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a b s t r a c t

A model is introduced for measurements obtained in collaborative interlaboratory
studies, comprising measurement errors and random laboratory effects that have Laplace
distributions, possibly with heterogeneous, laboratory-specific variances. Estimators are
suggested for the common median and for its standard deviation. We provide predictors
of the laboratory effects, and of their pairwise differences, along with the standard
errors of these predictors. Explicit formulas are given for all estimators, whose sampling
performance is assessed in a Monte Carlo simulation study.

Published by Elsevier B.V.

1. Interlaboratory studies and key comparisons

The international agreement, the so-called ‘‘Mutual Recognition Arrangement’’ (MRA) (CIPM, 1999) on mutual recogni-
tion of national measurement standards, calibration and measurement certificates issued by national metrology institutes
(NMIs) calls for the execution of interlaboratory studies aimed at testing principal techniques and measurement methods
in a particular field of science. These studies are organized by the Consultative Committees (CCs) of the Comité International
des Poids et Mesures (CIPM), there are CCs for length, mass, amount of substance, etc. Such interlaboratory studies are called
Key Comparisons (KCs), and one of their principal goals is to establish the degree of equivalence of national measurement
standards which characterize the extent to which each institute may have confidence in the results reported by other NMIs.
Typically, a KC produces a key comparison reference value (KCRV): for example, in a KC focusing on the length of a gauge
block, this should be the block’s true length (ISO/IEC, 2007, 5.18) although in actuality it is the best estimate of this length. In
a KC focusing on themass fraction of a particular substance in a certified referencematerial of which aliquots are distributed
to the participating NMIs for analysis, this could be the mass fraction of one or more selected compounds.

The MRA defines the Degree of Equivalence of a national measurement standard (unilateral DoE) as comprising its
deviation from the key comparison reference value and the uncertainty of this deviation. According to theMRA the degree of
equivalence between a pair of nationalmeasurement standards (bilateral DoE) is formed by the difference of their deviations
from the reference value and the uncertainty of this difference. If a reference value cannot be meaningfully defined (for
example, when the KC involves multiple circulating artifacts and not all NMIs measure all of them), the KC results might be
expressed directly in terms of the degrees of equivalence between pairs of standards.
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The International vocabulary of metrology (VIM) (ISO/IEC, 2007, 2.26) definesmeasurement uncertainty as a ‘‘non-negative
parameter characterizing the dispersion of the quantity values being attributed to a measurand, based on the information
used’’, and adds that this ‘‘parameter may be, for example, a standard deviation’’. For this reason we follow the customary
usage in statistics and use either ‘‘standard deviation’’ or ‘‘standard error’’ throughout, where metrologists might use
‘‘measurement uncertainty’’ instead.

The ith of n NMI participating in a KC is supposed to produce a measured value xi and an assessment of its standard error
ui. Thus we start with a set of n (scalar) measurement values x1, . . . , xn, and the corresponding standard errors u1, . . . , un,
whichwe assumeare known. Theprecisemeaning of these uncertainties often is debatedheatedly. Could they be regarded as
known quantities, or instead are they merely estimates of unknown quantities? Somemetrologists insist that uncertainties
are computed (with assuredness and certainty of arithmetic), while others concede that they are only estimated. When xi
and ui are modeled as in Bayesian inference, one can convincingly argue that conditionally upon the data, ui indeed are
computed as standard deviations of suitable posterior distributions, and therefore are known with certainty which is our
assumption.

The next section introduces the model. We find estimators of the KCRV (8) and of its standard error (10), as well as of a
scale parameter (9) in the distribution of the random interlaboratory effects. Assuming these parameters to be known, in
Section 3 the estimators of the degrees of equivalence (value and standard error) are derived. Section 4 contains results of
Monte Carlo simulation. Most of the formulas needed in Section 3 are collected in the Appendix.

2. Random effects and commonmedian model

2.1. Mixed effects Laplace model

In many practical cases, all confidence intervals based on measured values xi and their standard errors ui do not overlap,
which suggests that the dispersion of the measured values xi is greater than what their standard errors might lead one to
expect. It is also fairly common that a few of the measurements deviate markedly from the bulk of the rest.

The first kind of situation can be dealtwith bymodeling themeasurements as outcomes of independent randomvariables
Xi = µ + Bi + Ei for i = 1, . . . , n, where µ is the unknown KCRV, Bi is a lab-specific random effect, and Ei represents
measurement error. Similarly to a common practice in robust estimation (Wilcox, 2005) the second eventuality can be
addressed by modeling the distributions of Bi and Ei as suitably heavy-tailed. The results are then analyzed using either ad
hoc robust statistical methods, or likelihood methods, conventional or Bayesian, that guarantee similar robustness within a
parametric framework.

