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Abstract—Multiple scans of the same object acquired with 3D imaging system (e.g., laser scanner) in the same experimental 

conditions could provide valuable information about the instrument’s performance (e.g., stability, existence of bias, measurement 

error). Geometrical primitive may be fitted to mult iple datasets and the variances of the fitted object’s parameters may serve as a 

measure of instrument’s performance. We test this procedure on simulated data as well on the data acquired in a laboratory. Two 

different error functions (orthogonal and directional) are used to fit a sphere of known radius to the data. A spread of sphere centers 

fitted with the directional function to simulated data is in agreement with theoretically calculated variances of fitted centers. For sphere 

centers fitted to the data acquired in a laboratory, the variances do not agree with the spread. This fact is interpreted as an evidence of 

a non-zero bias in the recorded range data.  The orthogonal fitting yields sphere centers in disagreement with theory both for simulated 

and laboratory datasets.   

 

 
Index Terms—Nonlinear Least Square fitting, 3D imaging systems, experimental noise, orthogonal error function, directional error 

function.  
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I. INTRODUCTION 

Current 3D imaging systems may acquire hundreds of thousands of 3D point data within a second [1]. 

Subsequent processing is often necessary to locate, describe, and identify geometrical objects within those 

point clouds. One approach is to model an object in terms of parameters that characterize attributes such as 

location, pose, width, height, etc. [2, 3]. Here, we are working with Nonlinear Least Squares (NLS) fitting 

methods, based on determining model parameters that minimize a specified error function. A major 

challenge is how to propagate an instrument error to the errors of fitted parameters. Usually, variances and 

covariances of fitted parameters are determined from the inverse of the Hessian matrix of an error function. 

This approach follows from a common practice of linearization of the nonlinear error function near its 

minimum [4-8]. 

Among geometric objects, the spheres of known radius R play a special role in a use of 3D imaging 

systems: sphere center is the only parameter which needs to be determined. In addition, a sphere can be 

scanned from different directions without any adjustment of the sphere with respect to the instrument. This 

renders spheres convenient targets to be used in registration of two or more datasets acquired from different 

instrument positions [9]. It also establishes spheres as unique artifacts for protocol testing the performance 

of the instrument because the relative distance between two fitted sphere centers can be directly compared 

with ground truth. In both of these applications, the uncertainty of fitted sphere center has to be established 

in order to subsequently derive the margins of error for registration as well for deviation from a ground 

truth.  

In our previous reports [10, 11] we investigated two general approaches to fitting as applied to spheres: 

the orthogonal and the directional fitting methods. We showed there that the orthogonal error function has 

two minima while the directional error function has only one. In [12] we derived closed formulas needed to 

calculate variances and covariances of coordinates of sphere centers fitted by minimizing either of these 

two error functions. Our derivation was more general than the common approach based on a linearization of 
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an error function around its minimum. We estimated variances directly from sensitivities which, in turn, can 

be evaluated analytically. The only assumption we make concerns noise level: we assumed that the noise 

perturbing range measurement is small.  

In the current paper we use these closed formulas to check the performance of 3D imaging systems. 

Specifically, we investigate if tiny bias in range measurement (much smaller than instrument random range 

error) could be detected.  We first check the formulas on spheres fitted to the data generated in computer 

simulations and then apply the same procedure to the data acquired in a laboratory with a 3D imaging 

instrument. Results obtained for simulated data show that sphere centers fitted with the directional error 

function are within the calculated error σ from the truth. Results obtained with the orthogonal error 

functions applied to the same simulated data show that fitted centers differ from the true center by 3σ or 4σ. 

For datasets acquired in a laboratory, the true sphere center is not known in the instrument’s coordinate 

system and closed formulas are checked only for repeatability. In the repeatability test, the spread of sphere 

centers fitted to a few datasets acquired under the same experimental conditions is compared with variances 

provided by closed formulas. If the spread is less than or equal to the calculated errors for most pairs of 

sphere centers then the test is passed, otherwise it fails. For almost all datasets acquired in a laboratory and 

both types of error function, repeatability test failed. This could happen if the instruments used for scanning 

were collecting range data with systematic small bias. Calculated variances of fitted sphere centers scale as 

1/N with the number of points in a datasets. Thus, for typical datasets containing hundreds or thousands of 

points, the resulting variances are very small (usually one or two orders of magnitude below the specified 

instrument’s range error) and therefore they are able to reveal the presence of even small bias in acquired 

range data.  

