
Ontology Formalisms: What is Appropriate for Different
Applications?

Craig Schlenoff
National Institute of Standards and Technology

100 Bureau Drive, Stop 8230
Gaithersburg, MD 20899

301-975-3456

craig@schlenoff.com

ABSTRACT
Ontologies can take many forms. There are ontologies that are
extremely formal (e.g., using first order logic), and there are
ontologies that are less formally defined (e.g., ontologies in the
relational databases or dictionaries). Nonetheless, all of these can
be considered ontologies and are appropriate in different
situations.
In this paper, I will present a view of levels of ontology
formalizations and then describe three efforts that have applied
ontologies to solve real-world problems. I will show where each
of these efforts fall on the formalization spectrum and show why
that level of formalization is appropriate for that application.

Categories and Subject Descriptors

I.2.4 [Artificial Intelligence]: Knowledge Representation
Formalisms and Methods Language – predicate logic, relation
systems, representation languages, representations

General Terms
Design, Experimentation, Standardization, Languages, Theory

Keywords
Ontologies, Formalization, Robotic, Knowledge Representation

1. INTRODUCTION
Ontologies can take many forms. There are ontologies that are
extremely formal (e.g., using first order logic), and there are
ontologies that are less formally defined (e.g., ontologies in the
relational databases or dictionaries). Nonetheless, all of these can
be considered ontologies and are appropriate in different
situations.
Similarly, ontologies can play different roles. They can be used
for common access to information, for search, as exchange
languages and for reasoning.
In this paper, I will present one view of different levels of
ontology formalizations and then describe some efforts that have
applied ontologies to solve real-world problems. I will then show
where each of these efforts fall on the formalization spectrum and
show why that level of formalization is appropriate for that

application. Section 2 describes the formalization scale that will
be using for this paper and Section 3 gives an overview of how
ontologies have been used in real-world applications. Section 4
describe the details of three projects that have used ontologies and
how they fit into the classifications described in Sections 2 and 3.
Section 5 concludes the paper.

2. LEVELS OF ONTOLOGY FORMALISM
For the purpose of this paper, I will loosely define an ontology as
a knowledge representation that can be captured at different levels
of formality, ranging from terms in a glossary or dictionary up to
formal logic-based descriptions. Admittedly, this definition of an
ontology is much broader than the commonly-accepted view.
Often, people think of an ontology as a more formal
representation; often one that can be reasoned over in an
automated fashion.
To describe the level of formalisms of an ontology, I will use the
scale in Figure 1. This scale shows examples of ontologies listed
from least formal (left side of the figure), to more formal (right
side of the figure). The black diagonal line in the middle of figure
shows the point at which ontologies can be reasoned over. One
can run a reasoning engine over everything to the right of the line
but cannot over the formalisms to the left of the line. This figure
was not created by the author; it is often used in the literature but
the author was unable to find the origin of it.

Figure 1: Levels of Ontology Formalism

The items in green can be thought of as standard glossaries or
dictionaries, similar to the ones that you may have in your house.
The items in purple are thesauri, taxonomies, and hierarchies. In
this realm, one is starting to organize and categorize information.

This paper is authored by employees of the United States Government
and is in the public domain.
PerMIS'09, September 21-23, 2009, Gaithersburg, MD, USA.
ACM 978-1-60558-747-9/09/09

These structures start to exhibit some superclass/subclass types of
relationships, and can be used for application such as navigating
web pages. The red items start providing a lot more structure to
data, and provide a much richer set of relationships, such as part-
of, contains, spatial relations, etc. These structures are often used
as specification for software, exchange languages, and ontology-
based search. The items in blue can be thought of as formal
ontologies and are often represented in logic-based languages
such as the Knowledge Interchange Format (KIF) or description
logics. The advantage of these types of formalisms is that they
allow for inferencing. This allows one to discover additional
information that is not formally represented and also allows one
to identify inconsistencies in the knowledge that is represented.
For the remainder of this paper, I will be using this formalization
scale to characterize existing efforts in ontology development for
robotics and related applications.