There is a precedent to this general approach. For example, Pinheiro et al. (2001) describe a model that is based on
Student’s t-distribution. In the same spirit, the median has been suggested as a possible consensus KCRV estimator e.g.,
Cox (2002). However, this method does not use the standard errors ui at all; neither do other robust estimators that have
been suggested to address the same problem, e.g., Analytical Methods Committee (1989a,b) and Thompson et al. (2006).
The departures from the Gaussian random effects linear model, that appear most detrimental to the performance of the
estimators, while staying within the realm of symmetric distributions, are heaviness of the tails of the distribution of Bi, and
incomplete knowledge of the variances of the measurement errors Ei.

To account for these facts we suggest a mixed effects model in which both Bi and Ei have suitably scaled Laplace (double-
exponential) distributions. This model, as we shall show, is far more robust than the traditional Gaussian model, while
incurring only moderate loss of efficiency in this traditional case. Similarly to what other laboratory effects do, it also
overcomes the problemof ‘‘inconsistency’’ (between the xi). See Toman and Possolo (2009) for critique of consistency testing
proposed by Decker et al. (2006) and Cox (2007). In ourmodel both lab-specific random effects andwithin-labmeasurement
errors can be interpreted as Gaussian but with variances u2

i that are like random draws from exponential distributions.
Our estimation method for µ on the basis of heterogeneous data is based on the statistic,

µ = argmin
µ

n−
i=1

|xi − µ|

ui
, (1)

which is a weighted median. This procedure has a maximum likelihood interpretation to be discussed in the next section,
and there are efficient numerical algorithms for its evaluation; see Bloomfield and Steiger (1983). Indeed, medians weighed
by their standard errors have already been suggested as KCRV estimators; see Müller (2000), Ratel (2006). Besides those
mentioned above, Rocke (1983), Davies (1991), Lischer (1996) and Duewer (2006, 2008) advocate the use of robust statistics
(including the median) in interlaboratory studies. The same robustness issues arise in the more general context of meta-
analysis; see Hedges and Olkin (1985). To address meta-analysis problems robustly, Demidenko (2004) uses a setting which
is somewhat similar to the following model by assuming Gaussian errors and Laplace between-lab effects. Wilcox (2006)
points out difficulties with homogeneity testing for the medians.

The model we propose for KCRV estimation, and for the assessment of its standard error is this: the measured values,
x1, . . . , xn, are outcomes of random variables

Xi = µ + Bi + Ei, (2)
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where Bi and Ei, i = 1, . . . , n, are independent random variables with Laplace distributions whose densities are fβ and fui
such that,

fβ(bi) =
1
2β

e−|bi|/β , fui(ei) =
1
2ui

e−|ei|/ui . (3)

The unknownparameters are the unknowncommonmedianµ (the deterministic commoneffect, consensus value, or KCRV),
the scale parameter β , and the realized values b1, . . . , bn of random, between-lab effects B1, . . . , Bn, whose density is given
in (3).

The parameter β plays an important role in the estimation ofµ. In Section 2 β is initially restricted to a finite set, namely
to {u1, . . . , un} with the initial value β = maxi ui. This parameter can be interpreted as a penalty which discourages large
absolute values of bi; see Koenker (2005).

An alternative but equivalent formulation is that the conditional distribution of Xi for given Bi = bi is the Laplace distri-
butionwith themeanµ+bi and the scale parameter ui. The distribution of the random effect Bi is also a Laplace distribution
with zero mean and the scale parameter β. Model (2) can be motivated in the same way as the random effects model with
Gaussian errors and between-lab effects. However, now the distributions of Bi and Ei are taken to be Laplace, that is, as a
compound Gaussian distribution with common zero mean and exponentially distributed variance; see Kotz et al. (2001).

This fact allows for an extension of our model to accommodate KCs where ui is qualified with the number di of ‘‘degrees
of freedom’’. In this case the uncertainties ui are not known with certainty, but instead have their degrees of freedom. Then
for suitable constants κi represent measurement errors as Ei = κiuiZi


χ2

νi
/νi, where Zi are independent standard normal

variables, andχ2
νi
aremutually independent randomvariables, also independent of the Zi, withχ2-distributions on νi degrees

of freedom. Although the subsequent explicit formulas are not applicable in this case, direct maximization of the likelihood
or Bayesian estimation via MCMC is viable in this case, as is illustrated in Section 4.

