
Matching Observed Alpha Helix Lengths to Predicted Secondary Structure∗

Brian Cloteaux†

National Institute of Standards and Technology
Gaithersburg, Maryland, USA

brian.cloteaux@nist.gov

Nadezhda Serova
University of Maryland, Baltimore County

Baltimore, Maryland, USA
nserova1@umbc.edu

Abstract

Because of the complexity in determining the 3D struc-
ture of a protein, the use of partial information determined
from experimental techniques can greatly reduce the over-
all computational expense. We investigate the problem of
matching experimentally observed lengths of helices to the
predicted secondary structure of a protein. We give a simple
and fast algorithm for producing a library of possible solu-
tions. Then we test our algorithm by performing a series
of computational experiments of predicting the alpha helix
placement of proteins with an already known order. These
tests seem to demonstrate that our method, if given a good
prediction of the protein’s secondary structure, can gener-
ate high quality lists of potential placements of the helix
length onto the protein sequences.

1 Introduction

Understanding how specific proteins fold, or arrange
themselves in three dimensional space (3D) based on en-
vironmental and internal chemical constraints, is necessary
to determine the how these proteins function. But even
with the amino acid sequence of the proteins (1D structure)
known, the prediction of their corresponding 3D structure
is an extremely challenging problem.

This challenge is both from an experimental and compu-
tational viewpoint. Proteins require precise environments to
fold properly. Because of these numerous complications in
measuring these protein under the correct environment, ex-
perimental methods for ascertaining the 3D arrangements
are expensive, time consuming, and of limited accuracy. X-
ray crystallography, for example, is a powerful technique in
the determination of the structures, however it is ineffective
in proteins that are not easily crystallized, such as mem-
brane proteins. Many other methods provide only partial
∗Official contribution of the National Institute of Standards and Tech-

nology; not subject to copyright in the United States.
†Corresponding author.

information about the protein’s 3D structure.
At the same time, the computational problem of deter-

mining 3D structure of these proteins is, in general, in-
tractable. In order to reduce the difficulty of this problem, a
recent approach has been to use computational methods to
match observed secondary structure to the possible place-
ments on the 1D structure. This paper extends an origi-
nal investigation by He, Lu, and Pontelli [4] of the problem
of matching observed lengths of the alpha helices from the
electron cryomicroscopy technique to the predicted areas of
secondary structure.

Electron cryomicroscopy can be used to produce a den-
sity map of some proteins. Although with current technol-
ogy the resolutions of such maps are relatively low, certain
secondary structures (such as alpha helices) can still iden-
tified. These alpha helices can be identified as lengths of
amino acids, although the location of these helix lengths on
the protein sequence is not clear. He, Lu, and Pontelli sug-
gested using placing these observed length on the predicted
probability of the individual amino acids in the sequence
being in a helix. Prediction servers have been created that
are able to use the information about the protein’s sequence
in order to predict the placement of alpha helices on the 1D
sequence. Still, these methods have limited accuracy and
so the best result that can be computed is a set of possible
arrangements of the observed lengths that a researcher can
use as a starting point in determining 3D structure.

This paper offers two contributions to the matching of
observed lengths to their placement on the 1D protein struc-
ture. The first is to examine the complexity and necessity
of computing the optimal length placement. We give evi-
dence that computing optimal solutions may not be worth
the computational expense.

A second contribution is to introduce a new approach
to computing possible arrangements. He, Lu, and Pontelli
introduced a method to produce a library of likely mappings
to serve as starting points for a researcher. Our approach is
similar to the He, Lu, and Pontelli method in the sense that
it does not generate all of the possible mappings nor does
it try to find an optimal solution. Instead, we give a simple



heuristic algorithm that gives a good approximation of the
placement of the lengths and then using this approximation
as a starting point, we randomly modify it to look for other
possible solutions. We collect the best arrangements to use
as a library of possible mappings.

To test our approach, we compared the predicting length
placement produced by our algorithm to actual ordering on
several known proteins. These tests show that our method is
a fast and simple approach for producing high quality pos-
sible placements of observed alpha helix lengths onto a pro-
tein’s sequence.