3. APPLYING ONTOLOGY: THE BIG
PICTURE
Over the past two decades, ontologies have found a role in many
different applications. Four ways in which ontologies have been
used include:

• Common access to information

• Ontology-based search

• Exchange language

• Reasoning
Each of these is discussed in more detail below.

3.1 Common Access to Information
It is often the case that multiple applications need access to the
same information. This type of information could be a material
database, a specification of a part to be manufactured, or terrain
characteristics of an environment that an autonomous vehicle
must traverse. Instead of requiring an application to encode this
information in its own internal format, an ontology can provide
this information in a neutral format that these different
applications can reference. By not duplicating this information is
numerous different applications, the ontology can allow the
information to be represented only once, providing only a single
source when information needs to be updated and ensuring that
there is consistency between the information in different
applications. In addition, the ontology provides a common set of
vocabulary that all of the applications that access the ontology can
reference. This will ensure that when information exchange
between the applications needs to occur, mappings between
concepts can be easily done based on the vocabulary in the
ontology. The Road Network Database and the Intelligent
Systems Ontology, discussed later in the paper, are examples of
ontologies developed for common access to information.

3.2 Ontology-Based Search
It is not uncommon that a given concept can have two terms that
correspond to it. For example, when a person goes to a web site
and wants to buy a helmet that will protect their head at a
construction site, they may type in either “hard hat”, “protective
helmet”, “hard helmet”, or possibly other terms. Depending what
the person types is, often different results will be displayed. This

is because search engines often work on the term that is entered as
opposed to the concept that is intended.

Ontologies can help to address this issue by representing concepts
by what they mean (as opposed to the terms that are used to
represent them) and then mapping search terms and underlying
information in product databases to those ontological concepts.
This is not only true with products… it can also be done with web
pages or any other item that needs to be searched.

There are no specific examples of this type of ontology
application in the paper but please contact the author if you would
like to learn more about how this was applied in private industry.

3.3 Ontologies as an Exchange Language
Information often needs to be shared among different
applications. This information is usually generated in one
application and then needs to be sent to another application. An
example of this is in the manufacturing domain where a person
may use a process planning system to create a part in one
application and then needs to send that information to a
scheduling or production planning system to allow the part to be
made. The problems with point-to-point translators between each
pair of application are well documented, and these result in a very
large amount of translators that need to be developed. Also, as a
new version of the application is released, all of the translators
that are written either to or from that application need to be
updated.

Ontologies have shown to be valuable in serving as a neutral
representation to allow for the exchange of information between
different applications. The ontology provides a common superset
of all of the information structures that need to be exchanged
between the applications. By having this common interchange
structure, a given application would only have to write a
translator to and from the ontology and then would be able to
exchange information with any other application that has done the
same.

STEP [1] (STandard for the Exchange of Product model data) is
perhaps the most widely used ontology for this purpose. In this
paper, I describe the Process Specification Language (PSL) which
is a more formal ontology that is used to exchange process data
among applications.

3.4 Ontologies for Reasoning
When represented formally, ontologies have the ability to reason
over information and provide additional information that was not
previously formally represented. For example, when an
autonomous vehicle is driving down a road and is presented with
multiple paths, each of which that has an obstacle in its way, the
ontology can reason about the expected damage that could occur
by hitting each of the obstacles based on their known
characteristics and those of the vehicle. Then a proposed path can
be presented to a planner to determine how the vehicle should
proceed. An ontology for navigation planning is discussed later in
this paper which shows how ontologies can be used for this
purpose.

4. ONTOLOGY EXAMPLES
In this section, I will describe existing and past efforts that have
used ontologies for real-world applications. For each effort, I will
characterize it with respect to its level of formality as described in
Section 2 and what role it is playing as described in Section 3. I
will start with ontologies that are considered to be less formal and
then proceed to more formal ontologies.