We present now the strategy to obtain the desirable estimators. By employing the maximum profile likelihood method
(or by using the posterior mode when µ has the uniform prior) we derive the estimator (predictor) of random effects in (7)
as well as the estimator (8) of the common median. This is done for a given value of β using an empirical Bayes method.
Then in Section 3 we give the conditional distribution of Bi for given Xi which is used to get estimators of the unilateral and
bilateral degrees of equivalence:bi from (13) andbi −bj, and their standard errors u(bi) from (15) and V (i, j) from (14).

2.2. Estimators of the common median and random effects

Assume that ui are known, and β is fixed. We start with themaximum profile likelihood estimator or by assuming thatµ
has the uniform (non-informative) prior, with the posterior mode which can be regarded as the Bayes estimator of µ. This
estimator maximizes

n∏
i=1

[
1
2ui

exp

−

|xi − bi − µ|

ui


1
2β

exp

−

|bi|
β

]
. (4)

The function (4) can be maximized directly, for example using the Nelder–Mead algorithm as implemented in R function
optim. Gurwitz (1990) had proposed three different algorithms (modified quicksort, modified heapsort and linear-time) for
similar optimization problems, and the referee has suggested another iterative algorithm which maximizes (4) using the
idea of reweighted least squares.

To find the posterior mode notice that

arg min
µ,b1,...,bn

n−
i=1


|xi − bi − µ|

ui
+

|bi|
β


= arg min

µ,h1,...,hn

n−
i=1


|yi − hi − µ|

αi
+

|hi|

β


. (5)

Here y1 ≤ y2 ≤ · · · ≤ yn are the order statistics of the xi, that is yi = xσ(i), where the permutation σ defines the anti-ranks
of x’s, and αi = uσ(i), hi = bσ(i). One has

min
µ,h1,...,hn

n−
i=1


|yi − hi − µ|

αi
+

|hi|

β


= min

µ,h1,...,hn,c

n−
i=1


|yi − hi − µ|

αi
+

|hi − c|
β


= min

µ,h1,...,hn

n−
i=1


|yi − hi − µ|

αi
+

|hi − median(hi)|

β



= min
µ,h1,...,hn

median(hi)=0

n−
i=1


|yi − hi − µ|

αi
+

|hi|

β


. (6)

In other words, ifbi denotes a minimizer of (5), median(bi) can be taken to be zero, i.e., only differences bi −median(bi) are
estimable from (5).
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The objective function in (5) is a convex (continuous), piecewise linear function of µ and hi (or bi). To find its minimum
notice that for fixed i and µ, when yi > µ,hi = 0, if αi ≥ β; = yi − µ, if αi < β , and the same formulas hold when µ ≤ yi.
Thus,

hi =hi(µ) =


0 αi ≥ β,
yi − µ αi < β,

(7)

i.e.,hi =bσ(i) vanishes if the reported standard error of lab i exceeds β . The posterior mode (7) can assume only two values,
0 and xi − µ, and is unable to predict all linear combinations of bi, so (7) should not be used as the final estimator.

Still the form of (7) provides a useful/estimate of µ. Let

µ = argmin
µ


n−

i=1

|yi −hi − µ|

αi
+

|hi|

β



= argmin
µ

 −
i:αi≥β

|yi − µ|

αi
+

−
i:αi<β

|yi − µ|

β



= argmin
µ

n−
i=1

min


1
αi

,
1
β


|yi − µ| = argmin

µ

−
i

wi|yi − µ|, (8)

i.e.,µ is a weighted median of yi with weights wi = 1/max(αi, β). For its numerical evaluation find a, 1 ≤ a ≤ n, such that∑a−1
1 wk < 2−1 ∑n

1 wk ≤
∑a

1 wk, and put µ = ya. Thus, although the minimum in (8) is possibly attained on an interval,
as the classical median, the weighted median can be restricted to the set of observed values.

If β ≥ maxi ui, µ is the classical median, and Cox’s (2002) proposal mentioned in Section 2 is a particular case of our
method (in which the standard errors ui do play a role!) In this situationbi ≠ 0 except possibly for exactly one value of i. If
β ≤ mini ui, thenbi ≡ 0, andµ coincides with (1).

If the set C = {i : bi ≠ 0} is not empty, the maximization of the likelihood function (4) gives the empirical Bayes
estimator of β ,

β =
1

card(C)

−
i∈C

|bi|.
Otherwise the initial value of β is to be increased. If this (recommended by us) initial value is maxi ui, then

β =

n∑
i=1

|xi − median(xi)|

n − 1
. (9)

Simulation studies, including those whose results are reported in Section 4, suggest that the estimator (9) be used to
determineµ in (8).