2 The Maximal Cover Sum Problem

Before we examine the problem of mapping the observed
alpha helices to the predicted secondary structure, we first
will consider a closely related problem that we call the max-
imal cover sum problem. This problem consists of a set C
of covers with an associated function ω : C → N that gives
the length of each cover. There is also an n-length string P
of positive real numbers, i.e. P ∈ Rn

+. The expression Pi is
used to denote the ith value in the string P.

We define a placement of the covers on the string using
an index function I : C → {1..|P|}. The value I(c) gives
the index in P of the first location to place the cover c. Any
index function has the following three restrictions.

1. ∀c1,c2 ∈ C , I(c1) = I(c2) if and only if c1 = c2

2. ∀c1,c2 ∈C , if I(c1) < I(c2) then I(c1)+ω(c1) < I(c2)

3. ∀c ∈ C , I(c)+ω(c)≤ |P|

The first two restrictions say that covers are not allowed to
overlap as they cover the string P. The last restriction pre-
vents covers from extending beyond the length of the string
P. These restrictions trivially imply that if for a problem
instance the condition

|P| ≥ ∑
c∈C

ω(c)

does not hold, then no index function can exist for that in-
stance.

The maximal cover sum problem is then to find an index
function that maximizes the expression

∑
c∈C

ω(c)−1

∑
j=0

Pj+I(c)

In other words, find a arrangement of the covers in C that
covers the largest total of values on P.

We are interested in this problem since we can view
matching the observed lengths of helices to the predicted
secondary structure of a protein as a maximal cover sum

problem. When examining possible arrangements of the
helices onto the protein string, we would expect that the ar-
rangements that cover the maximal value for the predicted
probabilities of helices would be the most likely to occur in
the actual protein. Thus we would be most interested in ex-
amining those arrangements first while trying to determine
the 3D structure of the protein.

In considering how to obtain an optimal arrangement, we
first notice that for any given ordering of the covers, we can
compute an optimal covering using that ordering in poly-
nomial time. To show this, we define π as an ordering of
the cover set C = {c1,c2, ...,cn}, i.e. the value of π(i) is
the position of the element ci ∈ C in the order π . The in-
verse function π−1 then takes a position i in the ordering
and returns the cover in that position. Using a given order
π , we can define the following recurrence equation that de-
termines the size of an optimal covering using π .

m(a,b)=


0 if a or b = 0,

max
(

m
(
a,b−1

)
, m

(
a−1,b−ω(π−1(a))

)
+

∑
b
k=b−ω(π−1(a))+1 Pk

)
In this definition, the value m(a,b) computes value of the
maximal covering of the first a covers in the order π onto
the first b positions of the string P. The recursion is based
on determining whether or not an optimal covering covers
the b position of P with π−1(a). By using dynamic pro-
gramming, this recurrence and its associated index function
can be computed in O(|C | · |P|) time.

Thus the complexity in the maximal cover set problem
stems from finding an order that produces an optimal cov-
ering. In general, finding an optimal ordering is superpoly-
nomial in the number of covers unless P = NP. This is a
consequence of the fact that we can reduce the set partition
problem, which is NP-complete [3], to the maximal cover
sum problem. To see this, consider an instance of a set parti-
tion problem with a multiset of values S. Using the multiset
S, we can create an instance of the maximal cover problems
with by making the set of covers C where |C|= |S| and the
length of the covers are the values in S. We then create a
string P where

P =

1,1,1, ...1,1︸ ︷︷ ︸
`

,0,1,1,1, ...1,1︸ ︷︷ ︸
`


and ` = ∑c∈C ω(c)

2 . The point of this construction is that the
maximal cover sum is equal to ∑c∈C ω(c) = 2` if and only
if the multiset S can be equally partitioned.

