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ABSTRACT 
Ontologies can take many forms. There are ontologies that are 
extremely formal (e.g., using first order logic), and there are 
ontologies that are less formally defined (e.g., ontologies in the 
relational databases or dictionaries). Nonetheless, all of these can 
be considered ontologies and are appropriate in different 
situations.  
In this paper, I will present a view of levels of ontology 
formalizations and then describe three efforts that have applied 
ontologies to solve real-world problems. I will show where each 
of these efforts fall on the formalization spectrum and show why 
that level of formalization is appropriate for that application. 

Categories and Subject Descriptors 

I.2.4 [Artificial Intelligence]: Knowledge Representation 
Formalisms and Methods Language – predicate logic, relation 
systems, representation languages, representations 

General Terms 
Design, Experimentation, Standardization, Languages, Theory  
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1. INTRODUCTION 
Ontologies can take many forms. There are ontologies that are 
extremely formal (e.g., using first order logic), and there are 
ontologies that are less formally defined (e.g., ontologies in the 
relational databases or dictionaries). Nonetheless, all of these can 
be considered ontologies and are appropriate in different 
situations.  
Similarly, ontologies can play different roles. They can be used 
for common access to information, for search, as exchange 
languages and for reasoning. 
In this paper, I will present one view of different levels of 
ontology formalizations and then describe some efforts that have 
applied ontologies to solve real-world problems. I will then show 
where each of these efforts fall on the formalization spectrum and 
show why that level of formalization is appropriate for that 

application. Section 2 describes the formalization scale that will 
be using for this paper and Section 3 gives an overview of how 
ontologies have been used in real-world applications. Section 4 
describe the details of three projects that have used ontologies and 
how they fit into the classifications described in Sections 2 and 3. 
Section 5 concludes the paper.  
 

2. LEVELS OF ONTOLOGY FORMALISM 
For the purpose of this paper, I will loosely define an ontology as 
a knowledge representation that can be captured at different levels 
of formality, ranging from terms in a glossary or dictionary up to 
formal logic-based descriptions. Admittedly, this definition of an 
ontology is much broader than the commonly-accepted view. 
Often, people think of an ontology as a more formal 
representation; often one that can be reasoned over in an 
automated fashion. 
To describe the level of formalisms of an ontology, I will use the 
scale in Figure 1. This scale shows examples of ontologies listed 
from least formal (left side of the figure), to more formal (right 
side of the figure). The black diagonal line in the middle of figure 
shows the point at which ontologies can be reasoned over. One 
can run a reasoning engine over everything to the right of the line 
but cannot over the formalisms to the left of the line. This figure 
was not created by the author; it is often used in the literature but 
the author was unable to find the origin of it.  
 

 
Figure 1: Levels of Ontology Formalism 

The items in green can be thought of as standard glossaries or 
dictionaries, similar to the ones that you may have in your house. 
The items in purple are thesauri, taxonomies, and hierarchies. In 
this realm, one is starting to organize and categorize information. 
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These structures start to exhibit some superclass/subclass types of 
relationships, and can be used for application such as navigating 
web pages. The red items start providing a lot more structure to 
data, and provide a much richer set of relationships, such as part-
of, contains, spatial relations, etc. These structures are often used 
as specification for software, exchange languages, and ontology-
based search. The items in blue can be thought of as formal 
ontologies and are often represented in logic-based languages 
such as the Knowledge Interchange Format (KIF) or description 
logics. The advantage of these types of formalisms is that they 
allow for inferencing. This allows one to discover additional 
information that is not formally represented and also allows one 
to identify inconsistencies in the knowledge that is represented. 
For the remainder of this paper, I will be using this formalization 
scale to characterize existing efforts in ontology development for 
robotics and related applications.   