The variability of µ needs to be assessed. The asymptotic theory, Koenker (2005) suggests that µ − µ is approximately
normal with zero mean and variance σ 2

= (
∑

k w2
k )[

∑
k wk/(uk + β)]−2, which can be estimated by

σ 2
=

∑
k

ŵ2
k[∑

k

ŵk
uk+β

]2 , (10)

ŵk = 1/max(αk, β̂), k = 1, . . . , n. Ifβ = maxi ui, then ŵk ≡ β−1, andσ 2
= n

∑
k(uk + β)−1

−2
. According to simulation

results, σ 2 underestimates the variance for small to medium sample sizes. In such cases the distribution of (µ − µ)/σ̂
is better approximated by a t-distribution with n − 1 degrees of freedom, and µ ± tα/2,n−1σ , can be suggested as an
approximate 100(1 − α)% confidence interval for µ.

To conclude this section notice that when β is unknown, the joint profile likelihood for µ and β is not bounded. Indeed
formulas (5), (7) and (8) show that the negative logarithm of this function is

∑
|xi − µ|/max(ui, β) + n logβ, which tends

to −∞ as β → 0. Thus, formally the maximum likelihood estimator of β is 0, which is not useful, and this is the reason for
employing the maximum profile likelihood estimator.

In Section 4 we report some simulation results for the maximum likelihood estimator of µ based on the marginal
likelihood

∏
i pi(xi − µ) where

pi(x) =
1

4βui

∫
exp


−

|x − t|
ui

−
|t|
β


dt =

βe−|x|/β
− uie−|x|/ui

2(β2 − u2
i )

, (11)
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denotes the density of the sum of two independent Laplace distributed random variables with parameters ui ≠ β . When
ui = β ,

pi(x) =
e−|x|/ui

4ui


1 +

|x|
ui


.

Notice that in the formula (2.3.23) for pi in Kotz et al. (2001) si should be replaced by 1/si.

3. Degrees of equivalence and their standard errors

A clear benefit of model (2) is an easy interpretation and estimation of DoE. Indeed as in Toman and Possolo (2009), let
the unilateral DoE for lab i be bi, and let the bilateral DoE for two labs, say, i and i′, be bi − bi′ . The standard deviation of the
Laplace distribution (3) is measured by the parameter β which is the absolute moment of order one, or by the square root
of one-half of the second moment,

β = E|Bi| =


EB2

i

2

1/2

.

Since β has been estimated by (9), and µ was determined from (8), we will take these parameters, as well as the ui, to be
known when using the notation,

gi(t) =
exp{−|xi − µ − t|/ui − |t|/β}

4uiβpi(xi − µ)

for the density of the conditional distribution of Bi for given xi − µ. The same holds for the corresponding distribution
function,

Gi(t) = P(Bi ≤ t|xi) =

∫ t

−∞

gi(s)ds,

for which

Gi(t) =


e−(xi−µ)/ui+t(1/ui+1/β)

4(ui + β)pi(xi − µ)
t ≤ 0.5(xi − µ − |xi − µ|),

1 −
e(xi−µ)/ui−t(1/ui+1/β)

4(ui + β)pi(xi − µ)
t > 0.5(xi − µ + |xi − µ|),

so that Gi has exponential tails. In the interval {t : |t − 0.5(xi − µ)| ≤ 0.5|xi − µ|}, the function Gi(t) is an integral of the
exponential function exp{sgn(xi − µ)t(1/ui − 1/β)}.

The particular cases are used in the following sections: (i) xi = µ, Gi the distribution function of the Laplace distribution
with the parameter γi = uiβ/(ui + β), i.e.,

1
γi

=
1
ui

+
1
β

,

(ii) ui = 0,Gi the point mass at xi − µ, (iii) β = 0,Gi the point mass at zero.

3.1. Unilateral degrees of equivalence

We examine two (empirical) Bayes estimators of the random effect (or unilateral DoE) namely, the posterior mean
bi = E(Bi|xi) (which is the classical unbiased predictor) and the posterior median bi (which is the median-unbiased
predictor.) The posterior modebi is less attractive than these as was discussed in Section 2.

The posterior mean is

bi =

∫
∞

−∞

tgi(t)dt

=
sgn(xi − µ)β

pi(xi − µ)(β2 − u2
i )

[
e−|xi−µ|/β


|xi − µ|

2
+ γi


− 2uiβpi(xi − µ)

]
. (12)

The medianbi of the posterior distribution is the solution of the equation Gi(bi) = 0.5,

bi =
β(xi − µ)

β − ui
+

βuisgn(xi − µ)

β − ui
log


βe−|xi−µ|/β

+ uie−|xi−µ|/ui

β + ui


. (13)
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Fig. 1. Graphs of bi (line marked by squares) andbi (continuous line) when β = 1 < 2 = ui (left panel), and when β = 0.1 < 2 = ui (right panel).

