximation [26] using the expression for the polarizability of ellipsoidal particles [27], 

 eff 0 0

10 eff 0 0 0( ) ( )

M
i

i

i i

f
L L

ε ε ε ε
ε ε ε ε ε ε=

− −
=

+ − + −∑  (1) 

where effε  is the effective medium permittivity, 0ε  is the permittivity of the host medium, and iε  

and if  are the permittivities and volume fractions of each of the M materials.  The depolarization 
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factor L depends upon the shape of the ellipsoids and the direction of the electric field:  for spheres, 

1/ 3x y zL L L= = = , for highly prolate ellipsoids (needles) aligned along the z direction, 

1/ 2x yL L= =  and 0zL = , and for highly oblate ellipsoids (plates) aligned along the y direction 

0x zL L= =  and 1yL = . For all cases, the values for xL , yL , and zL  are constrained: they must each 

be positive and 1x y zL L L+ + = . To a reasonable approximation, they are also proportional to the 

inverse of the respective ellipsoid axis length. Since this formulation does not account for 

interactions between dipoles (or higher order multi-poles), its accuracy is limited to cases where the 

distribution of the ellipsoids is sparse.  The Bruggeman approximation attempts to correct this 

limitation by replacing the host permittivity 0ε in Eq. (1) with the effective medium permittivity effε .  

This approximation also puts all of the constituent materials on an equal footing.  For a two 

component composite material (N = 2),  assuming that 0 effε ε= , Eq. (1)  can be solved for the 

effective permittivity,   

 
[ ]2

1 1 2 2 1 1 2 2 1 2

eff

( ) ( ) ( ) ( ) 4 ( 1)

2(1 )

f L f L f L f L L L

L

ε ε ε ε ε ε
ε

− + − ± − + − − −
=

−
 (2) 

The sign is chosen to ensure that the result gives a physically sensible permittivity.  The result for 

spheres ( 1/ 3L =  for all directions) is the isotropic Bruggeman EMA (IBEMA) that is used 

extensively to model interfacial roughness in ellipsometry measurements of thin film stacks [23,25].  

However, an anisotropic model might be better for modeling edge roughness since this type of 

roughness may have a preferred orientation. The Bruggeman effective medium approximation can 

be extended to anisotropic media by allowing different depolarization factors for two or more 

directions in Eq. (2).  Implementations of anisotropic EMAs have been studied for modeling 
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structured thin films [28], but to our knowledge generalized anisotropic EMAs have not yet been 

used to study random perturbations to an otherwise one dimensionally periodic surface structure. 

 The case of 0x zL L= =  and 1yL =  reduces to form birefringence, which is appropriate for 

modeling sub-wavelength lamellar gratings [29].   Because this form of EMA is common for 

modeling form birefringent diffractive optical elements, we will refer to this approximation as the 

form birefringence effective medium approximation (FBEMA).  In this case, the permittivity reduces 

to  

( ) 0 11x z f fε ε ε ε= = − +  

and 

( ) 1 1 1

0 1[ 1 ]y f fε ε ε− − −= − +  

The form birefringence model has been suggested for modeling line edge roughness in the past [30].  

However, as applied to roughness, two important assumptions are made in deriving the expressions 

for form birefringence:  (a) the characteristic length of the roughness is small compared with the 

wavelength of the incident light, and (b) the amplitude of the roughness is large compared with the 

characteristic length of the roughness.  The latter assumption is not typically valid for LER. The 

latter assumption is not typically valid for LER, and the results shown later in this paper are never 

fully consistent with this model. 

5. RESULTS 

Figure 2 shows the angular dependence of the reflectance at a wavelength of 633 nm for the two 

polarizations for the nominal 200 nm pitch, 100 nm width, 200 nm height grating and the ensemble-

averaged reflectances for the same gratings with self-affine random roughness  (σ = 2.5 nm, 
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ξ = 20 nm, α = 0.5) calculated by 2DRCW.  The cross-polarized reflectances are not shown, but 

were found to be less than 610− .  The differences between the reflectances depend upon angle, and 

for this particular example, the effects are predominantly in the s-polarized reflectance. 

As a measure of how much the reflectances change as various parameters change, the rms 

difference between the reflectances calculated with roughness and those calculated for the nominal 

grating was determined as a function of roughness parameters.  Figure 5 shows the dependence of 

this rms difference on rms roughness, correlation length, and roughness exponent.  As expected, the 

dependence upon rms roughness starts from zero, when the rough grating is identical to the nominal 

grating.  There is also some dependence upon the roughness exponent and the correlation length, 

which suggests that a single EMA model is unlikely to be successful for all roughness conditions. 