Although the set partition problem is NP-complete, our
reduction does not necessarily prove that the maximal cover
sum problem is NP-hard. This is because the number of bits
needed in our create string P can potentially be exponen-
tial to the number bits in S and so the size of the instance



Protein id Number
optimal
solutions

Minimum
Kendall-tau
distance

Average
Kendall-tau
distance

Minimum
Hamming
distance

Average
Hamming
distance

1CC5 1 0.667 0.667 0.750 0.750
6TMN E 2 0.238 0.310 0.286 0.286
3TIM A 1 0.100 0.100 0.400 0.400
2TSC A 5 0.095 0.305 0.429 0.600
1ECA 6 0.190 0.294 0.429 0.714
1GD1 O 2 0.067 0.100 0.333 0.500
1L58 8 0.393 0.429 0.625 0.688
2PHH 1 0.476 0.476 1.000 1.000

Table 1. The table shows the distances from the optimal covering orders to the actual arrangement
of the alpha helices for the given proteins. All distances have been normalized so that a distance of
zero is an identical ordering and a distance of one is maximally dissimilar.

for the maximal cover sum problem can be exponentially
larger than that of the set partition problem. But this re-
duction does tell us two facts about the maximal cover sum
problem. The first is that if there are hard instances of this
problem where the maximum value in the cover set of these
instances is bounded by a polynomial based on the size of
the cover sets, then the problem itself would have to be NP-
hard. But more importantly, even if this problem is in poly-
nomial time, we would still not expect for there to be any
algorithm to determine an optimal order that is polynomial
in the size of the cover set. In other words, for some in-
stances we probably cannot do much better than brute force
checking of the permutations in order to find an optimal one.

3 Examining Optimal Solutions

Since it appears that finding an optimal solution, or espe-
cially the top k optimal solutions, to the maximal cover sum
problem is computationally difficult, it is necessary to ask
whether we need to find these solutions in order to perform
the matching. In order to test this assumption, we com-
puted the optimal solutions for a number of proteins and
then compared those results with the actual ordering.

The list of proteins we used were originally selected in
the He, Lu and Pontelli paper [4]. The covers were gen-
erated taking the lengths all alpha helices in the protein of
length greater than 7. This was done to match the cover sets
in the He, Lu and Pontelli experiments. The predictions of
the secondary structure came from the PHD algorithm [6]
in the PredictProtein server [7]. This server is able to give
probabilities for each amino acid within the sequence, cor-
responding to the likelihood of its participation in an alpha
helix. It assigns for each amino acid in the sequence a value
ranging from 0 to 9. A prediction value of 0 means that
it is highly unlikely for that amino acid to be a part of an

alpha helix, while a value of 9 corresponds to a very high
likelihood.

While there are a number of distance measures for list
orders (for example, see chapter 6 of Diaconis [1] and Fa-
gin, Kumar and Sivakumar [2]), we focused on two metrics.
The first is the Hamming distance between the orders. This
is a measure of the number of items that are in the same
position between two lists. If π and σ are orderings of the
cover set C = {c1,c2, ...,cn}, then the Hamming is defined
as

dHam(π,σ) = n−|ci ∈ C : π(ci) = σ(ci)|

In order to compare the distance between orders of different
lengths, we used a normalized version of the Hamming dis-
tance that we obtain by dividing the value dHam by n. This
normalization maps all distances to interval [0,1], where a
distance of 0 represents identical orders and a distance of 1
are orders that are maximally disordered to each other. For
the Hamming distance, maximally disordered lists share no
common item for any position in the list.

A second metric that we will consider is the Kendall-tau
distance. This distance is defined as

dKτ(π,σ) = |(ci,c j) ∈ C 2 : π(ci) < π(c j)
∧ σ(ci) > σ(c j)|

The Kendall-tau distance is sometimes called the Bubble-
Sort distance since it is equivalent to the number of flips
needed in BubbleSort to transform one order to the second.
Again, we normalized the Kendall-tau distance to the inter-
val [0,1] by dividing the value dKτ by

(n
2

)
. For the Kendall-

tau distance, two maximally disordered lists are in reverse
order of each other.

