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Bochner Subordination, Logarithmic Diffusion Equations, and Blind
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Abstract. Generalized Linnik processes and associated logarithmic diffusion equations can be constructed
by appropriate Bochner randomization of the time variable in Brownian motion and the related
heat conduction equation. Remarkably, over a large but finite frequency range, generalized Linnik
characteristic functions can exhibit almost Gaussian behavior near the origin, while behaving like
low exponent isotropic Lévy stable laws away from the origin. Such behavior matches Fourier
domain behavior in a large class of real blurred images of considerable scientific interest, including
Hubble space telescope imagery and scanning electron micrographs. This paper develops a powerful
blind deconvolution procedure based on postulating system optical transfer functions (otfs) in the
form of generalized Linnik characteristic functions. The system otf and “true” sharp image are
then reconstructed by solving a related logarithmic diffusion equation backward in time, using the
blurred image as data at time t = 1. The present methodology significantly improves upon previous
work based on system otfs in the form of Lévy stable characteristic functions. Such improvement is
validated by the substantially smaller image Lipschitz exponents that ensue, confirming increased
fine structure recovery. These results resolve the unexplained appearance of exceptionally low Lévy
stable exponents in previous work on the same class of images. The paper is illustrated with striking
enhancements of gray-scale and colored images.
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1. Introduction. This paper deals with blind deconvolution of a class of real blurred im-
ages of considerable scientific interest, as opposed to synthetically degraded phantoms. A
preselected class of trial optical transfer functions (otfs), not previously known in image anal-
ysis, is shown to produce striking enhancements of Hubble space telescope images and other
astronomical data, as well as useful sharpening of scanning electron micrographs of interest
in Nanotechnology. Such improvements may not be apparent in the reduced size images in
the printed copy of this paper. However, significant enhancement becomes evident when the
on-line version of this paper is viewed at full size on a modern high resolution device, such
as a wide screen, active matrix, liquid crystal display (LCD) monitor. As noted below, this
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degree of fine structure reconstruction is difficult to achieve with existing techniques.

The term characteristic function used in this paper refers exclusively to the Fourier trans-
form of a probability density function [18], [27]. Such an object has distinct mathematical
properties not shared by Fourier transforms of general L1 functions [4]. Optical transfer func-
tions are examples of characteristic functions [9]. The types of otfs considered here can be
viewed as Fourier transforms of Green’s functions for generalized diffusion equations, just as
a Gaussian distribution is the Green’s function for a heat conduction equation. These otfs
belong to the class of infinitely divisible characteristic functions [18], [27], [32]. Deconvolu-
tion with such otfs can be accomplished in slow motion by solving the associated generalized
diffusion equation backward in time. This is useful in the blind problem. However, this ap-
proach is not applicable to classical defocus or motion blurs, because the associated otfs are
not infinitely divisible.

Blind deconvolution seeks to deblur an image without knowing the cause of the blur. An
ideal mathematical approach to this problem would be based on formulating an appropri-
ate variational principle, whereby both the unknown sharp image and the unknown blur can
simultaneously be obtained as the unique minimum of a suitable energy functional. This
functional should incorporate effective regularizing constraints that can stabilize ill-posedness
without unduly restricting the class of admissible solutions. However, for the present class of
problems, such variational approaches thus far proposed have had very limited success. This
is discussed later. The more productive methodology developed here is based on identifying a
plausible blurring otf from within a restricted class of candidate blurs. Slow motion deconvo-
lution plays an essential role in this identification. The choice of trial otfs is governed by the
Fourier domain behavior in the blurred imagery under consideration. In general, the results
of any blind deconvolution procedure on real data must be viewed as producing a hypothetical
true image and blur. There can be no assurance that the actual true image and blur satisfy the
a priori constraints incorporated in an energy functional, or the assumptions underlying the
present methodology. As in other real inverse problems, the value of such hypothetical results
must subsequently be assessed by experienced analysts, using independent considerations.

Previous work on the above class of problems [10], [11] was based on candidate otfs in the
form of isotropic Lévy stable characteristic functions [18], [27], [31] and the use of time-reversed
diffusion equations involving fractional powers of the negative Laplacian. An important ob-
servation in [7], [10], [11] is that the successful deblurring otfs are characterized by low Lévy
exponents, with typical values less than 0.5, while Gaussian otfs have exponent 2. Such low
values are quite exceptional in applications where Lévy stable laws appear. The physical ori-
gin, if any, of such exponent values is not known. The present method is based on otfs in the
form of generalized Linnik characteristic functions [16], [26], [32] and the use of time-reversed
diffusion equations involving the logarithm of the negative Laplacian plus the identity. Linnik
otfs have distinctly different behavior near the origin than do Lévy stable otfs. We show that
this results in higher quality reconstructions than previously obtained. This improvement in
fine structure recovery can be quantified by measuring the resulting decrease in image Lip-
schitz exponents [8], [13]. Moreover, the high frequency behavior in the successful Linnik
deblurring otfs resolves the previously unexplained appearance of low Lévy exponents in [10]
and [11].

Brownian motion, represented by Gaussian probability distributions, is pervasive in many
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branches of science, and Gaussian otfs are ubiquitous in image reconstruction. However,
the frequent occurrence of Lévy stable motion in many areas of application, including image
science, is equally noteworthy. Such motion may be interpreted as Brownian motion taking
place in a specific randomized time [18]. The resulting heavy-tailed probability distribution
is often found to be a better physical model than the Gaussian distribution. Randomized
Brownian motion is an example of Bochner subordination of stochastic processes [5], [6], [18],
[32], whereby a given Markov process X(t), t > 0, is observed in new stochastic “operational
time” S(t), rather than in standard clock time t, resulting in the process X(S(t)). This concept
has been found fruitful in several branches of science, engineering, and finance [1], [15], [19],
[20], [35]. In that context, generalized Linnik characteristic functions describe the family
of processes obtained when isotropic Lévy stable motions are observed in the randomized
operational time Γ(t), where for each t > 0, Γ(t) obeys a Gamma distribution on u ≥ 0.
The important special case of Brownian motion observed in stochastic time Γ(t) is called the
Variance Gamma Process [28], [29]. This has been used successfully in option pricing.

Image acquisition involves the interaction of several interfacing optical and electronic
devices, each producing a small distortion of the input signal. Additional aberrations may
result from the scattering properties of the medium through which radiation propagates. A
significant empirical discovery [21], [22], [23] is that a large variety of electro-optical imaging
devices have otfs given by Lévy stable characteristic functions. Very recently [3], an optical
material was created with a specific kind of inhomogeneity, in which the scattering of light
waves results in Lévy flights rather than Brownian motion. A prescribed Lévy exponent for
this scattering process can be engineered by proper synthesis of the inhomogeneity. As already
noted, Lévy stable motions are related to Brownian motion through Bochner subordination.
A second subordination, involving the Γ(t) process, would result in generalized Linnik otfs.
Conceivably, Linnik otfs may play an unsuspected role in many imaging situations.