4.1 The Road Network Database
For an autonomous vehicle to navigate a road network, it must be
aware of and must respond appropriately to any object it
encounters. This includes other vehicles, pedestrians, debris,
construction, accidents, emergency vehicles … and the roadway
itself. The road network must be described such that an
autonomous vehicle knows, with great precision and accuracy,
where the road lies, rules dictating the traversal of intersections,
lane markings, road barriers, road surface characteristics, and
other relevant information.
The purpose of this section is to provide an overview of the Road
Network Database [2], which is to provide the data structures
necessary to capture all of the information necessary about road
networks so that a planner or control system on an autonomous
vehicle can plan routes along the roadway at any level of
abstraction. At one extreme, the database should provide
structures to represent information so that a low-level planner can
develop detailed trajectories to navigate a vehicle over the span of
a few meters. At the other extreme, the database should provide
structures to represent information so that a high-level planner can
plan a course across a country. Each level of planning requires
data at different levels of abstraction, and as such, the Road
Network Database must accommodate these requirements. In this
section, I explore the contents of the Road Network Database and
describe why it was represented in a database format as opposed
to a more formal ontology.

The fundamental components of the Road Network Database are
described below. This is not an exhaustive list, but instead is
meant to give the reader an idea of the type of structures that are
represented in the database.

• Junctions – A junction is a generic term referring to
two or more paths of transportation that come together
or diverge, or a controlled point in a roadway.
Examples of roadway paths that could cause a junction
are lanes splits, forks in the road, merges, and
intersections.

• Intersections - Intersections are a type of junction in
which two or more separate roads come together.

• Lane Junctions - A lane junction is a location in a
junction in which two or more lanes of traffic overlap.

• Road – A road is a stretch of travel lanes in which the
name of the travel lanes does not change. An example
is “Main Street” or “Route 95.”

• Road Segment - A road segment is a uni-directional
stretch of roadway bounded by intersections. A road
segment is roughly analogous to a “block”.

• Road Element - A road element is a uni-directional
stretch of roadway bounded by any type of junction.
Unlike road segments, road elements can be bounded
by merging lanes, forks in the road,

• Lane Cluster - A lane cluster is a set of uni-directional
lanes (with respect to flow of traffic) in which no
physical attribute of those lanes change over the span
of the lane segment. Unlike a road element, lane
clusters are not required to be bounded by junctions.

• Lane - A lane is a single pathway of travel that is
bounded by explicit or implicit lane marking.

• Lane Segment - A lane segment is the most elemental
portion of a road network captured by the database
structure. Lane segments can be either straight line or
constant curvature arcs. One or more lane segments
compose a lane

• Junction Lane Segments - A junction lane segment is
a constant curvature path through a portion of a lane
junction.

As stated earlier, the data structures are designed to accommodate
a control system that may contain planners with various levels of
abstraction. The planners, their descriptions, and the data
structures which best correspond to their level of responsibility
are shown in Table 1.

Table 1: Planner to Data Structure Mapping
Planner
Name

Planner Description Appropriate
Data
Structures

Destination
Planner

Plans the sequence of route segments
to get to commanded destination goal.

Outputs MapQuest1-like directions

Plans on the order of 1 to 2 hrs into
the future

Roads

Road Segments

Intersections

Drive
Behavior
Planner

Develops low-level behaviors for
negotiating intersections and deciding
when to change lanes.

Plans on the order of 100 secs into the
future.

Plans up to 500 m

Lane Clusters

Lanes

Intersection

Elemental
Maneuver
Planner

Carries out real-time maneuvers to
slow down, stop, speed up, and
change lateral position.

Plans on the order of 10 secs into the
future

Plans up to 50 m distances

Lanes

Lane Segments

1 The name of commercial products or vendors does not imply

NIST endorsement or that this product is necessarily the best for
the purpose.