Our experiment involved computing all the optimal or-
ders for each of the test proteins. In most instances, there



are multiple optimal solutions. We then computed the min-
imum and mean Kendall-tau and Hamming distances from
the set of optimal solutions to the actual arrangement for the
protein. These results are shown in Table 1.

One point to notice is that for all the given proteins, none
of the optimal solutions were the actual ordering of the pro-
teins. In fact, we can see examples, like 1L58, where a num-
ber of optimal solutions exist and also where all of these so-
lutions are relatively distant from the actual order. These re-
sults call into question whether it is worth the computational
expense to compute the optimal coverings of the predicted
secondary structure.

4 A Greedy Heuristic for Maximal Cover
Sum

Because of the uncertainty inherent in predicting sec-
ondary structure strictly from 1D structure, we should not
be surprised that the optimal ordering is often a large dis-
tance from the actual order. This suggests that finding op-
timal orders may not be worth the computational expense,
and that a simpler approximation method can be used. To-
wards this goal, we introduce a simple and fast heuristic
(Algorithm 1) for producing a covering. The produced
cover will not necessarily be optimal, but it will cover a
large sum on the string.

The idea behind our algorithm is simple. For a set of cov-
ers, we take a cover c having the largest length and place it
on the string P where it covers the greatest sum of values.
We now create a new string P′ which concatenates together
the sections of P that are not covers by c. For the remaining
covers C −{c}, we obtain an index function I′ for plac-
ing them on the string P′ by calling our routine recursively.
Now using the index function I′, we can construct an index
function I for the cover set C and P. If i is the starting index
of c on P, then this construction breaks into three cases. The
first is for every cover c′ ∈C −{c} that is completely placed
on P′ before i, in other words I′(c)+ω(c)≤ i. For this case,
we simply copy the index over, i.e. I(c′) = I′(c′). The sec-
ond case is when the cover is completely after i, (I′(c′) > i),
then we can insert the cover in P by offsetting its index by
ω(c) to make room for the cover c (I(c′) = I′(c′)+ ω(c)).
The final case is when a cover overlaps the index i (I′(c′) < i
and I′(c′)+ ω(c′) > i). In this case, we notice that we can
cover the sames indices in P by keeping c′ at the same in-
dex and sliding c over by the length of c′ (i.e. I(c′) = I′(c′)
and I(c) = I′(c′)+ω(c′)). An example of this algorithm is
given in Figure 1.

The advantage of this heuristic is that it gives a fast
and reasonable covering of the string. As Figure 1 demon-
strates, this algorithm does not necessarily produce an opti-
mal placement of the covers, but if there exists optimal solu-
tions where the placement of covers are all separated on the

Input: a set of covers C with an associated length
function ω and a string P

Output: an array I that maps set of covers C to
indices in P

Create empty index array I
if C 6= /0 then

n← |C |
c← a cover in C with maximal length
i← smallest index of a maximal cover of c on P
I[n]← i
I′← cov(C −{c},P1,i⊕Pi+Cn,|P|)
for j← 1 to n−1 do

if I′[ j] < i then
I[ j]← I′[ j]
if I′[ j]+ω(c) > i then

c j← cover in position j
I[n]← I[n]+ω(c j)

end
else

I[ j]← I′[ j]+ω(p)
end

end
end
return I

Algorithm 1: A heuristic algorithm cov for producing a
covering of the string with a high sum. In this algorithm,
the symbol ⊕ denotes string concatenation.

string, this heuristic can often return one of those solutions.
Since the recursion depth of the algorithm is the number of
covers, and for each cover we need to check the string P for
its optimal placement, we see that we can implement this
algorithm to run in time O(|C | · |P|).

In Table 2, we compare the distance of the cover order
produced by this simple heuristic to the actual ordering of
the helices on the proteins. Surprisingly, it seems that this
heuristic often produces a result that it closer to the protein
helix arrangement than using the set of optimal solutions.