Bochner subordination also plays an important role in operator semigroup theory and
evolutionary partial differential equations. By combining subordination with the Hille–Yosida
theorem, a functional calculus for semigroup generators is developed in [30], whereby entirely
new semigroups can be created by randomizing the time variable. See also [12]. We shall
use this functional calculus to construct the relevant diffusion equations in our slow motion
deconvolution procedure.

The blind deconvolution procedure presented here is fundamentally different from such
variational blind formulations as [14] and [24]. These methods aim to solve the blind de-
convolution problem in full generality, by minimizing an appropriate cost functional. Such
techniques do not appear useful for the present class of problems. The method in [14] is pri-
marily intended for “blocky” images and for point spread functions with edges. Astronomical
images are typically diffuse and partly amorphous and are very far from being of bounded
variation. Use of [14] tends to eliminate individual star clusters and other localized bright
areas, which are interpreted as unwanted noise. The method in [24] requires a prior guess for
the system otf. However, even with a good guess, this method often returns a questionable
sharp image associated with a new, but physically impossible, otf [9]. Other more promising
approaches, such as [2], exploit prior knowledge of the edge map in the unknown image. Most
galaxy images lack well-defined sharp edges.

The use of generalized Linnik densities as trial blurring kernels in this paper is primarily
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motivated by their mathematical properties. The semigroup property of infinite divisibility
[18], [27], [32], the Fourier domain Gaussian-like behavior near the origin, together with the
monotone convex high frequency behavior which imitates the blurred image data, all play
essential roles. We do not claim an actual physical basis for Linnik otfs, and the significance
of this paper ultimately rests on the quality of the reconstructions. However, our results
strongly suggest a possible physical basis for such Linnik otfs, mediated by subordination as
in previously mentioned applications. These otfs appear to mimic the behavior of the true
otfs sufficiently well to produce credible results.

If and when comprehensive blind deconvolution methods become available, the method-
ology presented here is likely to remain useful. It can provide independent reconstructions
for comparison, and it can provide valuable initial guesses that might be refined by more
elaborate procedures.

2. Convolution blurring of images and conservation of L1 norms. All images in this
paper are 8-bit images, with pixel values scaled from 0 to 255. Given an image g(x, y), we
define its Fourier transform by

(1) ĝ(ξ, η) ≡
∫
R2

g(x, y)e−2πi(ξx+ηy)dxdy,

and we denote by ‖ g ‖r the Lr(R2) norm of g(x, y). Typically, r = 1 or 2. We also use the
“total variation” seminorm

(2) ‖ g ‖TV≡‖ ∇g ‖1.
In general, a real blurred image g(x, y) contains noise n(x, y) which may be signal-dependent:

(3) g(x, y) = ge(x, y) + n(x, y), ‖ n ‖r�‖ ge ‖r, r = 1, 2.

Here, ge(x, y) denotes the exact blurred image that would have been recorded in the absence
of any errors or noise, and n(x, y), assumed small, may be a nonlinear function of ge(x, y).
Neither ge(x, y) nor n(x, y) are known; only their sum g(x, y) is known.

We assume the blurred image g(x, y) to result from convolution of the true sharp image
f(x, y) with a shift-invariant point spread function (psf) h(x, y),

(4) g(x, y) =

∫
R2

h(x− u, y − v)f(u, v)dudv ≡ h⊗ f,

where ⊗ denotes convolution on L1(R2). The psf h(x, y) is a probability density function,
since it is nonnegative and integrates to unity. Because f(x, y), g(x, y) ≥ 0, it follows from
(4) that ‖ g ‖1=‖ f ‖1. Thus convolution of f with h conserves L1 norms. However, given
g(x, y) = h⊗ f , deconvolution of g with some point spread function k(x, y) �= h(x, y) need not
conserve L1 norms, even in the absence of noise. This may be seen as follows using Fourier
transforms. Let f(x, y) ∈ L1(R2) be an image with sharp edges and fine structure, let h(x, y)
be the Gaussian psf with Fourier transform exp{−(ξ2 + η2)}, and let k(x, y) = h ⊗ h. Then,
if g = h⊗ f , then

(5)

ĝ(ξ, η) = exp{−(ξ2 + η2)}f̂(ξ, η),

f̂ †(ξ, η) = exp{2(ξ2 + η2)}ĝ(ξ, η) = exp{(ξ2 + η2)}f̂(ξ, η).
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Clearly, f̂ †(ξ, η) is not the Fourier transform of an image in L1(R2) if f̂(ξ, η) decays too slowly
at ∞.

3. Imagery with monotone Fourier decay and positive monotone otfs. While the psf
h(x, y) in (4) is always nonnegative, the otf ĥ(ξ, η) is complex-valued in general. However,
there is a large class of isotropic otfs ĥ(ξ, η) = ĥ(ρ), ρ =

√
ξ2 + η2, which are also positive

and monotone decreasing. This follows from Schoenberg’s theorem on completely monotone
functions [17], [33]. Gaussians are the best-known prototype of such otfs. This paper seeks to
identify objects ĥapp(ρ) in that class that can successfully capture the essential aspects of the

possibly more complex true otfs ĥtrue(ξ, η) and result in useful reconstructions.
The example in Figure 1 is representative of a large class of images of galaxies and other

astronomical objects and serves to motivate the ideas behind the method. An original 512×512
pixel Pleiades (M45) image g(x, y) is shown on the left-hand side at the top of Figure 1. The
deblurred image on the right-hand side is a good representation of a sharp Pleiades image
f(x, y), and we shall consider f(x, y) to be the “true” Pleiades image for the purpose of this
discussion. It is instructive to compare the corresponding Fourier images ĝ(ξ, η), f̂(ξ, η). Of
particular interest are the plots of log |ĝ(ξ, 0)| and log |f̂(ξ, 0)| vs. |ξ|, shown as the blue curves
in the middle part of Figure 1. While these blue traces are locally highly oscillatory, they are
globally monotone decreasing and convex, as even functions of ξ. The red curves p(ξ) and q(ξ)
capture the gross behavior in the blue traces away from the origin. The curve p decays faster
than the curve q. Both p and q were chosen so as to have a maximum value of 0, attained at
ξ = 0. In addition, as shown in the bottom drawing in Figure 1, the curves log |ĝ(ξ, 0)| and
log |f̂(ξ, 0)| are such that away from the origin, the ratio of these two quantities remains fairly
constant, fluctuating around some mean value larger than 1. Accordingly,

(6)
log |ĝ(ξ, 0)|/ log |f̂(ξ, 0)| ≈ Constant > 1, |ξ| � 1,

p(ξ)/q(ξ) ≈ Constant > 1, |ξ| � 1.