This information is represented in a relational database. An
example of the detailed information that was represented for a
road segment can be seen in Table 2. The corresponding picture
of what a road segment may look like is shown in Figure 2.

Figure 2: Sample Road Segment

A road segment is a uni-directional stretch of roadway bounded
by intersections. A road segment is composed of one or more road
elements and zero or more junctions. There are one or more road
segments in a road. Unlike road elements, road segments are only
bounded by intersection, not any type of junction. A road segment
within a road must always be rendered in the same direction as
the road. Road segments are used in the planning and control
system to provide MapQuest-like directions to the vehicle to
allow for route planning.

This Road Network Database is represented as a database schema
(on the left side of the formalization figure shown in Section 2).
The reason why a more informal representation was chosen was
because the database was meant to serve for common access to
information (as described in Section 3). It was not anticipated that
any reasoning would need to be performed on the data structures
so a more formal type of representation (e.g., logic) was not
needed. Conversely, since the database was expected to provide
common access to information, more informal types of
representations (glossaries, data dictionaries, informal hierarchies)
were not used since they did not provide the level of specificity
needed and provide too high a level of ambiguity in the meaning
of the terms that were represented.

Table 2: Road Segment Database Representation
Attribute Data

Type
Value

Restriction
Point To Description

ID Integer Any whole
number
greater or
equal to
one

 A unique identifier for
this entry in this table

World_ID Integer World.ID A pointer to an element
in the World table that
indicates with which
world this entry is
associated. A road
segment may only be
associated with a single
world. See 4.5.1. for
information about
worlds.

Description Text A textual description of
this field for human
understanding

Road_ID Integer Road.ID A pointer to the element
in the Road table in
which the road segment
is a part of.

Start_Point
Adjacent
Intersection
_ID

Integer Intersecti
on.ID

A pointer to the element
in the Intersection table
which precedes the road
segment.

End_Point_
Adjacent_
Intersection
_ID

Integer Intersecti
on.ID

A pointer to the element
in the Intersection table
which follows the road
segment.

Segment_
Length

Double Measured in meters. The
length of the road
segment measured from
center point to center
point. This should be
derived from the length
of the road elements
which compose it.

Road_
Segment_
Class

Integer RoadSeg
mentClass
.ID

A pointer to an element
in the
RoadSegmentClassLook
up table which contains
the class of road
segment which applies
to this road segment.

4.2 Ontologies for Autonomous Navigation
The field of autonomous vehicles has reached a level of
maturity such that it could greatly benefit from leveraging the
latest technologies in the area of reasoning over knowledge
representations and ontologies.2 The use of ontologies and
automated inference is a natural fit for representing and
reasoning about world models (the internal knowledge
representation) for autonomous vehicles. The goal for the
effort described in this section is to apply ontologies to
improve the capabilities and performance of on-board route

2 The 2004 AAAI Spring Symposium series includes a workshop

on this the topic: “Knowledge Representation and Ontology in
Autonomous Systems”. See:
http://www.aaai.org/Symposia/Spring/2004/sssparticipation-
04.pdf

planning for autonomous vehicles. More specifically, to apply
ontologies to determine the extent to which a given object is an
obstacle to a given vehicle in a given situation [3].

There are many potential benefits of introducing an ontology
(or set of ontologies) into an autonomous vehicle’s knowledge
base. One is the potential for reuse and modularity. For
example, a general theory of obstacles could apply to a broad
range of autonomous vehicles. In addition, ontologies provide
a mechanism to allow for a more centralized approach to
represent and reason about environmental information.
Different modules in an autonomous vehicle would query the
ontology, rather than having the information scattered among
the modules. This has a corresponding benefit in cheaper and
more reliable maintenance. Finally, there is the potential for
increased flexibility of response for the autonomous vehicle.
Methods that rely on pre-classification of certain kinds of
terrain in terms of their traversability [4;5] are important, but
do not support reasoning about objects in a more dynamic
context.