Favoring bi (over bi) are its fairly simple algebraic form (which does not require evaluation of pi(xi − µ)) and the
mean–median–mode inequality according to which bi is always between bi and bi. Fig. 1 depicts the graphs of these
estimators for several values of β and ui when β < ui. When β > ui, these graphs look like straight lines.

Two alternative estimators of DoE’s standard error are, u(bi) = E(|Bi||xi), Eu(bi) = E|Bi|, and u(bi) = [2−1E(B2
i |xi)]

1/2,

Eu(bi)2 = 2−1EB2
i . Their form is given in the Appendix. Fig. 2 show the plots of u(bi) and u2(bi) for several values of β and ui

when β < ui.
These formulas reveal that if β < ui, bi andbi, as well as u(bi) and u(bi), are bounded functions of xi − µ. Interpreting

µ + bi in (2) as a signal, β/ui becomes the signal-to-noise ratio. Our results imply that if this ratio is less than one, then
the possible values of the signal’s estimators cannot exceed a certain threshold: βui(log(ui + β) − log ui)/(ui − β) for the
median, and 2β2ui/(u2

i − β2) for the mean. (For the mode, the estimator is zero.) The same is true for their standard errors.
This fact is in stark contrast with the Gaussian model. Further discussion of ‘‘soft’’ detection based on Laplace distributions
is in Poor (1994).

3.2. Bilateral degrees of equivalence

To estimate the bilateral DoE for labs i and j, 1 ≤ i ≠ j ≤ n one can usebi −bj with standard error estimator

U(i, j) = E

|Bi − Bj|

xi, xj =

∫ ∫
|t − s|gi(t)gj(s)dtds

=

∫
∞

−∞

Gi(t)[1 − Gj(t)]dt +

∫
∞

−∞

[1 − Gi(t)]Gj(t)dt

= u(bi) + u(bj) − 2
∫

∞

0


(1 − Gi(t))(1 − Gj(t)) + Gi(−t)Gj(−t)


dt.

An alternative bilateral DoE estimator, bi − bj, allows the following standard error estimator,

V (i, j) =

2−1E((Bi − Bj)

2
|xi, xj)

1/2
= [u2(bi) + u2(bj) − bibj]1/2, (14)

which is much easier to evaluate. Typically the behavior of V (i, j) is similar to that of U(i, j). See Fig. 3 for the graphs and
Appendix for some comparison results.

4. Example and simulation results

Table 1 shows the estimates of the KCRV corresponding to three different models for the mass fractions (ng/g) of
several polychlorinated biphenyls (PCBs) in sediments that were the targets of KC CCQM-K25 (Schantz and Wise, 2004)
and corresponding standard errors: for the weighted average (WAVE), Gaussian random effects model (GAU), and Laplace
random effects model (LAP). The table’s caption also lists the values of the estimates of the scale parameter β , and the
medians of the corresponding ui. Fig. 4 compares the estimates of the unilateral degrees of equivalence corresponding to
the Gaussian and Laplace random effects models.
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Fig. 2. Graphs of u(bi) (continuous line) and u(bi) (line marked by squares) when β = 1 < 2 = ui (left panel), and when β = 0.1 < 2 = ui (right panel).
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Fig. 3. Graphs of U (continuous line) and V (line marked by squares) when β = 1 < 2 = ui , xj = µ, uj = 1.5 (left panel), and when β = 0.1 < 2 = ui ,
xj = µ, uj = 0.5 (right panel).

Table 1
CCQM-KC25 estimates of the KCRV in ng/g units for five measurands corresponding to three different models, and corresponding standard errors in
parentheses: LAP, Laplace random effects; GAU, Gaussian random effects; and WAVE, weighted average. For LAP, the estimates of the scale factor β were
1.23 (PCB 28), 0.34 (PCB 101), 0.32 (PCB 105), 1.00 (PCB 153), and 0.17 (PCB 170); the corresponding medians of the ui were 0.54, 0.50, 0.18, 0.53, and 0.15.