Figure 6 shows the difference between the reflectance from the grating with LER and reflectance 

from the nominal grating (shown in Figure 2), together with the differences calculated using 

1DRCW simulations with EMA layers.  We choose to show the limiting EMA cases described 

above, in particular, the isotropic Bruggeman EMA ( 1/ 3x y zL L L= = = ), the anisotropic Bruggeman 

EMA ( 1/ 2x yL L= =  and 0zL = ), and the form birefringence EMA ( 0x zL L= =  and 1yL = ).  An 

optimized case that is discussed later in the paper ( 0.7, 0.3x yL L= = and 0zL = ) is also shown for 

comparison.  The thicknesses of the EMA layers in these calculations were set to 2t σ= .  There is 

not perfect quantitative agreement between the EMA model and the 2DRCW simulation, yet there 

are qualitative similarities that suggest that the EMA model can provide a rough estimate of the 

effects one would expect to observe from roughness.   
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While the limiting cases for the EMA theories do not match the 2DRCW simulations well, we 

consider whether optimizing the values of xL , yL , and zL  would yield a significantly improved 

match between the models.  After all, the roughness studied with the 2DRCW simulations is neither 

isotropic nor does it exhibit infinite or zero length scales. To optimize the values of xL , yL , and zL , 

we calculate the metric 

 
2

EMA 2DRCW

, , ,

1

1
( ) ( )

N

s p s p i s p i

i

S R R
N

θ θ
=

 = − ∑  (4) 

where EMA

, ( )s p iR θ  is the reflectance calculated with 1DRCW and an EMA layer, 2DRCW

, ( )s p iR θ  is the 

mean reflectance calculated using the 2DRCW with rough line edge profiles, iθ  is the ith incident 

angle, and N is the number of incident angles.  Eq. (4) is simply the rms difference between the two 

theories.  The subscript indicates the polarization.   

Optimizing on a single polarization, however, does not yield an optimum solution for both 

polarizations.  We thus chose the combined objective function  

 
2 2

s pS S S= +  (5) 

letting xL , yL , and zL  vary in 0.1 steps. We also varied the thickness t of the EMA region, but 

found that 2t σ=  yields the best results.  Furthermore, we fixed the fill factor 1/ 2f = . 

Figure 7 shows the optimal values of xL , yL , and zL  as a function of the correlation length ξ, 

holding the rms amplitude σ = 2.5 nm and the roughness exponent α = 0.5 fixed.  We find that the 

optimum values for zL  remained constant at 0, while the optimum values for xL  and yL  varied 

monotonically from approximately 0.7xL =  and 0.3yL =  at short correlation lengths to 0.9xL =  



 13 

and 0.1yL =  at long correlation lengths.  One can visualize ellipsoids of constant z and x axes whose 

y axis is short for short correlation lengths and long for long correlation lengths. 

At this point, we have only discussed one measurement configuration (reflectance as a function 

of scanning incident angle) and one nominal grating.  We also investigated a measurement where we 

held the incident angle fixed at  65θ = °  and scanned the wavelength from 290 nm to 750 nm, using 

the nominal 200 nm pitch, 100 nm width, 200 nm height grating and roughness parameters σ = 

2.5 nm, ξ = 20 nm, and α = 0.5.  Figure 8 shows the resulting comparison between the 2DRCW 

simulations and the 1DRCW simulations with EMA layer parameters 0.7, 0.3x yL L= = and 0zL = .  

The agreement is reasonably good for s-polarization.  The agreement is poorer for p-polarization, but 

there are still qualitative similarities.  Wavelengths shorter than about 380 nm, where we have less 

confidence that the 2DRCW algorithm converged, yield progressively worse agreement.   

We also considered varying the nominal grating.  We held the pitch fixed (200 nm), but varied 

the height and width of the lines.  Using the EMA model with parameters  0.7, 0.3x yL L= =  and 

0zL = , we report the rms model differences sS  and pS .  Figure 9 shows these results for both 

polarizations and five different nominal gratings.  Changing the line width had little effect on the 

overall match between the models.  Reducing the height improved the match significantly, but it 

should be borne in mind that scatterometry becomes less sensitive to other grating parameters as 

well for shallow gratings.  For the tall lines, the match is substantially poorer. 