A comparison of the left- and right-hand sides in Figure 1 leads to the following. Assume
that the original image g(x, y) on the left is the convolution of the true image f(x, y) on the
right, with a psf htrue(x, y). We may identify possible otfs ĥapp(ρ) using

(7)

ge(x, y) + n(x, y) ≡ g(x, y) = htrue(x, y)⊗ f(x, y),

log |ĝ(ξ, η)| = log |ĥtrue(ξ, η)| + log |f̂(ξ, η)| ≈ log ĥapp(ρ) + log |f̂(ξ, η)|,

log |ĝ(ξ, 0)| ≈ log ĥapp(ρ) + log |f̂(ξ, 0)|,

log |ĝ(ξ, 0)| ∼ p(ξ), log |f̂(ξ, 0)| ∼ q(ξ), |ξ| � 1,

log ĥapp(ρ) ∼ p(ρ)− q(ρ), ρ� 1.

Thus, under the preceding assumptions, behavior in ĥapp(ρ) away from the origin can be
inferred from that in p − q. In practice, we are given an original image g(x, y) with Fourier
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Original Pleiades (M45)    True  Pleiades ?

true

original

original / true

Behavior in Fourier Transform Domain 

p

 Original    M45                    True      M45 ?

q

Figure 1. The above Pleiades Fourier transform behavior is representative of a large class of images. Away
from the origin, blurred image data log |ĝ(ξ, 0)| on the left and “true” image data log |f̂(ξ, 0)| on the right exhibit
similar highly oscillatory globally convex monotone behavior, but the left-hand data decays faster. Moreover, the
ratio log |ĝ(ξ, 0)|/ log |f̂(ξ, 0)| remains fairly constant, fluctuating around some mean value larger than unity.
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domain behavior similar to that on the left in Figure 1, but we do not have f(x, y). We may find
p(ξ) but not q(ξ). However, for a large class of blurred images g(x, y), the a priori assumption
that the corresponding true image f(x, y) has Fourier behavior similar to that on the right of
Figure 1, and obeys (6), is found to lead to useful reconstructions. Accordingly, using (6) and
(7) together with g(x, y), we postulate that with some unknown constant c, 0 < c < 1,

(8)

q(ρ) ∼ cp(ρ), ρ� 1,

log ĥapp(ρ) ∼ (1− c)p(ρ), ρ� 1.

3.1. Unknown parameter in candidate otfs. Not all images g(x, y) display the globally
monotone decreasing Fourier domain behavior shown in Figure 1, but important classes of
images share this property [7]. For such images, following the development leading to (8)
above, we use nonlinear least squares to fit the data log |ĝ(ξ, 0)| with a suitable monotone
decreasing function p(ξ) with p(0) = 0. We next seek to locate a candidate otf ĥ(ρ) by
finding the right constant c, such that log ĥ(ρ) = (1 − c)p(ρ). This implies a restriction on
p(ρ), which must be such that for any constant b with 0 < b < 1, the function bp(ρ) is the
logarithm of a characteristic function. This is the case if and only if exp{p(ρ)} is an infinitely
divisible characteristic function [18], [27]. As may be anticipated from (5) above, and will be
fully discussed in section 5 below, the unknown positive constant c in (8) can be determined
by marching an appropriate generalized diffusion equation backward in time and monitoring
conservation of L1 norms as t ↓ 0.

4. Infinitely divisible otfs and subordinated diffusion equations. In the deconvolution
problem h(x, y) ⊗ f(x, y) = g(x, y), the targeted class of images exhibits globally monotone
Fourier decay. Accordingly, we direct attention to candidate otfs from the following three
types of infinitely divisible, isotropic monotone characteristic functions:

(9)

ĥ(ρ) = exp(−σρ2), σ > 0, ρ =
√
ξ2 + η2 (Gaussian),

ĥ(ρ) = exp(−σρα), σ > 0, 0 < α ≤ 2 (Lévy stable),

ĥ(ρ) = (1 + σρα)−λ , σ, λ > 0, 0 < α ≤ 2 (generalized Linnik).

These three otf types satisfy Schoenberg’s theorem [17], [33]. In physical (x, y) space,
the corresponding psfs are isotropic bell-shaped surfaces with distinct tail behavior. Typical
examples of each of the three types of psfs are shown in Figure 2. The non-Gaussian psfs
are heavy-tailed probability density functions. Each of these three types is associated with a
diffusion equation. The Gaussian case, representing Brownian motion, corresponds to the heat
equation, as is well known. The other two types involve stochastic processes and corresponding
diffusion equations that result from randomizing the time variable in Brownian motion. We
shall show this by introducing the notion of the subordinated semigroup [12], [30], [32] together
with the functional calculus that constructs the associated evolution equation.

Consider a family of functions {pt(u)} indexed by t ≥ 0 and defined on u ≥ 0, and such
that for each fixed t > 0, pt(u) is a probability density function on u ≥ 0. Assume that



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

LOGARITHMIC DIFFUSION EQUATIONS AND BLIND DECONVOLUTION 961

Behavior near vertex in Eq. 9 psfs.

Heavy tails in non Gaussian psfs.

Gauss

Levy stable

Linnik

Levy stable

Linnik

Gauss

Figure 2. Typical point spread functions corresponding to each of the three otf types in (9). Generalized
Linnik (brown) and Lévy stable (red) psfs exhibit heavier tails than the Gaussian psf (blue).

pt(u) ∗ ∗ps(u) = pt+s(u), where ∗∗ denotes convolution on u ≥ 0, and that pt(u) → δ(u) as
t ↓ 0. For fixed t > 0, the Laplace transform of pt(u) is defined by

(10) L(pt) =
∫ ∞

0
pt(u)e

−uzdu, Re z > 0.

Definition 1. A Bochner subordinator is a family {pt(u)} as defined above, such that L(pt) =
exp{−tψ(z)}, where ψ(z) is holomorphic for Re z > 0 and continuous for Re z ≥ 0, with
Re ψ(z) ≥ 0. Moreover, ψ(0) = 0, and ψ′(x) is completely monotone on x > 0. The function
ψ(z) is called the Bernstein function.

The following two subordinator examples, involving the Gamma and Inverse Gaussian
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families, respectively, yield closed form expressions:

(11)

pt(u) = {Γ(λt)}−1σ−λtuλt−1e−u/σ, σ, λ > 0, L(pt) = (1 + σz)−λt,

pt(u) = {te−t2/4u}/
√
4πu3, L(pt) = e−t

√
z.

The Inverse Gaussian is the special case β = 1/2 of the important Lévy subordinator family
of index β, where 0 < β ≤ 1. For β �= 1/2, this subordinator is not known in closed form and
is defined implicitly by

(12) pt(u) = L−1(e−tz
β
), Re z > 0.

In the above, whenever multivalued Bernstein functions ψ(z) appear, the particular branch
of ψ(z) such that Re ψ(z) > 0 on Re z > 0 is always understood.