3. APPLYING ONTOLOGY: THE BIG 
PICTURE 
Over the past two decades, ontologies have found a role in many 
different applications. Four ways in which ontologies have been 
used include: 

• Common access to information 

• Ontology-based search 

• Exchange language 

• Reasoning 
Each of these is discussed in more detail below. 

3.1 Common Access to Information 
It is often the case that multiple applications need access to the 
same information. This type of information could be a material 
database, a specification of a part to be manufactured, or terrain 
characteristics of an environment that an autonomous vehicle 
must traverse. Instead of requiring an application to encode this 
information in its own internal format, an ontology can provide 
this information in a neutral format that these different 
applications can reference. By not duplicating this information is 
numerous different applications, the ontology can allow the 
information to be represented only once, providing only a single 
source when information needs to be updated and ensuring that 
there is consistency between the information in different 
applications. In addition, the ontology provides a common set of 
vocabulary that all of the applications that access the ontology can 
reference. This will ensure that when information exchange 
between the applications needs to occur, mappings between 
concepts can be easily done based on the vocabulary in the 
ontology. The Road Network Database and the Intelligent 
Systems Ontology, discussed later in the paper, are examples of 
ontologies developed for common access to information.   

3.2 Ontology-Based Search 
It is not uncommon that a given concept can have two terms that 
correspond to it. For example, when a person goes to a web site 
and wants to buy a helmet that will protect their head at a 
construction site, they may type in either “hard hat”, “protective 
helmet”, “hard helmet”, or possibly other terms. Depending what 
the person types is, often different results will be displayed. This 

is because search engines often work on the term that is entered as 
opposed to the concept that is intended.  

Ontologies can help to address this issue by representing concepts 
by what they mean (as opposed to the terms that are used to 
represent them) and then mapping search terms and underlying 
information in product databases to those ontological concepts. 
This is not only true with products… it can also be done with web 
pages or any other item that needs to be searched.  

There are no specific examples of this type of ontology 
application in the paper but please contact the author if you would 
like to learn more about how this was applied in private industry.  

3.3 Ontologies as an Exchange Language 
Information often needs to be shared among different 
applications. This information is usually generated in one 
application and then needs to be sent to another application. An 
example of this is in the manufacturing domain where a person 
may use a process planning system to create a part in one 
application and then needs to send that information to a 
scheduling or production planning system to allow the part to be 
made. The problems with point-to-point translators between each 
pair of application are well documented, and these result in a very 
large amount of translators that need to be developed. Also, as a 
new version of the application is released, all of the translators 
that are written either to or from that application need to be 
updated. 

Ontologies have shown to be valuable in serving as a neutral 
representation to allow for the exchange of information between 
different applications. The ontology provides a common superset 
of all of the information structures that need to be exchanged 
between the applications. By having this common interchange 
structure, a given application would only have to write a 
translator to and from the ontology and then would be able to 
exchange information with any other application that has done the 
same.  

STEP [1] (STandard for the Exchange of Product model data) is 
perhaps the most widely used ontology for this purpose. In this 
paper, I describe the Process Specification Language (PSL) which 
is a more formal ontology that is used to exchange process data 
among applications.  

3.4 Ontologies for Reasoning 
When represented formally, ontologies have the ability to reason 
over information and provide additional information that was not 
previously formally represented. For example, when an 
autonomous vehicle is driving down a road and is presented with 
multiple paths, each of which that has an obstacle in its way, the 
ontology can reason about the expected damage that could occur 
by hitting each of the obstacles based on their known 
characteristics and those of the vehicle. Then a proposed path can 
be presented to a planner to determine how the vehicle should 
proceed. An ontology for navigation planning is discussed later in 
this paper which shows how ontologies can be used for this 
purpose. 



4. ONTOLOGY EXAMPLES 
In this section, I will describe existing and past efforts that have 
used ontologies for real-world applications. For each effort, I will 
characterize it with respect to its level of formality as described in 
Section 2 and what role it is playing as described in Section 3. I 
will start with ontologies that are considered to be less formal and 
then proceed to more formal ontologies. 