6. CONCLUSIONS 

EMA models can provide a computationally efficient method for modeling the effects of LER in 

scatterometry measurements.  In this paper we discussed a comparison between signatures obtained 
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from EMA models for LER and those calculated with 2DRCW on rough line edge profiles.  While 

the agreement was not always perfect, they were sufficiently good to estimate the overall magnitude 

of the effects of LER in a measurement.  By further refining the EMA, we can improve the 

agreement between the simulations.  We found that, for this particular case, using an anisotropic 

EMA with parameters 0.7, 0.3x yL L= = and 0zL =  yielded much better results for short correlation 

length LER than the other models that were considered. 
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FIGURE CAPTIONS 

 
 

 

Figure 1  Schematic representations of the structures used in the simulations.  The figures show (a) 

the nominal profile, (b) a 2D periodic profile used to directly calculate the effect of LER using a 2D 

RCW algorithm, and (c) a 1D periodic profile used to approximate the effect of the LER with an 

effective medium layer.  The magnitudes of the roughness are exaggerated and the figure is not to 

scale.       

 

Figure 2  Reflectance from a silicon grating with Px = 200 nm, w = 100 nm, and h = 200 nm 

simulated for wavelength λ = 632.8 nm.  The curves represent (solid line) s-polarization and (dashed 

line) p-polarization for the nominal grating.  The symbols represent (■) s-polarization and (□) p-

polarization for a grating with LER defined by a self-affine function with σ = 2.5 nm, ξ = 20 nm, 

and α = 0.5.   

 

Figure 3 Examples of line edge profiles used in the simulations: (a) self-affine profile with ξ = 

20 nm and α = 0.5,  (b) self-affine profile with ξ = 20 nm and α = 1.0, (c) self-affine profile with ξ 

= 100 nm and α = 0.5, (d) self-affine profile with ξ = 20 nm and α = 0.75, (e) sinusoidal profile with 

Py = 20 nm, and (f) rectangular profile with Py = 20 nm.  The rms roughness values are 5 nm and the 

sides of the square boxes are 200 nm.   

 

Figure 4  The change in reflectance between the nominal grating with Px = 200 nm, w = 100 nm, 

and h = 200 nm and (solid curve) that with random LER defined by ξ = 20 nm and α = 0.5, (dashed 
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curve) that with a rectangular roughness profile with Py = 20 nm, and (dotted curve) that with a 

sinusoidal roughness profile having Py = 20 nm. The rms roughness was 2.5 nm for all three curves.    

 

Figure 5 The rms change in reflectance calculated by 2DRCW as a function of rms amplitude σ, 

correlation length ξ, and roughness exponent α as described in the text.  For each graph the 

roughness parameters that are not varied are fixed at α = 0.5, ξ = 20 nm, and σ = 2.5 nm.  The data 

are for (■) s-polarization and (□) p-polarization. 

 

Figure 6 The change in reflectance between the nominal grating and (solid squares) the grating with 

LWR defined by σ = 2.5 nm, ξ = 20 nm, α = 0.5 calculated using a 2DRCW algorithm; (solid line) 

the reflectance calculated using a 1DRCW algorithm and an EMA with (Lx, Ly, Lz) = (0,1,0);   

(dotted line) the reflectance calculated using a 1DRCW algorithm and an EMA with (Lx, Ly, Lz) = 

(0.5,0.5,0); (long-dashed line) the reflectance calculated using a 1DRCW algorithm and an EMA 

with (Lx, Ly, Lz) = (1/3,1/3,1/3); and (short-dashed line) the reflectance calculated using a 1DRCW 

algorithm and an EMA with (Lx, Ly, Lz) = (0.7,0.3,0).  The nominal grating has Px  = 200 nm, w = 

100 nm, and h = 200 nm. The fill factor was f = 0.50 and the thickness of the effective medium layer 

was t = 2σ in all cases.   

 

 

Figure 7 Best fit EMA parameters (■) Lx, (□) Ly, and (∆) Lz as functions of roughness correlation 

length.  

 

 

Figure 8 Wavelength dependent specular reflectance differences for an incident angle of 65° for 

(solid lines) the nominal grating with Px  = 200 nm, w = 100 nm, and h = 200 nm,  (solid lines) for 
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the grating with LER defined by σ = 2.5 nm, ξ = 20 nm, α = 0.5 calculated using a 2DRCW 

algorithm, and (dots) for the grating with an effective medium layer defined by  (Lx, Ly, Lz) = (0.7, 

0.3, 0),  f = 50 %, and t = 2σ.    