Let U(t) be the operator semigroup e−tA associated with the well-posed linear evolution
equation wt = −Aw, t > 0, w(0) = f in a Banach space B. Bochner subordination involves
randomizing the time variable in U(t) as follows. Let {pt(u)} be a Bochner subordinator with
Bernstein function ψ(z), and define a new semigroup T (t) by

T (t)f =

∫ ∞

0
pt(s)U(s)fds, f ∈ B,

=

∫ ∞

0
pt(s)e

−tAfds = e−tψ(A)f,(13)

on using L(pt) = exp{−tψ(z)}. Thus, formally, if U(t) = e−tA, the subordinated semigroup
T (t) is the semigroup e−tψ(A) associated with the well-posed linear evolution equation wt =
−ψ(A)w, t > 0, w(0) = f . See [12], [30], [32].

4.1. Subordinated Green’s functions. Let A be a linear partial differential operator in
the space variables in R2, with constant coefficients. Let ĥ(ξ, η, t) denote the Fourier transform
of the Green’s function for the linear evolution equation wt = −Aw. The Green’s function
ĥψ(ξ, η, t) for wt = −ψ(A)w can be obtained from ĥ(ξ, η, t), using the composition law for
subordinated characteristic functions [32, Chapter 6],

(14) ĥψ(ξ, η, t) = exp
[
−tψ(− log{ĥ(ξ, η, 1)})

]
.

We may now apply the foregoing analysis together with (14) to identify the diffusion equations
wt = −ψ(A)w associated with (9). We begin with the well-posed forward heat equation and
its Gaussian Green’s function

(15)

wt = aΔw, t > 0, a > 0,

ĥ(ξ, η, t) = exp(−tσρ2), σ = 4aπ2, ρ =
√
ξ2 + η2.

Lévy subordination with ψ(z) = zβ in (15) leads to a well-posed forward fractional diffusion
equation, with a Lévy stable Green’s function

(16)

wt = − [
b(−Δ)β

]
w, t > 0, b > 0, 0 < β ≤ 1,

ĥ(ξ, η, t) = exp(−tδρ2β), δ = b(4π2)β, ρ =
√
ξ2 + η2.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

LOGARITHMIC DIFFUSION EQUATIONS AND BLIND DECONVOLUTION 963

Next, Gamma subordination with ψ(z) = λ log{1+σz} in (16) results in a well-posed forward
logarithmic diffusion equation, with a generalized Linnik Green’s function

(17)

wt = − [
λ log{1 + c(−Δ)β}]w, t > 0, c > 0, 0 < β ≤ 1,

ĥ(ξ, η, t) = (1 + γρ2β)−λt, γ = c(4π2)β, ρ =
√
ξ2 + η2.

The generalized Linnik process may also be viewed as resulting from a single subordination
of Brownian motion with the Bernstein function ψ(z) = λ log(1 + σzβ).

4.2. Backward diffusion equations. Given the blurred image g(x, y), consider the decon-
volution problem h(x, y) ⊗ f(x, y) = g(x, y), where the otf ĥ(ξ, η) is known and corresponds
to one of the three types in (9). We may view ĥ(ξ, η) as the Green’s function ĥ(ξ, η, t) at
time t = 1, in the corresponding forward evolution equation wt = −Lw, in one of (15), (16),
or (17). Deconvolution is mathematically equivalent to solving wt = −Lw backward in time,
given the noisy blurred image g(x, y) as data at time t = 1. For 0 < t < 1, w(x, y, t) is a
partially deblurred image. The fully deblurred image f(x, y) is the solution at time t = 0.

Such backward continuation in diffusion equations is notoriously ill-posed. The SECB
method (see [25] for an up-to-date discussion) is a well-regularized continuation procedure
that takes into account the presence of noise in g(x, y) at t = 1. With n(x, y) as in (3), let
constants ε, M be given such that

(18) ‖ w(0) ‖2≡‖ f ‖2≤M, ‖ w(1)− g ‖2≡‖ n ‖2≤ ε, ε�M.

For any constant K > 0 such that K �M/ε define s∗ by

(19) s∗ = log {M/(M −Kε)} / log(M/ε).

The slow evolution constraint applied to the backward solution of wt = −Lw requires that
there exist a known constant K, 0 < K �M/ε, and a known fixed s� s∗, such that

(20) ‖ w(s)− w(0) ‖2≤ Kε.

Let T (t), t ≥ 0, be the solution operator corresponding to wt = −Lw. Given the regularization
parameters K and s, the SECB solution to the backward problem is w†(x, y, t) = T (t)f †(x, y),
where f †(x, y) is that initial value w†(x, y, 0) which minimizes

(21) ‖ w(1)− g ‖22 +K−2 ‖ w(s)− w(0) ‖22
over all choices of initial values w(x, y, 0) in L2. We may express f †(x, y) in (21) in terms of
T (t) as follows:

(22) f †(x, y) = Argminf∈L2

{‖ T (1)f − g ‖22 +K−2 ‖ (T (s)− I)f ‖22
}
.

This leads to the following Euler–Lagrange equation for f †(x, y):

(23)
{
T (1)∗T (1) +K−2(T (s)− I)∗(T (s)− I)

}
f † = T (1)∗g.
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With ĥ(ξ, η, t) the Fourier transform of the Green’s function for wt = −Lw, we have ̂T (t)f =
ĥ(ξ, η, t)f̂ (ξ, η). We may use (23) to find the fully deblurred SECB image f †(x, y) in closed
form in the Fourier transform domain. We have, with z denoting the complex conjugate of z,

(24) f̂ †(ξ, η) =
ĥ(ξ, η, 1) ĝ(ξ, η)

|ĥ(ξ, η, 1)|2 +K−2|1− ĥ(ξ, η, s)|2 ,

leading to f †(x, y) upon inverse transforming. The partially deblurred SECB image w†(x, y, t)
is then defined by

(25) ŵ†(ξ, η, t) =
ĥ(ξ, η, t) ĥ(ξ, η, 1) ĝ(ξ, η)

|ĥ(ξ, η, 1)|2 +K−2|1− ĥ(ξ, η, s)|2 , 0 ≤ t < 1.

In the present case of isotropic positive otfs ĥ(ρ, t), ρ =
√
ξ2 + η2, we may dispense with

complex conjugates and absolute values in (25) and obtain the simpler form

(26) ŵ†(ξ, η, t) =
ĥ(ρ, t) ĥ(ρ, 1) ĝ(ξ, η)

ĥ2(ρ, 1) +K−2(1− ĥ(ρ, s))2
, 0 ≤ t < 1.

4.3. Marching backward in time in Fourier space. With the blurred image g(x, y) as
data at time t = 1, the SECB method can be efficiently implemented as a marching procedure
in Fourier space, using FFT algorithms. Fix a positive integer N , let τ = 1/N, and let
R(ρ) = {ĥ(ρ, 1)}−τ . Let tn = 1 − nτ, n = 0, 1, . . . , N. Then, t0 = 1, and tN = 0. One can
generate the solution in (26) by marching backward in time from t = 1 to t = 0, recursively,
as follows:

(27)
ŵ(ξ, η, t0) = ĥ2(ρ, 1)ĝ(ξ, η)/{ĥ2(ρ, 1) +K−2(1− ĥ(ρ, s))2},

ŵ(ξ, η, tn) = R(ρ)ŵ(ξ, η, tn−1), n = 1, . . . , N.