4.1 The Road Network Database 
For an autonomous vehicle to navigate a road network, it must be 
aware of and must respond appropriately to any object it 
encounters. This includes other vehicles, pedestrians, debris, 
construction, accidents, emergency vehicles … and the roadway 
itself. The road network must be described such that an 
autonomous vehicle knows, with great precision and accuracy, 
where the road lies, rules dictating the traversal of intersections, 
lane markings, road barriers, road surface characteristics, and 
other relevant information.  
The purpose of this section is to provide an overview of the Road 
Network Database [2], which is to provide the data structures 
necessary to capture all of the information necessary about road 
networks so that a planner or control system on an autonomous 
vehicle can plan routes along the roadway at any level of 
abstraction. At one extreme, the database should provide 
structures to represent information so that a low-level planner can 
develop detailed trajectories to navigate a vehicle over the span of 
a few meters. At the other extreme, the database should provide 
structures to represent information so that a high-level planner can 
plan a course across a country. Each level of planning requires 
data at different levels of abstraction, and as such, the Road 
Network Database must accommodate these requirements. In this 
section, I explore the contents of the Road Network Database and 
describe why it was represented in a database format as opposed 
to a more formal ontology. 
 
The fundamental components of the Road Network Database are 
described below. This is not an exhaustive list, but instead is 
meant to give the reader an idea of the type of structures that are 
represented in the database. 

• Junctions – A junction is a generic term referring to 
two or more paths of transportation that come together 
or diverge, or a controlled point in a roadway. 
Examples of roadway paths that could cause a junction 
are lanes splits, forks in the road, merges, and 
intersections.  

• Intersections - Intersections are a type of junction in 
which two or more separate roads come together.  

• Lane Junctions - A lane junction is a location in a 
junction in which two or more lanes of traffic overlap.  

• Road – A road is a stretch of travel lanes in which the 
name of the travel lanes does not change. An example 
is “Main Street” or “Route 95.”  

• Road Segment - A road segment is a uni-directional 
stretch of roadway bounded by intersections. A road 
segment is roughly analogous to a “block”.  

• Road Element - A road element is a uni-directional 
stretch of roadway bounded by any type of junction. 
Unlike road segments, road elements can be bounded 
by merging lanes, forks in the road,  

• Lane Cluster - A lane cluster is a set of uni-directional 
lanes (with respect to flow of traffic) in which no 
physical attribute of those lanes change over the span 
of the lane segment. Unlike a road element, lane 
clusters are not required to be bounded by junctions. 

• Lane - A lane is a single pathway of travel that is 
bounded by explicit or implicit lane marking.  

• Lane Segment - A lane segment is the most elemental 
portion of a road network captured by the database 
structure. Lane segments can be either straight line or 
constant curvature arcs. One or more lane segments 
compose a lane 

• Junction Lane Segments - A junction lane segment is 
a constant curvature path through a portion of a lane 
junction.  

 
As stated earlier, the data structures are designed to accommodate 
a control system that may contain planners with various levels of 
abstraction. The planners, their descriptions, and the data 
structures which best correspond to their level of responsibility 
are shown in Table 1. 

Table 1: Planner to Data Structure Mapping 
Planner 
Name 

Planner Description Appropriate 
Data 
Structures 

Destination 
Planner 

Plans the sequence of route segments 
to get to commanded destination goal. 

Outputs MapQuest1-like directions 

Plans on the order of 1 to 2 hrs into 
the future 

Roads 

Road Segments 

Intersections 

 

Drive 
Behavior 
Planner 

Develops low-level behaviors for 
negotiating intersections and deciding 
when to change lanes. 

Plans on the order of 100 secs into the 
future. 

Plans up to 500 m 

Lane Clusters 

Lanes 

Intersection 

 

Elemental 
Maneuver 
Planner 

Carries out real-time maneuvers to 
slow down, stop, speed up, and 
change lateral position. 