PCB LAP GAU WAVE

28 33.6 (0.74) 33.7 (0.65) 33.3 (0.18)
101 30.4 (0.35) 30.2 (0.26) 30.2 (0.18)
105 10.8 (0.19) 10.6 (0.18) 10.7 (0.05)
153 31.8 (0.53) 31.9 (0.45) 31.9 (0.14)
170 9.0 (0.11) 8.9 (0.10) 9.1 (0.04)

A Bayesian hierarchical model, where the number of degrees of freedom νi is taken into account by modeling (xi − δi)/ui
as outcomes of Student’s tνi , and the δi as outcomes of Laplace random variables with mean µ and scale β , both with diffuse
priors, was also fitted to the five PCB datasets viaMCMC as implemented in function metrop of package mcmc, Geyer (2009)
for R Development Core Team (2009). The estimates and their standard errors turned out quite similar to those listed under
LAP in Table 1.
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Fig. 4. Estimates of the unilateral degrees of equivalence produced by the Laplace random effects model plotted against the corresponding estimates
produced by the Gaussian random effects model for the five PCBs listed in Table 1. Comparison of the locations of the points relative to the straight line
with slope 1 and 0 intercept indicates that the Laplace random effects model generally ‘‘shrinks’’ the estimates of the DoEs toward 0 relative to its Gaussian
counterpart.

Comparison of the standard errors in the last column of Table 1, under WAVE, with the standard errors in the other
columns suggests that the conventional assessment for weighted averages could produce unrealistically small standard
errors. The entries in the columns labeled LAP and GAU indicate that, in the absence of strikingly outlying labs, when the
Gaussian random effects models may well be tenable, the Laplace random effects model reproduces its results fairly well.

We have undertaken a comparative Monte Carlo simulation study of the frequentist performance of the estimators of
the KCRV µ corresponding to the Gaussian and Laplace random effects models, Xi = µ + Bi + Ei, with n = 13, τ = 5,
β = τ/

√
2, and heterogeneous variances for the Ei, under the sampling situations described next. The dispersion of the

between-lab effects was about 20% of µ, and the dispersion of the measurement errors was about 5% of µ.

GAU Heterogeneous Gaussian random lab effects andmeasurement errors: Bi ∼ N(0, τ 2), Ei ∼ N(0, σ 2
i ), with different

but known σi.
LAP Laplace random lab effects scaled to have variance τ 2, and Laplace measurement errors scaled to have variances

σ 2
i different but known.

SLA Slash random lab effects (ratio of independent Gaussian and uniform random variables scaled so that the median
absolute deviation (MAD) of Bi is τ ) and Gaussian measurement errors with different but known variances.

WIL Gaussian One-Wild random lab effects, B1 ∼ N(0, 100τ 2), and B2, . . . , Bn ∼ N(0, τ 2), and Gaussianmeasurement
errors with different but known variances.

The efficiency of the estimator of µ for the Laplace random effects model introduced in Section 2, relative to its counterpart
assuming Gaussian random effects, corresponding to these four sampling situations, and based on half a million samples
each, was: GAU, 66% (quite close to the median’s of a homogeneous Gaussian sample); LAP, 130%; SLA 690%; andWIL, 520%.
These relative efficiencies are defined as the squared ratio of MADs for corresponding sets of estimates. The efficiency loss
for scenario GAU is more than offset by the vast gains for SLA and WIL, which model situations likely to be encountered in
practice.

That sameweightedmedian as an estimator ofµ incurs only a small loss in efficiency relative to theMLE (for themarginal
likelihood functionwhich involves products of functions pdefined in Eq. (11), shifted to be centered atµ, andwasmaximized
using Nelder–Mead’s procedure): its variance is about 1.1 larger than the MLE’s for all four sampling situations considered
above.

Fig. 5 shows the performance of the posterior medianbi as estimate of the unilateral DoE, and Fig. 6 does so for (15) the
estimate u(bi).
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Fig. 5. The panels show plots of the estimatebi in (13) of the unilateral DoE, against the corresponding, actual random effect, for the four sampling
situations (GAU, LAP, SLA, WIL). The plot corresponding to SLA depicts the absolute values of the DoEs and of the random effects for both axes having
logarithmic scales. The red lines have unit slope and zero intercept. The plots depict only a small sample (1%) of the simulation results. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)

5. Conclusions

The suggested Laplace randomeffectsmodel (2) formeasurements obtained in collaborative studies leads to fairly simple,
robust estimators for the common median and for its standard error. An extension of this model designed to accommodate
situations in which standard errors are accompanied by the number of degrees of freedom is discussed.

Predictors of the laboratory effects and of their pairwise differences interpretable as the degrees of equivalence are
obtained alongwith their standard errors. For all these procedureswederive explicit formulaswhich allowdirect evaluation.
A Monte Carlo simulation study testifies to their good sampling performance.

Appendix

A.1. Unilateral degrees of equivalence

The formula (12) follows from the fact that

bi =

∫
∞

0
[1 − Gi(t) − Gi(−t)]dt =

sgn(xi − µ)

4pi(xi − µ)

[
e−|xi−µ|/β

ui + β
(|xi − µ| + γi)

−
γie−|xi−µ|/ui

ui + β
+

e−|xi−µ|/ui

uiβ

∫
|xi−µ|

0
tet(1/ui−1/β)dt

]
.