I start with the simple scenario illustrated in Figure 3. Our
vehicle (labeled OV) is in the left lane of a four-lane, two-way,
undivided highway. An object is detected in our lane. The goal
is to formulate an optimal route plan that takes into account
the potential damage from a collision with the object. The
main role of the ontology component is [initially] to provide
assessments of collision damage. I will take into account not
only damage to the vehicle, but also damage to the payload
and to the object, itself. This information is used to plan a
route that either goes around the object, or collides with it.

A number of parameters may be varied in this scenario. These
include: the type of vehicle being controlled, the speed at
which the vehicle is traveling, the payload being carried, and
type of object in the path that may be an obstacle. For
example, if the object is a newspaper in the middle of the
roadway, then the ontology component will conclude that no
damage will occur and the planner will conclude that the best
course of action is to maintain the current lane (because
changing lanes always accumulates additional risk over
maintaining your lane).

Figure 3. Simple Driving Scenario

However, if the object were a large cinder block, significant
damage would be likely and the final route should be quite
different. The ontology component is equipped with
knowledge about many kinds of vehicles, objects, and the kind
of damage that can arise from different collisions. This is used
to determine the damage that would be caused by a collision.
The ontology includes objects, vehicles and situations with
associated inference rules. Specifically, the ontology contains
different types of objects that one expect to encounter in
various environments, along with their pertinent characteristics
and relationships to other objects. Initially the effort is
focusing on on-road driving, so categories of objects such as
other vehicles, pedestrians, animals, debris, speed bumps, etc.
are represented. Each one of the objects that fall under these
categories has a set of characteristics that describe them and
help us to understand the damage that may be caused by
colliding with them. For example, a certain type of debris may
have a set of dimensions, a weight, a density, a velocity, etc.
The rules determine the ‘degree of obstacleness’, which is
ultimately expressed in terms of a cost.

The ontology and its associated reasoning engine provides as
an output, a damage assessment in the event of a collision
between our vehicle and a given object based upon:

• The type of autonomous vehicle;
• The type of object being collided with;
• The closing speed of our vehicle with the object;
• The integrity of our vehicle, i.e., what damage has

already occurred to our vehicle, if any.

Based on this information, the ontology provides a damage
classification pertaining to:

• The vehicle’s integrity (initially only assigning
damage to the bumper, wheels, and overall vehicle,
but will eventually include other components of the
vehicle).

• The obstacle’s integrity
• The vehicle payload’s integrity

In order to provide the damage classifications, the
expressiveness of the ontology must be such that it represents
concepts such as:

• The type of vehicle that is being autonomously
controlled and its pertinent characteristics;

• The objects that are being encountered in the
environment and their pertinent characteristics;

• The payloads that the vehicle is carrying and their
pertinent characteristics;

• Severity classifications of damage;
• Damage types;
• Terrain information (initially fixed as paved roads);
• Collisions (e.g., a certain type of vehicle with a

certain type of object).

For the initial work, the levels of collision damage shown in
Table 3 are assumed.

Table 3: Levels of Collision Damage

 Vehicle Object Payload
None No damage to

vehicle
No damage

to object
No damage
to payload

Minor Damage to
vehicle will not
affect vehicle
performance

Damage to
object will
not affect

object overall
integrity

Damage to
vehicle will
not affect
payload

Moderate Moderate
probability of

vehicle damage,
maintenance

required

Damage to
object will

affect object
integrity, but

will not
result in
object

destruction

Moderate
probability
of payload

loss

Severe Major loss of
functionality/
integrity of

vehicle likely

Major
destruction
of object

Major
payload loss

Catastrophic Vehicle loss Object
destruction

Payload loss

There are many approaches that could be used to estimate the
actual collision damage. These include:

• Numerical simulation tools which model the physics
of weight, materials, shapes, density, momentum etc.
to compute impact damage;

• Probabilistic models;
• Fuzzy logic;
• Symbolic logic.