Plans on the order of 10 secs into the 
future 

Plans up to 50 m distances 

Lanes 

Lane Segments 

 

                                                                 
1 The name of commercial products or vendors does not imply 

NIST endorsement or that this product is necessarily the best for 
the purpose. 



 
This information is represented in a relational database. An 
example of the detailed information that was represented for a 
road segment can be seen in Table 2. The corresponding picture 
of what a road segment may look like is shown in Figure 2. 

 
Figure 2: Sample Road Segment 

A road segment is a uni-directional stretch of roadway bounded 
by intersections. A road segment is composed of one or more road 
elements and zero or more junctions. There are one or more road 
segments in a road. Unlike road elements, road segments are only 
bounded by intersection, not any type of junction. A road segment 
within a road must always be rendered in the same direction as 
the road. Road segments are used in the planning and control 
system to provide MapQuest-like directions to the vehicle to 
allow for route planning. 
 
This Road Network Database is represented as a database schema 
(on the left side of the formalization figure shown in Section 2). 
The reason why a more informal representation was chosen was 
because the database was meant to serve for common access to 
information (as described in Section 3). It was not anticipated that 
any reasoning would need to be performed on the data structures 
so a more formal type of representation (e.g., logic) was not 
needed. Conversely, since the database was expected to provide 
common access to information, more informal types of 
representations (glossaries, data dictionaries, informal hierarchies) 
were not used since they did not provide the level of specificity 
needed and provide too high a level of ambiguity in the meaning 
of the terms that were represented. 

 
 
 
 
 

Table 2: Road Segment Database Representation 
Attribute Data 

Type 
Value 

Restriction 
Point To Description 

ID Integer Any whole 
number 
greater or 
equal to 
one 

 A unique identifier for 
this entry in this table 

World_ID Integer  World.ID A pointer to an element 
in the World table that 
indicates with which 
world this entry is 
associated. A road 
segment may only be 
associated with a single 
world.  See 4.5.1. for 
information about 
worlds. 

Description Text   A textual description of 
this field for human 
understanding 

Road_ID Integer  Road.ID A pointer to the element 
in the Road table in 
which the road segment 
is a part of. 

Start_Point
_Adjacent_ 
Intersection
_ID 

Integer  Intersecti
on.ID 

A pointer to the element 
in the Intersection table 
which precedes the road 
segment.  

End_Point_
Adjacent_ 
Intersection
_ID 

Integer  Intersecti
on.ID 

A pointer to the element 
in the Intersection table 
which follows the road 
segment.  

Segment_ 
Length 

Double   Measured in meters. The 
length of the road 
segment measured from 
center point to center 
point. This should be 
derived from the length 
of the road elements 
which compose it. 

Road_ 
Segment_ 
Class 

Integer  RoadSeg
mentClass
.ID 

A pointer to an element 
in the 
RoadSegmentClassLook
up table which contains 
the class of road 
segment which applies 
to this road segment. 

 

4.2 Ontologies for Autonomous Navigation 
The field of autonomous vehicles has reached a level of 
maturity such that it could greatly benefit from leveraging the 
latest technologies in the area of reasoning over knowledge 
representations and ontologies.2 The use of ontologies and 
automated inference is a natural fit for representing and 
reasoning about world models (the internal knowledge 
representation) for autonomous vehicles.  The goal for the 
effort described in this section is to apply ontologies to 
improve the capabilities and performance of on-board route 
                                                                 
2 The 2004 AAAI Spring Symposium series includes a workshop 

on this the topic: “Knowledge Representation and Ontology in 
Autonomous Systems”.  See: 
http://www.aaai.org/Symposia/Spring/2004/sssparticipation-
04.pdf  



planning for autonomous vehicles. More specifically, to apply 
ontologies to determine the extent to which a given object is an 
obstacle to a given vehicle in a given situation [3]. 
 