One has

u(bi) =

∫
∞

−∞

|t|gi(t)dt =

∫
∞

0
[1 − Gi(t) + Gi(−t)]dt

=
1

4pi(xi − µ)

[
γie−|xi−µ|/ui

ui + β
+

e−|xi−µ|/β

ui + β


|xi − µ| +

uiβ

ui + β


+

e−|xi−µ|/ui

uiβ

∫
|xi−µ|

0
tet(1/ui−1/β)dt

]
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Fig. 6. The panels show plots of the estimate u(bi) in (15) of the standard error of the unilateral DoE, against the absolute value of the corresponding,
actual random effect, for the four sampling situations (GAU, LAP, SLA, WIL). All the axes have logarithmic scales. The red lines have unit slope and zero
intercept. The plots depict only a small sample (1%) of the simulation results. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

=
β

2pi(xi − µ)(β2 − u2
i )


e−|xi−µ|/β(|xi − µ| + β) − 2(u2

i + β2)pi(xi − µ)


= |bi| +
γie−|xi−µ|/ui

2(ui + β)pi(xi − µ)
, (15)

and

u2(bi) =


∞

−∞
t2gi(t)dt

2
=

∫
∞

0
t[1 − Gi(t) + Gi(−t)]dt

=
1

4pi(xi − µ)

[
γ 2
i e

−|xi−µ|/ui

ui + β
+

e−|xi−µ|/ui

2uiβ

∫
|xi−µ|

0
t2et(1/ui−1/β)dt

+
e−|xi−µ|/β

ui + β


(xi − µ)2

2
+ γi|xi − µ| + γ 2

i

]
=

1
4pi(xi − µ)

[
e−|xi−µ|/β


(xi − µ)2


1

2(ui + β)
+

1
β − ui


+ |xi − µ|


γi

ui + β
−

2uiβ

(β − ui)2


+ uiβ

2


1
(ui + β)2

−
2

(β − ui)2


− 2uiβ

2


β − ui

(ui + β)2
−

2(β + ui)

(β − ui)2


pi(xi − µ)

]
. (16)

If β = ui, then

bi =bi =
(xi − µ)e−|xi−µ|/ui

8u2
i pi(xi − µ)

(ui + |xi − µ|) =
xi − µ

2
,

u(bi) =
e−|xi−µ|/ui

8pi(xi − µ)


1 +

|xi − µ|

ui
+

|xi − µ|
2

u2
i


=

|xi − µ|
2
+ ui|xi − µ| + u2

i

2(|xi − µ| + ui)
,
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u2(bi) =
2|xi − µ|

3
+ 3|xi − µ|

2ui + 3|xi − µ|u2
i + 3u3

i

12(|xi − µ| + ui)
.

If ui ≈ 0, then

pi(x − µ) ≈
e−|x−µ|/β

2β
,

bi ∼bi ≈ xi − µ,

u(bi) ≈ |xi − µ|,

u(bi) ≈
|xi − µ|

√
2

.

For small |xi − µ|

pi(xi − µ) ≈
1

2(ui + β)
−

(xi − µ)2

4uiβ(ui + β)
,

bi ∼bi ≈
β(xi − µ)

ui + β
,

u(bi) ≈
uiβ

ui + β
+

(xi − µ)2

2ui
,

u2(bi) ≈
(uiβ)2

(ui + β)2
+

β(xi − µ)2

2(ui + β)
.

When |xi − µ| → ∞,

bi ≈


xi − µ −

sgn(xi − µ)βui

β − ui
log


ui + β

β


ui < β,

xi − µ

2
ui = β,

sgn(xi − µ)βui

ui − β
log


ui + β

ui


ui > β,

bi ≈


xi − µ −

2sgn(xi − µ)βu2
i

β2 − u2
i

ui < β,

xi − µ

2
ui = β,

sgn(xi − µ)β(u2
i + β2)

u2
i − β2

ui > β,

u(bi) ≈



|xi − µ| −
2βu2

i

β2 − u2
i

ui < β,

|xi − µ|

2
ui = β,

β(u2
i + β2)

u2
i − β2

ui > β,

u(bi) ≈



[
(xi − µ)2 −

4(xi − µ)βu2
i

β2 − u2
i

+
2β2u2

i (β
2
+ 3u2

i )

(β2 − u2
i )

2

]1/2

ui < β,[
(xi − µ)2

6
−

|xi − µ|β

12
+

β2

6

]1/2

ui = β,

βui


u2
i + 3β2

u2
i − β2

ui > β.