4.4. Choosing the regularization parameters K and s in (21). This requires a good
guess for the ratio M/ε, and K � M/ε should be chosen as large as possible. However, real
blurred images contain signal-dependent noise n(x, y) that may be difficult to characterize
and estimate. With the blurred image g(x, y) as data at time t = 1, a good strategy is to fix
s = 0.001, say, and then adjust K interactively. Increasing K increases fine scale resolution
in the deblurred image, but too large a value of K brings out noise as t ↓ 0. Several trials are
typically necessary to properly tune K and s. In the deblurring experiments discussed below,
s is fixed at the value s = 0.001, and K ranges from K = 40 to K = 100.

5. Blind deconvolution. Identifying the unknown constant in (8) by marching backward
in time. Conservation of L1 norms. The developments in the previous section presuppose
knowledge of the otf ĥ(ξ, η, t). In general, as emphasized in [7, Figure 1], given a blurred
g(x, y), there may be a large number of distinct otfs that can competently deblur that image.
In fact, the blind deconvolution problem has a multiplicity of distinct useful solutions, as well
as an infinite number of meaningless solutions. A related observation is that solutions to the



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

LOGARITHMIC DIFFUSION EQUATIONS AND BLIND DECONVOLUTION 965

blind problem obtained by minimizing a variational energy functional generally depend on
the particular initial guess chosen, with different initial guesses producing different outcomes.
Moreover, as shown in [9], such variational solutions may be based on physically impossible otfs
and be invalid. Here, as indicated in section 3, given an image g(x, y), we seek to identify the
system otf by a least squares fit to the data log |ĝ(ξ, 0)|, with a suitable monotone decreasing
function p(ξ) with p(0) = 0, as in Figure 1. The function p(ρ) is chosen so that exp{p(ρ)} is
one of the three characteristic function types in (9). From (8), the system otf we seek is given
by exp{(1 − c)p(ρ)} with an unknown constant c, 0 < c < 1. However, we may locate useful
values for c as follows. Define

(28) ĥ(ξ, η, t) = exp{tp(ρ)}, 0 ≤ t ≤ 1, ρ =
√
ξ2 + η2,

so that ĥ(ξ, η, t) is the Green’s function corresponding to one of the diffusion equations in (15),
(16), or (17). Using this in (26), (27), together with g(x, y) as data at t = 1, great benefit
derives from the ability to perform the deconvolution in slow motion by marching backward in
time in the diffusion equation wt = −Lw. Recall from section 2 that convolution of an L1(R2)
image f(x, y) with a psf h(x, y) leads to a blurred image g(x, y) with ‖ g ‖1=‖ f ‖1. However,
as shown in (5), deconvolution of g(x, y) with a psf k(x, y) that is “wider” than h(x, y) need
not preserve L1 norms. In such an image, legitimate high frequency components are falsely
overamplified, leading to severe ringing and other artifacts, even in the absence of any noise
in g(x, y). This is oversharpening. Continuation all the way to t = 0 in (26), (27), with
ĥ(ξ, η, t) as in (28), is equivalent to falsely setting c = 0 in (8), thereby deblurring g(x, y) with
a psf that is too wide. This necessarily produces oversharpening. Displaying the evolution of
the image w†(x, y, tn) in (27), as tn decreases from 1 to 0, together with the accompanying
diagnostic information ‖ w†(., tn) ‖1, ‖ ∇w†(., tn) ‖1, allows for monitoring the deblurring
process. At first, deconvolution is well behaved, with ‖ w†(., tn) ‖1 remaining constant, while
‖ ∇w†(., tn) ‖1 increases monotonically, reflecting the gradual sharpening of edges and other
localized singularities as tn ↓ 0. However, inevitably, ringing, noise, and other artifacts begin
to appear in the image w†(x, y, tn), as high frequency components are falsely overamplified. A
time t# > 0 is reached such that both ‖ w†(., tn) ‖1 and ‖ ∇w†(., tn) ‖1 increase monotonically
for 0 ≤ tn < t#.

5.1. Terminating continuation and selecting an optimal image. For 0 ≤ tn < t#, the
increase in ‖ ∇w†(., tn) ‖1 primarily reflects increasing noise, while the increase in ‖ w†(., tn) ‖1
is due to oversharpening. It may seem natural to choose w†(x, y, t#) as the optimal image.
However, visual monitoring shows that image quality is usually already degraded at t = t#,
and the best image is typically found at some t > t# > 0. Terminating continuation at t > 0
is equivalent to redefining p(ρ) in (28) to be p(ρ) = (1− t)p(ρ), and then selecting the image
at t = 0 as optimal. Clearly, t corresponds to the unknown constant c in (8). The ability
to adjust the otf and corresponding image interactively, in the manner described above, is an
essential component of the present methodology.

In practice, the image L1 norm may show a modest increase as t decreases from t = 1 to
t = t. Conservation of the L1 norm in w†(x, y, t) can be enforced for any desired t by rescaling
w†(x, y, t) to the value ‖ g ‖1.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

966 ALFRED S. CARASSO

Behavior near the origin

Least squares fits in M51

Levy fit

Linnik  fit

Linnik

Levy

Figure 3. Blurred M 51 image data log |ĝ(ξ, 0)| can be well fitted with a Lévy stable otf, as well as with a
generalized Linnik otf. Both otfs have similar behavior away from the origin but differ fundamentally near the
origin. This difference will play a crucial role.
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Lipschitz exponents in Kitt Peak M51 image

Original M51  Levy deblur  Linnik deblur

Figure 4. The logarithmic diffusion equation produces higher quality reconstruction of the Whirlpool galaxy
image than does the fractional diffusion equation. Such differences in quality are reflected in the smallness of
the image Lipschitz exponent, which equals twice the slope of the corresponding Σ line. Here, the original image
has Lip α = 0.39, the Lévy image has Lip α = 0.21, and the Linnik image has Lip α = 0.13.

6. Logarithmic vs. fractional diffusion in Whirlpool galaxy image. We shall now demon-
strate the significance of the preceding developments by applying them to sharpen real blurred
images with unknown blurs, subject to real but unknown noise processes. Our first example
is a 1024 × 1024 pixel image g(x, y) of the Whirlpool galaxy (M51), taken by Travis Rector
and Monica Ramirez at the Kitt Peak National Observatory (NOAO/AURA/NSF) (National
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Optical Astronomy Observatory/Associated Universities for Research in Astronomy/National
Science Foundation).