Not one of these techniques is likely to be adequate in all
circumstances. The current work focuses on the symbolic logic
approach. The hypothesis is that even when logic-based
inference is not sufficient, the core ontology of objects and
characteristics will remain useful as a conceptualization and
vocabulary for expressing rules and procedures for estimating
damage.

For the initial experiments, a small ontology was constructed
using OilEd [6]. Using a description logic [7] tool has two
advantages for us. First, the classifier detects logical errors in
the ontology, which greatly increases confidence that the
ontology is correct. Second, it is very fast at doing inference.
This is important because the planner needs to query the
ontology component up to a few hundred times a second to get
damage estimates for the many nodes being explored in the
search space.

A class called Situation was defined which has various
characteristics or attributes, each modeled by functional
relations with Situation as the domain. The key characteristics
of a Situation that will determine the damage classification are
the vehicle, the payload and the object with which the vehicle

may collide. These functional relations are called hasVehicle,
hasPayload, and hasPotentialObstacle, respectively. Attributes
were also used to define the damage categories in Table 3. For
example, the class VehicleIntegrityMinor is defined to be the
class of all Situations such that the value of the functional
relation hasVehicleIntegrity attribute is Minor.

A simple ontology of physical objects was constructed that
including various types of vehicles and other objects such as
bricks, newspapers etc. that may be in the vehicle’s
environment. These objects have characteristics such as
weight, speed, density, etc. that are important in determining
the damage category. Initially, some qualitative categories for
measuring these characteristics were created, such as low,
medium and high for weight, or density.

Finally some axioms were created which specify how to
classify a given situation in terms of the categories in Table 3.
Here is a simple example:

A Situation such that

• The value of the hasPotentialObstacle relation is
restricted to be of type SmallDenseObject.
&

• The value of the hasVehicle relation is restricted to
be of type Car

is a subclass of VehicleIntegrityModerate.

Some fictitious situations were created to test these axioms.
For example, the situation whose hasPotentialObstacle
relation is a brick, and whose hasVehicle relation is a Toyota
Corolla will be classified by this rule under
VehicleIntegrityModerate. This is inferable because a brick is
a SmallDenseObject (by virtue of its weight and size), and a
Toyota Corolla is a subclass of Car.

This Autonomous Navigation Ontology is represented in
description logic (near the right side of the formalization figure
shown in Section 2). The reason why a more formal
representation was chosen was because the ontology was
developed to allow reasoning, which requires that the underlying
representation be more formal. The effort clearly falls into the
“Ontology for Reasoning” section described in Section 3. Full
first order logic could have been chosen in this effort, but it was
felt that it was overkill for the fairly simple examples that were
anticipated.

4.3 The Process Specification Language
The Process Specification Language (PSL) [8] is addressing the
software interoperability issue by creating a neutral, standard
language for process specification to serve as an interlingua to
integrate multiple process-related applications throughout the
manufacturing life cycle. This interchange language is unique due
to the formal semantic definitions (the ontology) that underlie the
language. Because of these explicit and unambiguous definitions,
information exchange can be achieved without relying on hidden
assumptions or subjective mappings.

Existing approaches to process modeling lack an adequate
specification of the semantics of the process terminology, which
leads to inconsistent interpretations and uses of the information.
Analysis is hindered because models tend to be unique to their
applications and are rarely reused. Obstacles to interoperability
arise from the fact that the legacy systems that support the
functions in many enterprises were created independently, and do
not share the same semantics for the terminology of their process
models.

For example, consider Figure 4 in which two existing process
planning applications are attempting to exchange data. Intuitively
the applications can share concepts; for example, both material in
Application A and workpiece in Application B correspond to a
common concept of work-in-progress. However, without explicit
definitions for the terms, it is difficult to see how concepts in each
application correspond to each other. Both Application A and B
have the term resource, but in each application this term has a
different meaning. Simply sharing terminology is insufficient to
support interoperability -- the applications must share their
semantics.