 

Figure 9 Objective functions (Ss and Sp) for various gratings with LER defined by σ = 2.5 nm, ξ = 

20 nm, α = 0.5.  All the gratings have Px = 200 nm. 
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Figure 1  Schematic representations of the structures used in the simulations.  The figures show (a) the nominal profile, 

(b) a 2D periodic profile used to directly calculate the effect of LER using a 2D RCW algorithm, and (c) a 1D periodic 

profile used to approximate the effect of the LER with an effective medium layer.  The magnitudes of the roughness are 

exaggerated and the figure is not to scale.       
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Figure 2  Reflectance from a silicon grating with Px = 200 nm, w = 100 nm, and h = 200 nm simulated for wavelength λ 

= 632.8 nm.  The curves represent (solid line) s-polarization and (dashed line) p-polarization for the nominal grating.  

The symbols represent (■) s-polarization and (□) p-polarization for a grating with LER defined by a self-affine function 

with σ = 2.5 nm, ξ = 20 nm, and α = 0.5.   
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Figure 3 Examples of line edge profiles used in the simulations: (a) self-affine profile with ξ = 20 nm and α = 0.5,  (b) 

self-affine profile with ξ = 20 nm and α = 1.0, (c) self-affine profile with ξ = 100 nm and α = 0.5, (d) self-affine profile 

with ξ = 20 nm and α = 0.75, (e) sinusoidal profile with P
y
 = 20 nm, and (f) rectangular profile with Py = 20 nm.  The 

rms roughness values are 5 nm and the sides of the square boxes are 200 nm.   
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Figure 4  The change in reflectance between the nominal grating with Px = 200 nm, w = 100 nm, and h = 200 nm and 

(solid curve) that with random LER defined by ξ = 20 nm and α = 0.5, (dashed curve) that with a rectangular roughness 

profile with Py = 20 nm, and (dotted curve) that with a sinusoidal roughness profile having Py = 20 nm. The rms 

roughness was 2.5 nm for all three curves.    
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Figure 5 The rms change in reflectance calculated by 2DRCW as a function of rms amplitude σ, correlation length ξ, 

and roughness exponent α as described in the text.  For each graph the roughness parameters that are not varied are fixed 

at α = 0.5, ξ = 20 nm, and σ = 2.5 nm.  The data are for (■) s-polarization and (□) p-polarization. 
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Figure 6 The change in reflectance between the nominal grating and (solid squares) the grating with LWR defined by σ 

= 2.5 nm, ξ = 20 nm, α = 0.5 calculated using a 2DRCW algorithm; (solid line) the reflectance calculated using a 

1DRCW algorithm and an EMA with (Lx, Ly, Lz) = (0,1,0);   (dotted line) the reflectance calculated using a 1DRCW 

algorithm and an EMA with (Lx, Ly, Lz) = (0.5,0.5,0); (long-dashed line) the reflectance calculated using a 1DRCW 

algorithm and an EMA with (Lx, Ly, Lz) = (1/3,1/3,1/3); and (short-dashed line) the reflectance calculated using a 

1DRCW algorithm and an EMA with (Lx, Ly, Lz) = (0.7,0.3,0).  The nominal grating has Px  = 200 nm, w = 100 nm, and 

h = 200 nm. The fill factor was f = 0.50 and the thickness of the effective medium layer was t = 2σ in all cases.   
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Figure 7 Best fit EMA parameters (■) Lx, (□) Ly, and (∆) Lz as functions of roughness correlation length.  
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Figure 8 Wavelength dependent specular reflectance differences for an incident angle of 65° for (solid lines) the nominal 

grating with Px  = 200 nm, w = 100 nm, and h = 200 nm,  (solid lines) for the grating with LER defined by σ = 2.5 nm, ξ 

= 20 nm, α = 0.5 calculated using a 2DRCW algorithm, and (dots) for the grating with an effective medium layer defined 

by  (Lx, Ly, Lz) = (0.7, 0.3, 0),  f = 50 %, and t = 2σ.    
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Figure 9 Objective functions (Ss and Sp) for various gratings with LER defined by σ = 2.5 nm, ξ = 20 nm, α = 0.5.  All 

the gratings have Px = 200 nm. 

 

 