In Figure 3, we examine the data log |ĝ(ξ, 0)|. With ρ =
√
ξ2 + η2, we first consider a

Lévy stable fit using ĥ(ρ) = exp(−δρ2β), δ > 0, 0 < β ≤ 1. While a Gaussian otf (β = 1.0) is
an allowed possibility, the monotone convexity property in log |ĝ(ξ, 0)| forces β ≤ 0.5, which
precludes Gaussians. The resulting least squares fit yields δ = 1.07, β = 0.15. Next, with
w(x, y, 1) = g(x, y), we solve the fractional diffusion equation wt = − [

b(−Δ)β
]
w, 0 ≤ t ≤

1, b = δ(4π2)−β , backward in time, using an FFT implementation of (26), (27). With the
regularization parameters K = 40.0, s = 0.001, the optimal image was found at t = 0.75.
The L1 norm was conserved on t ≤ t ≤ 1.0, while the TV norm increased almost fourfold.
The reconstructed image is the middle image at the top of Figure 4. The value 2β = 0.30 for
the Lévy exponent is much lower than what is typically found in most physical applications
of Lévy stable laws.

The analysis in section 3 emphasizes the behavior of ĥ(ρ) away from the origin and makes
it plausible that the system otf might be identifiable from that behavior. For blurred imagery
with monotone convex Fourier decay, low exponent Lévy stable laws are natural candidate
otfs in blind deconvolution. The fundamental observation of this paper is that there exist otfs
with behavior away from the origin that is almost identical to that in low exponent Lévy stable
laws, yet with behavior near the origin that is almost Gaussian. Indeed, consider a generalized
Linnik fit to the same M51 data log |ĝ(ξ, 0)|, using ĥ(ρ) = (1+ γρ2σ)−λ, γ, λ > 0, 0 < σ ≤ 1,
as shown in Figure 3. This results in σ = 0.86, γ = 0.09, λ = 0.821. The bottom drawing in
Figure 3 illustrates the major difference between Levy and Linnik otfs near the origin. We next
solve the logarithmic diffusion problem, wt = − [λ log{1 + c(−Δ)σ}]w, c = γ(4π2)−σ, 0 ≤
t ≤ 1, w(x, y, 1) = g(x, y), backward in time, using (26), (27). Here, with K = 40.0, s = 0.001
in (25), we now find the optimal image at t = 0.65. Again the L1 norm was conserved on
t ≤ t ≤ 1.0, but the TV norm increased almost sevenfold. The reconstructed image is the
rightmost image at the top of Figure 4.

Clearly, while the Lévy deblurred image significantly sharpens the original, the Linnik
deblurred image provides higher quality reconstructions of the spiral arms, dustlanes, and
galactic cores. The image Lipschitz exponent, discussed below, is a valuable image metrology
tool that can measure the extent of fine structure recovery in deblurring and can quantify any
improvement produced using logarithmic rather than fractional diffusion equations. This tool
will be used throughout this paper.

7. Fine structure recovery and image Lipschitz exponents. An image f(x, y) has L1

Lipschitz exponent α if and only if

(29)

∫
R2

|f(x+ h1, y + h2)− f(x, y)|dxdy ≤ Constant |h|α, |h| → 0,

where |h| = (h21 + h22)
1/2, and α is fixed with 0 < α ≤ 1. Most images are not smoothly

differentiable functions of x and y but display edges, localized sharp features, and other
significant fine scale details or texture. The Lipschitz exponent measures the fine structure
content of an image, provided that image is relatively noise-free. The value of α decreases
with increasing fine structure. An image that is of bounded variation, or smoother, has α = 1.
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Most natural images have α < 0.6 and are not of bounded variation. Images of starfields,
galaxies, and clusters of galaxies often have α < 0.3.

In [8], [13], an effective method for estimating image Lipschitz exponents is developed,
based on a major theorem in [34]. For fixed τ > 0, define the linear operator Gτ by means of
the Fourier series

(30) Gτf =
∞∑

ξ,η=−∞
exp{−τ(ξ2 + η2)}f̂(ξ, η) exp{2πi(xξ + yη)}.

Let μ(τ) = ‖ Gτf − f ‖1 / ‖ f ‖1 be the L1 relative error in approximating f with Gτf . An
image f(x, y) has Lipschitz exponent α if and only if μ(τ) = O(τα/2) as τ ↓ 0. Using FFT
algorithms, (30) can be evaluated for each fixed τn > 0 in a sequence {τn} tending to zero,
together with μ(τn). By plotting μ(τn) vs. τn on a log-log scale, positive constants C and α
can be located such that μ(τ) ≤ C τα/2 as τ ↓ 0.

The three red curves in the bottom drawing in Figure 4 are plots of μ(τ) vs. τ for each
image in Figure 4. Each plot is majorized by a blue straight line Σ. The Lipschitz exponent
α of each image is equal to twice the slope of the corresponding Σ line. Accordingly, the
original M51 image has Lip α = 0.39. The Lévy deblurred image has Lip α = 0.21, indicating
significant sharpening of the original. However, the Linnik deblurred image has Lip α = 0.13,
a striking improvement.

8. Tail behavior in physical space and resolution of mysterious Lévy exponents in [10],
[11]. The improved reconstruction of M51 using the Linnik otf is directly traceable to the
difference in behavior near the origin in the bottom drawing in Figure 3. As can be inferred
from that drawing, selecting the Lévy otf rather than the Linnik otf implicitly declares the
low frequencies in the blurred image g(x, y) to be significantly more attenuated than would be
implied by the Linnik otf. Consequently, in deblurring with the fractional diffusion equation,
such low frequencies are necessarily amplified to a larger extent than would occur using the
logarithmic diffusion equation. Such spurious overamplification causes saturation and loss of
resolution in the galactic cores and spiral arms in the Lévy image. To mitigate this effect, the
exit point t in the Lévy case must generally be chosen larger than in the Linnik case, which
leads to less sharpening. As shown in Figure 5, such Lévy image saturation phenomena near
the galactic cores are fairly common. As will be seen below, Linnik otf behavior near the
origin plays a beneficial role in all the blind deconvolution experiments in this paper.

In physical (x, y) space, both the isotropic two-dimensional Lévy stable and generalized
Linnik probability densities are heavy-tailed densities. However, although the corresponding
characteristic functions can have the almost identical high frequency behavior shown in Figure
3, the tail behavior in physical (x, y) space in these two psfs can be distinctly different, as
exemplified in Figure 2. Indeed, such tail behavior is directly related to the smoothness of
the characteristic function near the origin in Fourier (ξ, η) space. The following important
theoretical results may be found in [26]:

ĥLevy(ξ, η) = exp(−δρ2β), δ > 0, 0 < β < 1, ρ =
√

(ξ2 + η2),

=⇒ hLevy(x, y) = O
(
R−2−2β

)
, R ↑ ∞, R =

√
(x2 + y2).