There are many potential benefits of introducing an ontology 
(or set of ontologies) into an autonomous vehicle’s knowledge 
base. One is the potential for reuse and modularity. For 
example, a general theory of obstacles could apply to a broad 
range of autonomous vehicles. In addition, ontologies provide 
a mechanism to allow for a more centralized approach to 
represent and reason about environmental information. 
Different modules in an autonomous vehicle would query the 
ontology, rather than having the information scattered among 
the modules. This has a corresponding benefit in cheaper and 
more reliable maintenance. Finally, there is the potential for 
increased flexibility of response for the autonomous vehicle. 
Methods that rely on pre-classification of certain kinds of 
terrain in terms of their traversability [4;5] are important, but 
do not support reasoning about objects in a more dynamic 
context.  
 
I start with the simple scenario illustrated in Figure 3. Our 
vehicle (labeled OV) is in the left lane of a four-lane, two-way, 
undivided highway. An object is detected in our lane. The goal 
is to formulate an optimal route plan that takes into account 
the potential damage from a collision with the object. The 
main role of the ontology component is [initially] to provide 
assessments of collision damage.  I will take into account not 
only damage to the vehicle, but also damage to the payload 
and to the object, itself. This information is used to plan a 
route that either goes around the object, or collides with it.    
 
A number of parameters may be varied in this scenario. These 
include: the type of vehicle being controlled, the speed at 
which the vehicle is traveling, the payload being carried, and 
type of object in the path that may be an obstacle. For 
example, if the object is a newspaper in the middle of the 
roadway, then the ontology component will conclude that no 
damage will occur and the planner will conclude that the best 
course of action is to maintain the current lane (because 
changing lanes always accumulates additional risk over 
maintaining your lane). 
 
 

Figure 3. Simple Driving Scenario 

 

However, if the object were a large cinder block, significant 
damage would be likely and the final route should be quite 
different. The ontology component is equipped with 
knowledge about many kinds of vehicles, objects, and the kind 
of damage that can arise from different collisions. This is used 
to determine the damage that would be caused by a collision.  
The ontology includes objects, vehicles and situations with 
associated inference rules. Specifically, the ontology contains 
different types of objects that one expect to encounter in 
various environments, along with their pertinent characteristics 
and relationships to other objects. Initially the effort is 
focusing on on-road driving, so categories of objects such as 
other vehicles, pedestrians, animals, debris, speed bumps, etc. 
are represented. Each one of the objects that fall under these 
categories has a set of characteristics that describe them and 
help us to understand the damage that may be caused by 
colliding with them. For example, a certain type of debris may 
have a set of dimensions, a weight, a density, a velocity, etc. 
The rules determine the ‘degree of obstacleness’, which is 
ultimately expressed in terms of a cost.  
 
The ontology and its associated reasoning engine provides as 
an output, a damage assessment in the event of a collision 
between our vehicle and a given object based upon: 
 

• The type of autonomous vehicle; 
• The type of object being collided with; 
• The closing speed of our vehicle with the object; 
• The integrity of our vehicle, i.e., what damage has 

already occurred to our vehicle, if any. 
 
Based on this information, the ontology provides a damage 
classification pertaining to: 
 

• The vehicle’s integrity (initially only assigning 
damage to the bumper, wheels, and overall vehicle, 
but will eventually include other components of the 
vehicle). 

• The obstacle’s integrity 
• The vehicle payload’s integrity  

 
In order to provide the damage classifications, the 
expressiveness of the ontology must be such that it represents 
concepts such as: 
 

• The type of vehicle that is being autonomously 
controlled and its pertinent characteristics; 

• The objects that are being encountered in the 
environment and their pertinent characteristics; 

• The payloads that the vehicle is carrying and their 
pertinent characteristics; 

• Severity classifications of damage; 
• Damage types; 
• Terrain information (initially fixed as paved roads); 
• Collisions (e.g., a certain type of vehicle with a 

certain type of object). 
 