5 Randomized Orderings Based on Bubble-
Search

Since the complexity in the maximal cover sum prob-
lem is in determining the correct order, our approach is,
instead of trying to compute every possible placement, to
use a randomized process to find the high value orderings
and then use only the optimal placement of those orderings.
Our method is based on the randomized BubbleSearch al-
gorithm of Lesh and Mitzenmacher [5]. Their approach
is a heuristic used to search for optimal orderings, espe-
cially in NP-hard applications. The basic algorithm starts
with a simple approximation of the optimal order, called



p values
Protein id Val 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1CC5

Min. Kτ 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.167
Mean Kτ 0.379 0.332 0.338 0.334 0.307 0.300 0.261 0.243 0.209
Std. Kτ 0.191 0.186 0.183 0.165 0.153 0.155 0.128 0.101 0.075

Min. Ham. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.500
Mean Ham. 0.640 0.645 0.636 0.675 0.660 0.659 0.650 0.649 0.601
Std. Ham. 0.248 0.264 0.260 0.254 0.239 0.243 0.236 0.200 0.186

6TMN E

Min. Kτ 0.000 0.143 0.095 0.143 0.143 0.143 0.143 0.190 0.286
Mean Kτ 0.474 0.468 0.466 0.501 0.497 0.511 0.518 0.535 0.553
Std. Kτ 0.152 0.139 0.138 0.147 0.145 0.127 0.114 0.100 0.074

Min. Ham. 0.000 0.286 0.429 0.286 0.571 0.429 0.429 0.429 0.714
Mean Ham. 0.824 0.826 0.843 0.856 0.857 0.852 0.858 0.897 0.949
Std. Ham. 0.156 0.153 0.139 0.140 0.120 0.140 0.146 0.116 0.092

3TIM A

Min. Kτ 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.100
Mean Kτ 0.439 0.412 0.380 0.339 0.328 0.295 0.284 0.220 0.164
Std. Kτ 0.206 0.180 0.186 0.172 0.163 0.174 0.161 0.144 0.100

Min. Ham. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.400
Mean Ham. 0.705 0.692 0.697 0.664 0.671 0.634 0.657 0.591 0.526
Std. Ham. 0.230 0.212 0.224 0.215 0.188 0.212 0.206 0.199 0.176

2TSC A

Min. Kτ 0.048 0.048 0.000 0.000 0.000 0.000 0.048 0.048 0.048
Mean Kτ 0.348 0.325 0.307 0.260 0.252 0.228 0.215 0.174 0.142
Std. Kτ 0.131 0.131 0.154 0.127 0.131 0.138 0.132 0.116 0.106

Min. Ham. 0.286 0.286 0.000 0.000 0.000 0.000 0.286 0.286 0.286
Mean Ham. 0.678 0.647 0.629 0.596 0.576 0.551 0.528 0.496 0.519
Std. Ham. 0.178 0.157 0.186 0.185 0.185 0.196 0.160 0.150 0.124

1ECA

Min. Kτ 0.095 0.048 0.095 0.143 0.143 0.143 0.143 0.143 0.190
Mean Kτ 0.436 0.442 0.435 0.424 0.416 0.419 0.418 0.400 0.391
Std. Kτ 0.151 0.148 0.144 0.151 0.124 0.110 0.112 0.092 0.072

Min. Ham. 0.286 0.286 0.429 0.429 0.286 0.286 0.286 0.286 0.571
Mean Ham. 0.824 0.794 0.824 0.834 0.841 0.854 0.864 0.816 0.801
Std. Ham. 0.160 0.172 0.148 0.146 0.153 0.138 0.141 0.145 0.132

1GD1 O

Min. Kτ 0.067 0.000 0.000 0.067 0.067 0.067 0.067 0.067 0.067
Mean Kτ 0.438 0.423 0.361 0.365 0.338 0.294 0.250 0.238 0.186
Std. Kτ 0.170 0.170 0.167 0.165 0.153 0.148 0.129 0.128 0.097