(31)
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Levy deblur

Orig NGC3310Orig M61

Levy deblur

Linnik deblur Linnik deblur

Figure 5. Fractional diffusion processing generally causes saturation and loss of resolution near galactic
cores, due to the behavior of Lévy stable otfs near the origin, as shown in Figure 3. The use of logarithmic
diffusion avoids this difficulty.
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ĥLinn(ξ, η) = (1 + γρ2σ)−λ, γ, λ > 0, 0 < σ < 1, ρ =
√

(ξ2 + η2),

=⇒ hLinn(x, y) = O
(
R−2−2σ

)
, R ↑ ∞, R =

√
(x2 + y2).

(32)

Applied to the M51 image in Figure 3, where δ = 1.07, β = 0.15, σ = 0.86, γ = 0.09, and
λ = 0.821, this leads to

(33) hLevy(x, y) = O
(
R−2.3

)
, hLinn(x, y) = O

(
R−3.72

)
, R ↑ ∞.

Thus, the Linnik density has a much thinner tail than the Lévy density in physical space. In
summary, in the Whirlpool galaxy image in Figure 3, the successful generalized Linnik psf has
the tail behavior of a Lévy stable density with exponent 2β = 1.72 in physical (x, y) space, but
the high-frequency behavior of a stable density with 2β = 0.30 in Fourier (ξ, η) space. Similar
behavior characterizes the successful Linnik otfs in other blind deconvolution experiments
in this paper. This result resolves the unexplained appearance of exceptionally low Lévy
exponents in the detected successful Lévy otfs in [10] and [11]. Clearly, such low exponents
are not physically meaningful, but stem from choosing Lévy stable otfs, rather than generalized
Linnik otfs, to match monotone convex high-frequency behavior in the blurred image data in
[10] and [11].

9. Logarithmic diffusion and Hubble space telescope imagery. It is remarkable that the
seemingly naive methodology developed in the previous sections can be useful in improving
Hubble imagery. However, in many cases, faint background objects can be made more visi-
ble, and the structure of foreground objects can become more clearly defined. This appears
to be possible for the third-generation instrument known as the Advanced Camera for Sur-
veys (ACS), recently repaired in May 2009, as well as for the “workhorse” Wide Field and
Planetary Camera 2 (WFPC2), replaced with WFPC3 in May 2009. The on-line version of
this paper will be helpful in the subsequent discussion. Credit for the three images to be
deconvolved below includes NASA (National Aeronautics and Space Administration), ESA
(European Space Agency), the Hubble Heritage Team (STScI/AURA) (Space Telescope Sci-
ence Institute/Association of Universities for Research in Astronomy), A. Riess (STScI), and
K. Noll (STScI).

1. Pinwheel galaxy NGC 1309. The example at the top of Figure 6 is a February 2006
Hubble telescope image of the spiral galaxy NGC 1309. The image was taken with Hubble’s
most powerful camera, the Advanced Camera for Surveys. NASA describes this image as
featuring bright bluish clusters of star formation, together with dust lanes spiraling into a
yellowish central core of older-population stars. The image is complemented by far-off back-
ground galaxies. This galaxy is also home to a supernova that can help astronomers measure
the expansion rate of the universe.

Considerable enhancement of these features is possible using logarithmic diffusion. The
color image was broken up into its constituent red, green, and blue component images (RGB),
and each component was treated in turn. For each component, log |ĝ(ξ, 0)| was best fitted
with the generalized Linnik otf expression ĥ(ρ) = (1 + γρ2σ)−λ, γ, λ > 0, 0 < σ ≤ 1.
For the blue component, this results in γ = 0.174, λ = 0.653, and σ = 0.88. Otfs for the
other two components were found to differ only slightly from the blue component otf. The



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

972 ALFRED S. CARASSO

Original HST NGC1309

  Linnik deblur

Figure 6. Successful blind deconvolution of Hubble space telescope NGC 1309 image. The original blue
component image has Lip α = 0.25. The Linnik blue component has Lip α = 0.09.
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Linnik  deblur

Original HST NGC6050

Figure 7. Successful blind deconvolution of Hubble space telescope NGC 6050 image. The original blue
component image has Lip α = 0.28. The Linnik blue component has Lip α = 0.15.
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Original HST NGC3310

   Linnik deblur

Figure 8. Successful blind deconvolution of Hubble space telescope NGC 3310 image. The original red
component image has Lip α = 0.26. The Linnik red component has Lip α = 0.14.
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Original SEM

Linnik deblur

Figure 9. Blind deconvolution of scanning electron micrograph of complex crystalline structure recovers
numerous surface particles and other fine detail. The original image has Lip α = 0.37. The Linnik image has
Lip α = 0.20.
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Original SEM

Linnik deblur

Figure 10. Blind deconvolution of scanning electron micrograph of slab like crystalline structure recovers
fine scale detail. Note the improvement in the corner structures. The original image has Lip α = 0.48. The
Linnik image has Lip α = 0.25.
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latter was therefore used for all three components. We next solve the logarithmic diffusion
problem, wt = − [λ log{1 + c(−Δ)σ}]w, c = γ(4π2)−σ, 0 ≤ t ≤ 1, w(x, y, 1) = g(x, y),
backward in time, using (26), (27). In all three cases, with the regularization parameters
K = 40.0, s = 0.001 and with t = 0.7, the L1 norm was conserved on 1 ≥ t ≥ t, without
rescaling, while the TV norm increased fivefold.

The Linnik deblurred image is shown at the bottom of Figure 6. At the outskirts of
that image, several far-off galaxies have become more visible, and the scythe-shaped structure
at eleven o’clock is now brighter and more clearly defined. Previously barely visible outer
spiral arms have been recovered, along with a multitude of previously faint stars. Within the
galaxy’s main body, the bluish star clusters along the spiral arms, and the dust lanes are now
much better resolved.

Evidently, significant fine-structure reconstruction was achieved, and this is reflected in
Lipschitz exponents. For the blue component, the original image has Lip α = 0.25, while the
Linnik image has Lip α = 0.09. Lévy deblurring of the blue component required termination
at t = 0.8 and displayed loss of resolution due to saturation. That image had Lip α = 0.12.

2. Colliding galaxies NGC 6050. The example at the top of Figure 7 involves a spectacular
collision between two spiral galaxies. That image is part of a large collection of similar images
released by NASA in April 2008. Acquired using Hubble’s Wide Field and Planetary Camera
2, the image represents a rarely observed snapshot of a galactic merger thought to require
several hundred million years to complete. It is believed that the Milky Way and Andromeda
galaxies will eventually merge in a similar fashion.

In applying logarithmic diffusion to this image, distinct generalized Linnik otfs ĥ(ρ) = (1+
γρ2σ)−λ, γ, λ > 0, 0 < σ ≤ 1, were obtained for each RGB component. The (γ, λ, σ) triplet
for each component was as follows: red = (0.195, 0.692, 0.85); green = (0.201, 0.643, 0.88);
and blue = (0.151, 0.684, 0.83). We next solve the logarithmic diffusion problem, wt =
− [λ log{1 + c(−Δ)σ}]w, c = γ(4π2)−σ, 0 ≤ t ≤ 1, w(x, y, 1) = g(x, y), backward in time,
using (26), (27). In all three cases, with K = 100, s = 0.001, and t = 0.75, the L1 norm was
conserved on 1 ≥ t ≥ t, without rescaling, while the TV norm increased by a factor of about
3.5.