Figure 4: The Need For Semantics

A rigorous foundation for process design, analysis, and execution
therefore requires a formal specification of the semantics of
process models. One approach to generating this specification is
through the use of ontologies. A major goal of PSL is to reduce
the number of translators to O(n) for n different ontologies, since
it would only require translators from a native ontology into the
interchange ontology.

Within this work, the term “ontology” refers to a set of sentences
in first-order logic, comprising a set of foundational theories and
sets of definitions written using the foundational theories. In
providing such an ontology, one must specify three notions:

• Language
• Model theory
• Proof theory (axioms and definitions)

A language is a set of symbols (lexicon) and a specification of
how these symbols can be combined to make well-formed
formulae (grammar/syntax). The lexicon consists of logical
symbols (such as connectives, variables, and quantifiers) and non-
logical symbols. For PSL, the non-logical part of the lexicon
consists of expressions (constants, function symbols, and
predicates) that refer to everything needed to describe processes.

The underlying language used for PSL is KIF[9] (Knowledge
Interchange Format). Briefly stated, KIF is a formal language
developed for the exchange of knowledge among disparate
computer programs. KIF provides the level of rigor necessary to
define concepts in the ontology unambiguously, a necessary
characteristic to exchange manufacturing process information
using the PSL Ontology.

The primary component of PSL is its terminology for classes of
processes and relations for processes and resources, along with
definitions of these classes and relations. Such a lexicon of
terminology along with some specification of the meaning of
terms in the lexicon constitutes what this effort is calling an
ontology.

The model theory of PSL provides a rigorous mathematical
characterization of the semantics of the terminology of PSL. The
objective is to identify each term with an element of some
mathematical structure, such as a set or a set with additional
structure (e.g. a complete partial order); the underlying theory of
the mathematical structure then becomes available as a basis for
reasoning about the terms of the language and their relationships.

The proof theory of PSL provides axioms for the interpretation of
terms in the ontology. It is useful to distinguish two types of
sentences in this set of axioms: core theories and definitions. A
core theory is a set of distinguished predicates, function symbols,
and individual constants, together with some axiomatization.
Distinguished predicates are those for which there are no
definitions; the intended interpretations of these predicates are
defined using the axioms in the core theories. For these terms, one
needs to describe the set of models corresponding to the intuitions
that one has for them. Axioms are then written that are sound and
complete with respect to the set of models. That is, every
interpretation that is consistent with the axioms is a model in the
set, and any model in the set is an interpretation consistent with
the axioms. These axioms constitute the foundational theories of
the ontology. The set of models form the semantics (or model
theory) of the ontology.

All other terms in the ontology are given definitions using the set
of primitive terms. These definitions are known as conservative
definitions since they do not add to the expressive power of the
core theories, that is, anything that can be deduced with the
definitions, can be deduced using the core theories alone. All
definitions in an ontology are specified using the core theories;
any terminology that does not have a definition is axiomatized in
some core theory. Since all other terms are defined using these
primitives, the set of models for them can be defined using the
models of the core theories for the primitives. One can therefore
assign semantics to the definitions using the classes of models that
have already been specified for the core theories.

The challenge is that some framework is needed for making
explicit the meaning of the terminology for many ontologies that
reside only in people's heads. Any ideas that are implicit are a
possible source of ambiguity and confusion. For PSL, the model
theory provides a rigorous mathematical characterization of
process information and the axioms give precise expression to the
basic logical properties of that information in the PSL language.
So when one speaks about semantics for PSL, it is in reference to

the axiomatization of core theories and definitions for the PSL
terminology.

The focus of the ontology is not only on the terms, but also on
their definitions. An infinite set of terms can be included in the
ontology, but they can only be shared if everyone agrees on their
definitions. It is the definitions that are being shared, not simply
the terms. A simple definition with the PSL ontology is shown
below:

Definition An activity is-occurring-at a timepoint p if and only if
p is betweenEq the activity's begin and end points.