Min. Ham. 0.333 0.000 0.000 0.333 0.333 0.333 0.333 0.333 0.333
Mean Ham. 0.772 0.769 0.713 0.712 0.717 0.688 0.673 0.663 0.663
Std. Ham. 0.191 0.174 0.189 0.175 0.167 0.164 0.140 0.136 0.093

1L58

Min. Kτ 0.071 0.036 0.071 0.071 0.036 0.036 0.071 0.107 0.143
Mean Kτ 0.322 0.298 0.301 0.306 0.308 0.296 0.280 0.272 0.262
Std. Kτ 0.113 0.117 0.104 0.092 0.102 0.089 0.083 0.063 0.044

Min. Ham. 0.250 0.250 0.250 0.375 0.250 0.250 0.250 0.375 0.375
Mean Ham. 0.676 0.674 0.672 0.686 0.666 0.664 0.649 0.651 0.676
Std. Ham. 0.144 0.134 0.130 0.121 0.124 0.123 0.125 0.105 0.095

2PHH

Min. Kτ 0.095 0.048 0.048 0.000 0.048 0.000 0.048 0.048 0.048
Mean Kτ 0.437 0.407 0.394 0.381 0.350 0.309 0.277 0.254 0.189
Std. Kτ 0.159 0.153 0.156 0.153 0.146 0.158 0.134 0.134 0.095

Min. Ham. 0.286 0.286 0.286 0.000 0.286 0.000 0.286 0.286 0.286
Mean Ham. 0.759 0.739 0.745 0.725 0.715 0.692 0.633 0.628 0.625
Std. Ham. 0.166 0.175 0.178 0.188 0.174 0.192 0.194 0.184 0.163

Table 3. The table gives the normalized distances from the randomized BubbleSearch orders to the
actual arrangement of the alpha helices on the given proteins. For each protein and p-value, 200
random orders were produced, using the greedy heuristic as the base order. This table shows the
minimum, mean, and standard deviation of the Kendall-tau and Hamming distances for these random
orders.



C = {5,3,3},P = (1,6,8,9,9,9,7,0,1,4,8,9,9,7,7,1)
(a) Instance of problem

(1,
︷ ︸︸ ︷
6,8,9,

︷ ︸︸ ︷
9,9,7,0,1,4,

︷ ︸︸ ︷
8,9,9,7,7,1)

(b) Optimal solution

(c) Example run of algorithm

Figure 1. This figure gives an example of how the heuristic algorithm constructs an ordering. Starting
with the set C of cover lengths and a string P in 1(a), the algorithm (shown in 1(c)) greedily places the
largest cover onto P and then removes that covered section from the string. When it has selected all
cover lengths, it then inserts the covers while sliding over any covers that overlap. Figure 1(b) gives
the optimal solution for this covering showing that the algorithm is a heuristic.

Protein id Kendall-tau
distance

Hamming
distance

1CC5 0.167 0.500
6TMN E 0.571 1.000
3TIM A 0.100 0.400
2TSC A 0.095 0.571
1ECA 0.381 0.714
1GD1 O 0.133 0.667
1L58 0.250 0.750
2PHH 0.143 0.714

Table 2. Distances to the actual ordering from
the ordering produced by the greedy heuristic
algorithm cov

the base order, which is usually derived by using some type
of greedy method. Using the base order, a series of random
orders are then created. Starting from first cover in the base
order and then progressing through the order sequentially,
each cover is added to a new order with some probability
p. If the end of the order is reached without placing all the
covers, then it starts from the first remaining one. If the
base order is π and the new order is σ , then the probability
of producing σ is proportional to (1− p)dKτ (π,σ). In other
words, the closer the two orders are in Kendall-tau distance,
the more likely it is to produce σ from π . The choice of

p controls how large the radius of probable orders will be
around the base order. Thus, as p approaches 1, then the
Kendall-tau distance between the orders approaches 0.

For the observed helix matching problem, we conducted
a series of computational experiments where we generated
a base order using our heuristic and then generated 200 ran-
dom orders each for a series of values for p. We then com-
puted the Kendall-tau and Hamming distances between the
randomly generated orders and the actual order of the pro-
tein. These results are shown in Table 3. We notice from
these test results, that in every instance, the BubbleSearch
method was able to find an ordering that was either the cor-
rect ordering or very close.