For the initial work, the levels of collision damage shown in 
Table 3 are assumed. 



 
Table 3: Levels of Collision Damage 

 Vehicle Object Payload 
None No damage to 

vehicle 
No damage 

to object 
No damage 
to payload 

Minor Damage to 
vehicle will not 
affect vehicle 
performance 

Damage to 
object will 
not affect 

object overall 
integrity 

Damage to 
vehicle will 
not affect 
payload 

Moderate Moderate 
probability of 

vehicle damage, 
maintenance 

required 

Damage to 
object will 

affect object 
integrity, but 

will not 
result in 
object 

destruction 

Moderate 
probability 
of payload 

loss 

Severe Major loss of 
functionality/ 
integrity of 

vehicle likely 

Major 
destruction 
of object 

Major 
payload loss 

Catastrophic Vehicle loss Object 
destruction 

Payload loss 

 
There are many approaches that could be used to estimate the 
actual collision damage. These include: 
 

• Numerical simulation tools which model the physics 
of weight,  materials, shapes, density, momentum etc. 
to compute impact damage; 

• Probabilistic models; 
• Fuzzy logic; 
• Symbolic logic. 

 
Not one of these techniques is likely to be adequate in all 
circumstances. The current work focuses on the symbolic logic 
approach. The hypothesis is that even when logic-based 
inference is not sufficient, the core ontology of objects and 
characteristics will remain useful as a conceptualization and 
vocabulary for expressing rules and procedures for estimating 
damage. 
 
For the initial experiments, a small ontology was constructed 
using OilEd [6].  Using a description logic [7] tool has two 
advantages for us. First, the classifier detects logical errors in 
the ontology, which greatly increases confidence that the 
ontology is correct.  Second, it is very fast at doing inference. 
This is important because the planner needs to query the 
ontology component up to a few hundred times a second to get 
damage estimates for the many nodes being explored in the 
search space.   
 
A class called Situation was defined which has various 
characteristics or attributes, each modeled by functional 
relations with Situation as the domain.  The key characteristics 
of a Situation that will determine the damage classification are 
the vehicle, the payload and the object with which the vehicle 

may collide. These functional relations are called hasVehicle, 
hasPayload, and hasPotentialObstacle, respectively. Attributes 
were also used to define the damage categories in Table 3. For 
example, the class VehicleIntegrityMinor is defined to be the 
class of all Situations such that the value of the functional 
relation hasVehicleIntegrity attribute is Minor.  
 
A simple ontology of physical objects was constructed that 
including various types of vehicles and other objects such as 
bricks, newspapers etc. that may be in the vehicle’s 
environment.  These objects have characteristics such as 
weight, speed, density, etc. that are important in determining 
the damage category.  Initially, some qualitative categories for 
measuring these characteristics were created, such as low, 
medium and high for weight, or density.  
 
Finally some axioms were created which specify how to 
classify a given situation in terms of the categories in Table 3. 
Here is a simple example: 
 
A Situation such that  

• The value of  the hasPotentialObstacle relation is 
restricted to be of type SmallDenseObject. 
& 

• The value of the hasVehicle relation is restricted to 
be of type Car 

is a subclass of VehicleIntegrityModerate. 
 
Some fictitious situations were created to test these axioms. 
For example, the situation whose hasPotentialObstacle 
relation is a brick, and whose hasVehicle relation is a Toyota 
Corolla will be classified by this rule under 
VehicleIntegrityModerate. This is inferable because a brick is 
a SmallDenseObject (by virtue of its weight and size), and a 
Toyota Corolla is a subclass of Car. 
 
This Autonomous Navigation Ontology is represented in 
description logic (near the right side of the formalization figure 
shown in Section 2). The reason why a more formal 
representation was chosen was because the ontology was 
developed to allow reasoning, which requires that the underlying 
representation be more formal. The effort clearly falls into the 
“Ontology for Reasoning” section described in Section 3. Full 
first order logic could have been chosen in this effort, but it was 
felt that it was overkill for the fairly simple examples that were 
anticipated.  