(defrelation is-occurring-at (?a ?p) :=
 (exists (?occ)
 (and (occurrence ?occ ?a)

(betweenEq (beginof ?occ) ?p (endof ?occ)))))

A simple axiom within the PSL ontology is shown below:

Axiom. An object can participate in an activity only at those
timepoints at which both the object exists and the activity is
occurring.

(forall (?x ?a ?t)
 (=> (participates-in ?x ?a ?t)

(and (exists-at ?x ?t)
(is-occurring-at ?a ?t))))

This Process Specification Language is represented in full first
order logic (all the way to the right side of the formalization
figure shown in Section 2). The reason for this is two-fold:

1. Precise semantics are needed to ensure that complete
and unambiguous information exchange occurs between
two applications,

2. Reasoning must be performed over the concepts in the
ontology to ensure that mappings between the
applications ontology and PSL are complete and
correct.

The effort clearly falls into the “Ontology as an Exchange
Language” section described in Section 3.

5. CONCLUSION
In this paper, different levels of ontology formalization are
discussed and an overview of the ways in which ontologies have
been used in practice over the past couple decades is described.
Three examples are also provided of very different ontologies that
have been developed to solve real-world problems in the
autonomous vehicle and manufacturing systems integration
domains. It is also explained why the formalisms that were used
were the most appropriate for their intended purpose.

There are many other ontology efforts which could have been
used as examples, including an ontology for searching products
on private company’s web site, an ontology for classifying robot
capabilities to allow a first responder to find the best robot for a

disaster site, and an ontology that was developed to classify
autonomous vehicle behaviors so that the right behavior can be
chosen when confronted with specific environmental conditions.
The three that were chosen were done so because they provide a
good spectrum of the types of formalism that can be used when
developing an ontology. If the reader is interested in hearing
about these efforts, please don’t hesitate to contact the author.

6. REFERENCES

 [1] S. Brooks and R. Greenway, "Using STEP to integrate
design features with manufacturing features," in
Computers in Engineering Conference New York, NY:
1995, pp. 579-586.

 [2] C. Schlenoff, S. Balakirsky, T. Barbera, C. Scrapper, J.
Ajot, E. Hui, and M. Paredes, "The NIST Road Network
Database: Version 1.0," National Institute of Standards
and Technology (NIST) Internal Report 7136,2004.

 [3] C. Schlenoff, S. Balakirsky, M. Uschold, R. Provine, and
S. Smith, "Using Ontologies to Aid in Navigation
Planning in Autonomous Vehicles," Knowledge
Engineering Review, vol. 18, no. 3, pp. 243-255, 2004.

 [4] J. J. Donlon and K. D. Forbus, "Using a Geographic
Information System for Qualitative Spatial REasoning
about Trafficability," in Proceedings of the Qualitative
Reasoning Workshop Loch Awe, Scotland: 2003.

 [5] R. M. Malyyankar, "Creating a Navigation Ontology," in
Proceedings of the Workshop on Ontology Management,
AAA!-99 Orlando, FL: 1999.

 [6] S. Bechhofer, I. Horrocks, C. Goble, and R. Stevens,
"OilEd: a reason-able ontology for the semantic web," in
Proc. of the Joint German Austrian Conference on AI,
number 2174 in Lecture Notes In Artificial Intelligence
Springer-Verlag, 2001, pp. 396-408.

 [7] F. Baader, D. McGuinness, D. Nardi, and F. Patel-
Schnedier, Description Logic Handbook: Theory,
Implementation and Application Cambridge University
Press, 2002.

 [8] C. Schlenoff, M. Gruninger, F. Tissot, J. Valois, J. Lubell,
and J. Lee, "The Process Specification Language (PSL)
Overview and Version 1.0 Specification," in NISTIR 6459,
National Institute of Standards and Technology 2000.

 [9] M. Genesereth and R. Fikes, "Knowledge Interchange
Format," in Stanford Logic Report Logic-92-1 Stanford
University: 1992.