The Linnik image at the bottom of Figure 7 is noticeably brighter and displays better
resolution of the structural details in the two galaxies. Bluish young star clusters along spiral
arms are better defined, together with dust lanes spiraling around the three cores of older stars.
Background galaxies have become more visible. As a result, significant reduction in Lipschitz
exponents was recorded. For the blue component, the original image has Lip α = 0.28, while
the Linnik image has Lip α = 0.15. Lévy deblurring of the blue image resulted in Lip α = 0.18.

3. Starburst galaxy NGC 3310. The example at the top of Figure 8 is a September 2001
Hubble telescope image of the Starburst galaxy NGC 3310, acquired using the Wide Field
and Planetary Camera 2. That galaxy is of great interest to astronomers as it is known to
produce clusters of new stars at a prodigious rate. Several hundred such clusters are visible
as bright blue diffuse objects around the galaxy’s spiral arms, each cluster representing up to
a million stars.

In applying logarithmic diffusion to this image, the Linnik otf parameters for the red
component were found to be γ = 0.328, λ = 0.557, and σ = 0.92. The red and blue
otfs almost coincided, while the green otf differed slightly. Accordingly, the red image otf
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was used for all three components. We next solve the logarithmic diffusion problem, wt =
− [λ log{1 + c(−Δ)σ}]w, c = γ(4π2)−σ, 0 ≤ t ≤ 1, w(x, y, 1) = g(x, y), backward in time,
using (26), (27). In all three cases, with K = 40.0, s = 0.001, and t = 0.75, the L1 norm
increased by about 3% on 1 ≥ t ≥ t, with a threefold increase in the TV norm. Rescaling was
applied to conserve L1 norms prior to displaying the deblurred image.

The Linnik deblurred image at the bottom of Figure 8 shows significant recovery of blue
clusters of young stars at the periphery of the image; also, there is noticeable enhancement
of structural detail in the main body of the galaxy and in the surrounding dust lanes. In
contrast, Lévy deblurring tends to produce saturation and loss of resolution near the core, as
previously shown in Figure 4. For the red component, the original image has Lip α = 0.26,
while the Linnik image has Lip α = 0.14. The Lévy image has Lip α = 0.16.

10. Scanning electron micrographs. There are other important classes of images which
display the monotone convex behavior described in section 2, and for which logarithmic dif-
fusion deconvolution may be useful. One such class is scanning electron micrographs. In this
section, we revisit experiments previously described in [11], and we verify that Linnik otfs
can improve substantially on previous results. The two images considered here were taken by
John Small at NIST. They are micrographs of a complex multiform crystalline compound of
mercury. The author expresses his gratitude to Dr. David S. Bright (NIST) for making these
images available.

The example at the top of Figure 9 has complex crystalline structure and fine scale surface
detail that are of interest. The Linnik otf parameters for log |ĝ(ξ, 0)| were found to be γ =
0.0266, λ = 0.5496, and σ = 0.89. We next solve the logarithmic diffusion problem, wt =
− [λ log{1 + c(−Δ)σ}]w, c = γ(4π2)−σ, 0 ≤ t ≤ 1, w(x, y, 1) = g(x, y), backward in time,
using (26), (27). With K = 50.0, s = 0.001, and t = 0.6, the L1 norm was conserved on
1 ≥ t ≥ t without rescaling, and there was a threefold increase in the TV norm. The Linnik
image at the bottom of Figure 9 shows recovery of numerous surface particles and other
details, and the complex morphology has become better defined. Deblurred image quality is
particularly noticeable in this example. The original image has Lip α = 0.37, and the Linnik
image has Lip α = 0.20. The Lévy image was terminated at t = 0.7 and had Lip α = 0.25.

The slab-like structure at the top of Figure 10 also exhibits interesting surface detail.
The Linnik otf parameters were found to be γ = 0.022, λ = 0.776, and σ = 0.86. With
K = 50.0, s = 0.001, and t = 0.7, the L1 norm was conserved on 1 ≥ t ≥ t without
rescaling, and there was a threefold increase in TV norm. Here again, slab surface details are
well recovered, and the two corner structures reveal interesting small scale granularity. The
original image has Lip α = 0.48, and the Linnik image has α = 0.25. The Lévy image was
terminated at t = 0.75 and had Lip α = 0.34.

Table 1 below summarizes the changes in image Lipschitz exponents recorded in each of
the six deconvolution experiments in this paper. This is a valuable metric that can quantify
the degree of fine structure recovery, provided the reconstructed image is relatively noise-
free. Linnik deblurring consistently produces smaller Lipschitz exponents than does Lévy
deblurring. The last column in Table 1 is especially noteworthy.

11. Concluding remarks. A priori knowledge about the solution is an essential element
in the successful computation of ill-posed inverse problems. Such knowledge informs the con-
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Table 1
Lipschitz exponents before and after deconvolution.

Image Original lip Lévy lip Linnik lip Linnik/Orig

M 51 α = 0.39 α = 0.21 α = 0.13 33 %

NGC 1309 α = 0.25 α = 0.12 α = 0.09 36 %

NGC 6050 α = 0.28 α = 0.18 α = 0.15 53 %

NGC 3310 α = 0.26 α = 0.16 α = 0.14 54 %

SEM Crystal α = 0.37 α = 0.25 α = 0.20 54 %

SEM Slab α = 0.48 α = 0.34 α = 0.25 52 %

struction of the blind deconvolution procedure discussed in this paper. This methodology was
shown to be capable of producing credible reconstructions in two distinct classes of real blurred
images with real noise, one at the nanoscale, and the other at the cosmological scale. These
two classes are acquired using distinct imaging modalities and are of considerable scientific
interest. The accompanying sizeable reduction in Lipschitz exponents is highly significant.

This work substantially improves on previous work on the same classes of images [10],
[11] based on isotropic Lévy stable otfs. In that early work, low Lévy exponents were found
to be necessary to accommodate the monotone convex high frequency Fourier behavior in
the blurred image data. As shown in section 4, Lévy stable motions are related to Brownian
motion through subordination. The present work is based on a new class of otfs that have
the same high frequency behavior as low exponent stable otfs but behave like high exponent
stable laws near the origin. Such generalized Linnik otfs result from subordination of Lévy
stable motions by the Gamma process, and their behavior near the origin was shown to play
a vital role in fine structure recovery. The compelling quality of the new reconstructions
strongly suggests that the detected generalized Linnik otfs that produce these results must
emulate essential aspects of the true system otfs in the two classes of images. Linnik otfs are
not currently known in image analysis.

Sixty years after its introduction in [5], Bochner’s seminal mathematical idea continues to
yield a rich harvest of important applications.
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