4.3 The Process Specification Language 
The Process Specification Language (PSL) [8] is addressing the 
software interoperability issue by creating a neutral, standard 
language for process specification to serve as an interlingua to 
integrate multiple process-related applications throughout the 
manufacturing life cycle. This interchange language is unique due 
to the formal semantic definitions (the ontology) that underlie the 
language. Because of these explicit and unambiguous definitions, 
information exchange can be achieved without relying on hidden 
assumptions or subjective mappings. 
 



Existing approaches to process modeling lack an adequate 
specification of the semantics of the process terminology, which 
leads to inconsistent interpretations and uses of the information. 
Analysis is hindered because models tend to be unique to their 
applications and are rarely reused. Obstacles to interoperability 
arise from the fact that the legacy systems that support the 
functions in many enterprises were created independently, and do 
not share the same semantics for the terminology of their process 
models. 
 
For example, consider Figure 4 in which two existing process 
planning applications are attempting to exchange data. Intuitively 
the applications can share concepts; for example, both material in 
Application A and workpiece in Application B correspond to a 
common concept of work-in-progress. However, without explicit 
definitions for the terms, it is difficult to see how concepts in each 
application correspond to each other. Both Application A and B 
have the term resource, but in each application this term has a 
different meaning. Simply sharing terminology is insufficient to 
support interoperability -- the applications must share their 
semantics. 
 
 

 
Figure 4: The Need For Semantics 

 
A rigorous foundation for process design, analysis, and execution 
therefore requires a formal specification of the semantics of 
process models. One approach to generating this specification is 
through the use of ontologies. A major goal of PSL is to reduce 
the number of translators to O(n) for n different ontologies, since 
it would only require translators from a native ontology into the 
interchange ontology.  
 
Within this work, the term “ontology” refers to a set of sentences 
in first-order logic, comprising a set of foundational theories and 
sets of definitions written using the foundational theories. In 
providing such an ontology, one must specify three notions: 
 

• Language 
• Model theory 
• Proof theory (axioms and definitions) 

 
A language is a set of symbols (lexicon) and a specification of 
how these symbols can be combined to make well-formed 
formulae (grammar/syntax). The lexicon consists of logical 
symbols (such as connectives, variables, and quantifiers) and non-
logical symbols. For PSL, the non-logical part of the lexicon 
consists of expressions (constants, function symbols, and 
predicates) that refer to everything needed to describe processes. 
 

The underlying language used for PSL is KIF[9] (Knowledge 
Interchange Format). Briefly stated, KIF is a formal language 
developed for the exchange of knowledge among disparate 
computer programs. KIF provides the level of rigor necessary to 
define concepts in the ontology unambiguously, a necessary 
characteristic to exchange manufacturing process information 
using the PSL Ontology. 
 
The primary component of PSL is its terminology for classes of 
processes and relations for processes and resources, along with 
definitions of these classes and relations. Such a lexicon of 
terminology along with some specification of the meaning of 
terms in the lexicon constitutes what this effort is calling an 
ontology.  
 
The model theory of PSL provides a rigorous mathematical 
characterization of the semantics of the terminology of PSL. The 
objective is to identify each term with an element of some 
mathematical structure, such as a set or a set with additional 
structure (e.g. a complete partial order); the underlying theory of 
the mathematical structure then becomes available as a basis for 
reasoning about the terms of the language and their relationships. 
 