The paper is organized as follow: in section II we briefly review the derivation of variances of fitted 

sphere center; in section III two error functions used in minimization are defined; in section IV we outline 

experiments while in section V we provide the details of numerical calculations. In section VI we present 
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obtained results followed by discussion in section VII. Final conclusions are presented in section VIII.  

II. VARIANCES OF FITTED PARAMETERS 

In each of our experiments, a sphere of known radius R, but of presumed unknown center location is 

fitted to a given point cloud P{N}. To this end, an error function Er(U, P{N} ) is minimized by varying the 

model parameters U = [X, Y, Z], which represent a generic sphere center, while keeping the data points P{N} 

= {Pj, j = 1,…, N} unchanged. Actual values of Pj are measured in the experiment with N being a number 

of points in the dataset. For convenience, the dependence of the error function on the radius R will be 

dropped as it is treated as a constant. Following the Least Squares approach [13-24], each error function 

considered here is a mean of squares of individual disparities Ej(U, Pj) between “experimental” points Pj 

and corresponding “theoretical” points: 
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The desired result, the fitted parameters U* = [X*, Y*, Z*], is then the result of minimizing the error 

function with respect to the parameters U , with data variables set to represent the experimental data, that is, 

the actual point cloud at hand. For any admissible point data P{N} kept fixed, however, minimizing the error 

function will produce corresponding parameters 
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which will be considered  as functions of P{N}. For 3D imaging systems, experimental noise predominantly 

affects the range measurement rj [25].  The bearings of every experimental point Pj are treated as noise free 

control variables (φj, θj) and thus Pj = rj [xj, yj, zj], where  

.)sin(,)cos()sin(,)cos()cos( jjjjjjjj zyx θ=θϕ=θϕ=            (3)  

In order to calculate the variances of fitted parameters X*, Y*, Z*, we assume no correlations between i-th 

and j-th measurements (i.e. lack of correlation between measured ranges ri and rj). Then, the standard error 

propagation formula yields the following first order estimates for variances and covariances of fitted sphere 
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center coordinates [26, 27] 
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and similarly for other two components Y and Z. The estimates provided by Equations (4a) and (4b) are 

generally considered acceptable if the experimental noise of the range measurements rj is weak, that is, the 

fitted sphere center remains within a linear domain of response to data perturbation. This requires that, if 

we were to acquire two point clouds )1(
}{ NP  and )2(

}{ NP  for the same control variables {(φj, θj), j = 1,…, N }, 

then the following should hold for two fitted sphere centers              
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This implies the error of measured range σ(rj) and, consequently,  the distance between )( )1(
}{

*
NPU  and 

)( )2(
}{

*
NPU  have to be small in comparison to the sphere radius R.  

The coefficients in the Equations (4a) and (4b) represent sensitivities jrX ∂∂ /* , jrY ∂∂ /*  and jrZ ∂∂ /* . In 

order to calculate them, we refer to the fact that the vanishing of the gradient – if it exists – is necessary for 

a minimum to occur. In particular, it follows that substituting the function ( )}{
*

NPU  into the gradient of the 

error function – with respect to the variables U – vanishes for any admissible data specification. In other 

words, the vector function  

( )( ) 0, }{}{
* ≡∇ NNEr PPU ,                        (6) 

which now depends on the variables P{N} alone, is identically zero. Differentiation with respect to the range 

variable rj produces again an expression which is identically zero, and which according to the chain rule 

leads to the following 3x3 system of linear equations for every j:  
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where vectors jS  and jV  are defined as  
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Matrix H is the hessian of the error function Er(U, P{N})  
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Let us note that every element of the matrix H in Equation (8b) contains the sum of N terms, as follows 

from Equation (1).  On the other hand, vector Vj on the right side of Equation (7) contains only one term 

derived from a given Ej(U, Pj). Therefore, the components of the sensitivity vector Sj must scale as 1/N and 

so do the variance and the covariance of fitted sphere center U*. The fact that variances of model 

parameters fitted by Least Squares methods scale as 1/N is well known. What is unusual for the fitting 

procedure discussed in this paper is the magnitude of N: as we mentioned, 3D imaging systems may collect 

hundreds of thousands of points in a second. Thus, corresponding variances of fitted parameters may 

become intriguingly small when compared to variances of instrument’s measurements. Equations (4a) and 

(4b) provide general expressions for the variance and covariance of U*. The particular form of the 

expressions depends on a choice of an error function used in NLS fitting.  