Since the value of p tends to be domain specific, it is not
specified for the randomized BubbleSearch algorithm. In-
stead, the user must tune that parameter for their individual
problems. In examining the results of our experiments, it
seems that p = 0.6 provides a good initial value for exam-
ining protein orders. This value seems to be a compromise
between keeping most orders reasonable close to the base
ordering, but still allowing the structure to be modified into
a fundamentally different orderings to avoid being trapped
in a local minima. Using this idea, we purpose the follow-
ing work flow to produce k potential matchings when inves-
tigating how to relate the observed helix lengths to the 3D
structure.

1. Generate a base order using our greedy heuristic.

2. Run the randomized BubbleSearch algorithm with p =



0.6 for c · k times for some c≥ 1.

3. For each order generated, find its optimal placement
and compute the sum covered, saving the k top valued
placements.

In the Lesh and Mitzenmicher paper, a second form of ran-
domized BubbleSearch is suggested where the base order-
ing is modified whenever an ordering is found that produces
an better value. Since we are interested in generating a list
of values and not just an optimal value, we have not imple-
mented this extension in our tests. It is open whether this
extension can have produce better results for our problem.
Also, we point out that this method can be trivially paral-
lelized if needed.

6 Conclusions

In this paper, we examined the problem of matching ob-
served lengths of alpha helices to their proper location on a
protein’s amino acid sequence. This is a first step towards
determining the 3D structure of the protein. Our first con-
clusion is that finding an optimal solution does not seem to
be worth the computational effort. In particular, we showed
evidence that, because of the uncertainty of the helix predic-
tion, the optimal coverings can be relatively distance from
the actual ordering on the protein.

Instead, we introduced a simple greedy heuristic for es-
timating the order. Using this heuristic as a starting point,
we choose random order around it using the BubbleSearch
method of Lesh and Mitzenmacher. When compared to the
actual orderings, this method always found the correct or-
dering or produced an ordering that was very close. Thus,
we believe that our method is a fast and efficient algo-
rithm for determining a set of potential placements of helix
lengths onto a protein sequence.

Acknowledgments

This research was performed while the second author
was at NIST supported by the Summer Undergraduate Re-
search Fellowship (SURF) program.

References

[1] P. Diaconis. Group Representations in Probability and Statis-
tics, volume 11 of Lecture Notes - Monograph Series. Insti-
tute of Mathematical Statistics, 1988.

[2] R. Fagin, R. Kumar, and D. Sivakumar. Comparing top k
lists. SIAM Journal on Discrete Mathematics, 17(1):134–160,
2003.

[3] M. R. Garey and D. S. Johnson. Computers and Intractability;
A Guide to the Theory of NP-Completeness. W. H. Freeman
& Co., New York, NY, USA, 1990.

[4] J. He, Y. Lu, and E. Pontelli. A parallel algorithm for helix
mapping between 3d and 1d protein structure using the length
constraints. In ISPA ’04: Proceedings of Second International
Symposium on Parallel and Distibuted Processing and Appli-
cations, pages 746–756, 2004.

[5] N. Lesh and M. Mitzenmacher. Bubblesearch: A simple
heuristic for improving priority-based greedy algorithms. In-
formation Processing Letters, 97(4):161–169, 2006.

[6] B. Rost and C. Sander. Prediction of protein secondary struc-
ture at better than 70% accuracy. Journal of Molecular Biol-
ogy, 232(2):584–599, 1993.

[7] B. Rost, G. Yachdav, and J. Liu. The PredictProtein server.
Nucleic Acids Research, 32:W321–326, 2004.


	Introduction
	The Maximal Cover Sum Problem
	Examining Optimal Solutions 
	A Greedy Heuristic for Maximal Cover Sum
	Randomized Orderings Based on BubbleSearch
	Conclusions