The proof theory of PSL provides axioms for the interpretation of 
terms in the ontology. It is useful to distinguish two types of 
sentences in this set of axioms: core theories and definitions. A 
core theory is a set of distinguished predicates, function symbols, 
and individual constants, together with some axiomatization. 
Distinguished predicates are those for which there are no 
definitions; the intended interpretations of these predicates are 
defined using the axioms in the core theories. For these terms, one 
needs to describe the set of models corresponding to the intuitions 
that one has for them. Axioms are then written that are sound and 
complete with respect to the set of models. That is, every 
interpretation that is consistent with the axioms is a model in the 
set, and any model in the set is an interpretation consistent with 
the axioms. These axioms constitute the foundational theories of 
the ontology. The set of models form the semantics (or model 
theory) of the ontology. 
 
All other terms in the ontology are given definitions using the set 
of primitive terms. These definitions are known as conservative 
definitions since they do not add to the expressive power of the 
core theories, that is, anything that can be deduced with the 
definitions, can be deduced using the core theories alone. All 
definitions in an ontology are specified using the core theories; 
any terminology that does not have a definition is axiomatized in 
some core theory. Since all other terms are defined using these 
primitives, the set of models for them can be defined using the 
models of the core theories for the primitives. One can therefore 
assign semantics to the definitions using the classes of models that 
have already been specified for the core theories. 
 
The challenge is that some framework is needed for making 
explicit the meaning of the terminology for many ontologies that 
reside only in people's heads. Any ideas that are implicit are a 
possible source of ambiguity and confusion. For PSL, the model 
theory provides a rigorous mathematical characterization of 
process information and the axioms give precise expression to the 
basic logical properties of that information in the PSL language. 
So when one speaks about semantics for PSL, it is in reference to 



the axiomatization of core theories and definitions for the PSL 
terminology. 
 
The focus of the ontology is not only on the terms, but also on 
their definitions. An infinite set of terms can be included in the 
ontology, but they can only be shared if everyone agrees on their 
definitions. It is the definitions that are being shared, not simply 
the terms. A simple definition with the PSL ontology is shown 
below: 
 
Definition An activity is-occurring-at a timepoint p if and only if 
p is betweenEq the activity's begin and end points. 
 
(defrelation is-occurring-at (?a ?p) := 
      (exists (?occ) 
      (and  (occurrence ?occ ?a) 

(betweenEq (beginof ?occ) ?p (endof ?occ))))) 
 

A simple axiom within the PSL ontology is shown below: 

Axiom. An object can participate in an activity only at those 
timepoints at which both the object exists and the activity is 
occurring. 
 
(forall (?x ?a ?t) 
      (=>  (participates-in ?x ?a ?t) 

(and  (exists-at ?x ?t) 
(is-occurring-at ?a ?t)))) 

This Process Specification Language is represented in full first 
order logic (all the way to the right side of the formalization 
figure shown in Section 2). The reason for this is two-fold: 

1. Precise semantics are needed to ensure that complete 
and unambiguous information exchange occurs between 
two applications, 

2. Reasoning must be performed over the concepts in the 
ontology to ensure that mappings between the 
applications ontology and PSL are complete and 
correct. 

The effort clearly falls into the “Ontology as an Exchange 
Language” section described in Section 3.  

5. CONCLUSION 
In this paper, different levels of ontology formalization are 
discussed and an overview of the ways in which ontologies have 
been used in practice over the past couple decades is described. 
Three examples are also provided of very different ontologies that 
have been developed to solve real-world problems in the 
autonomous vehicle and manufacturing systems integration 
domains. It is also explained why the formalisms that were used 
were the most appropriate for their intended purpose. 

There are many other ontology efforts which could have been 
used as examples, including an ontology for searching products 
on private company’s web site, an ontology for classifying robot 
capabilities to allow a first responder to find the best robot for a 

disaster site, and an ontology that was developed to classify 
autonomous vehicle behaviors so that the right behavior can be 
chosen when confronted with specific environmental conditions. 
The three that were chosen were done so because they provide a 
good spectrum of the types of formalism that can be used when 
developing an ontology. If the reader is interested in hearing 
about these efforts, please don’t hesitate to contact the author. 
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