A.2. Bilateral degrees of equivalence

We give here the exact form of U(i, j) when xi − µ and xj − µ have different signs, say, xj − µ ≤ 0 ≤ xi − µ. Integration
by parts shows that



Author's personal copy

1826 A.L. Rukhin, A. Possolo / Computational Statistics and Data Analysis 55 (2011) 1815–1827

2
∫

∞

0


(1 − Gi(t))(1 − Gj(t)) + Gi(−t)Gj(−t)


dt

=
e−|xj−µ|/uj

2(uj + β)pj(xj − µ)

∫
∞

0
e−t/γj [1 − Gi(t)]dt +

e−|xi−µ|/ui

2(ui + β)pi(xi − µ)

∫
∞

0
e−t/γiGj(−t)dt

=
γje−|xj−µ|/uj [1 − Gi(0)]
2(uj + β)pj(xj − µ)

+
γie−|xi−µ|/uiGj(0)

2(ui + β)pi(xi − µ)
−

γje−|xj−µ|/uj

2(uj + β)pj(xj − µ)

∫
∞

0
e−t/γjgi(t)dt

−
γie−|xi−µ|/ui

2(ui + β)pi(xi − µ)

∫
∞

0
e−t/γigj(−t)dt.

One gets, with 1/η = 2/β + 1/ui + 1/uj = 1/γi + 1/γj,∫
∞

0
e−t/γigj(−t)dt =

∫
∞

−∞

e−|t|/γigj(t)dt −
ηe−|xj−µ|/uj

4ujβpj(xj − µ)

=
δipij(xj − µ)

βpj(xj − µ)
−

ηe−|xj−µ|/uj

4ujβpj(xj − µ)
.

Here 1/δi = 1/β +1/γi = 2/β +1/ui and pij is the density (11) defined by the parameters uj and δi. Using a similar notation
pji for (11) with parameters ui and δj, we obtain from (15)

U(i, j) = |bi| + |bj| +
ujδjpji(xi − µ)e−|xj−µ|/uj

2(uj + β)2pi(xi − µ)pj(xj − µ)

+
uiδipij(xj − µ)e−|xi−µ|/ui

2(ui + β)2pi(xi − µ)pj(xj − µ)
+

ηe−|xj−µ|/uje−|xi−µ|/ui

4(uj + β)(ui + β)pi(xi − µ)pj(xj − µ)
.

For example, when |xi − µ| and |xj − µ| are small,

U(i, j) ≈
γ 2
i + γiγj + γ 2

j

γi + γj
+

(xi − µ)2γi

2ui(γi + γj)
+

(xj − µ)2γj

2uj(γi + γj)
−

(xi − µ)(xj − µ)γiγj(1 + (uiuj)/β
2)

(γi + γj)(uiuj)2
,

and

V (i, j) ≈


γ 2
i + γ 2

j +
(xi − µ)2β

2(ui + β)
+

(xj − µ)2β

2(uj + β)
−

(xi − µ)(xj − µ)β2

(ui + β)(uj + β)
.

Thus, for small |xi − µ|, |xj − µ|,

1 ≤
U(i, j)
V (i, j)

≤
1.5
√
2

≈ 1.0607.

If |xi − µ| → ∞, |xj − µ| → ∞, with xi − µ, xj − µ having the same sign and β < min(ui, uj),

U(i, j) ≈ β


u2
i + β2

u2
i − β2

+
u2
j + β2

u2
j − β2

−
2u2

i u
2
j + β2(u2

i + u2
j + 4uiuj)

4u2
i u

2
j − β2(ui + uj)2


.

If xi − µ and xj − µ have different signs,

U(i, j) ≈ β


u2
i + β2

u2
i − β2

+
u2
j + β2

u2
j − β2

−
2u2

i u
2
j + β2(u2

i + u2
j − 4uiuj)

4u2
i u

2
j − β2(ui − uj)2


.

In either of these cases,

V (i, j) ≈ β ×

u2
i (u

2
i + 3β2)

(u2
i − β2)2

+
u2
j (u

2
j + 3β2)

(u2
j − β2)2

−
sgn


(xi − µ)(xj − µ)


(u2

i + β2)(u2
j + β2)

(u2
i − β2)(u2

j − β2)
.

Thus, if xi − µ, xj − µ are of the same sign, |xi − µ| → ∞, |xj − µ| → ∞, and β < min(ui, uj),

1 ≤
U(i, j)
V (i, j)

≤
3
2
,

otherwise

0.8660 ≈

√
3
2

≤
U(i, j)
V (i, j)

≤
2

√
3

≈ 1.1547.

The largest relative discrepancy between U(i, j) and V (i, j) (at least
√
2) is when xi = µ, xj − µ → ∞, while ui, uj → 0, but

this is not a very realistic scenario.
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