III.  SPHERE FITTING 

Two error functions were examined in this study: the orthogonal and the directional error function. Their 
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geometrical meaning is illustrated in Figure 1a. In the orthogonal case, the deviation Ej in Equation (1) is 

the distance between the measured point Pj and its orthogonal projection Oj on a sphere surface. The 

distance is thus given by  

( ) ( ) ( ) ( ) 2
2222 , 





 −−+−+−= RrzZryYrxXE jjjjjjjj PU          (9) 

where xj, yj, zj are given by Equation (3). In the directional error function, the deviation Ej is a distance 

between Pj and its projection Dj onto the sphere surface along the direction of Pj. If the line from the 

instrument through Pj does not intersect the sphere surface, then the point Dj is constructed as in Figure 1b. 

Using the following notations:  
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the deviation Ej for the directional error function can be written as  
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The quantities pj and qj are illustrated in Figure 1b for situations where qj ≥ R. Explicit forms for the hessian 

matrix H and the vector Vj , needed to solve Equation (7) for sensitivity Sj and ultimately to calculate the 

variance and covariance of sphere center, were derived in [12]  for the orthogonal and the directional error 

function.   

IV. EXPERIMENT 

Data presented in this paper were collected in a series of experiments. Table I provides the summary of 

experimental settings. In total, 87 datasets were collected by scanning four spheres from different distances 

and using three different instruments. In some cases, the location of the sphere center was also directly 

measured with a total station or a laser tracker for ground truth determination. The first column in Table I 

(Group) labels six major groups of experiments A-F with further differentiation in some of the groups. All 

datasets in a single group were acquired by the same instrument, scanning the same sphere. Within the same 
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group, different datasets were collected either under the same or different experimental conditions. 

Azimuths of sphere centers in subgroup A1 differ from azimuths in A2 by 180°, point clouds in subgroup 

D1 were acquired with much higher scanning density than in D2, similarly datasets in subgroups E1-E3 

were collected at different scanning densities. Datasets in all groups, except those in subgroups E1-E3, were 

acquired for various distances between the instrument and the sphere, respectively. The second column (# 

Dist) shows the total number of these distances in the given group/subgroup of experiments. The next two 

columns (Min_D and Max_D) provide the smallest and the largest of those distances in meters. The 

following two columns (Min # Points and Max # Points) provide the smallest and the largest number of 

points among all datasets in the given group/subgroup.  

The next two columns in Table I (Sphere Type and Radius) indicate which sphere was scanned. There 

were four spheres scanned and these spheres were made of different materials, were of different sizes and 

had different surface finishes (see Figure 2). Spheres A and B are made of anodized aluminum, sphere C is 

made of styrofoam, and sphere D is made of titanium. The surface of sphere C is rough compared to the 

other spheres. Sphere B is not a full sphere but a SMR (Spherically Mounted Retroreflector) which allows 

its center to be measured with a total station.  

The next two columns in Table I (Instrument Model and Err) indicate the instrument used for scanning 

and its range uncertainty in millimeters as specified by the manufacturer. The three instruments used in the 

experiments fall into two categories: instrument In1 has a maximum range of 24 m and range uncertainty on 

sub-millimeter level.  This instrument is typically used in indoor applications (e.g., in assembly lines in 

manufacturing facilities). The other two instruments, In2 and In3, have maximum ranges greater than 100 

m and range uncertainty of a few millimeters. They are used in both indoor and outdoor applications (e.g., 

at construction sites).  

The next column in Table I (# Runs) gives the number of scans acquired under the same experimental 

conditions (i.e., the same instrument to sphere distance and scanning density). The column (Tot # Sets) is a 
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multiplication of the second column (# Dist) and the column (# Runs) and it equals to the total number of 

datasets for the given group/subgroup.  

Finally, the last column (Alt Instr) states whether a sphere center was measured with another more 

accurate instrument: a total station (TS) with a manufacturer specified range error  ±0.2 mm or a laser 

tracker (LT) with measurement error ±30 µm. These precise measurements were obtained in coordinate 

systems different from the coordinate systems in which the point clouds were acquired (the origin of 

coordinate system is defined by the location of an instrument: a scanner, a total station or a laser tracker). 

Therefore, only relative distances between sphere centers fitted to point clouds and those measured directly 

by the LT or the TS could be compared. All scans were collected indoors under controlled conditions.  The 

points for the sphere in each acquired dataset were manually segmented. 

In addition to point clouds acquired with laser scanners in a laboratory, datasets were generated in 

computer simulations. For a given pair of azimuth and elevation angles (φ, θ), the intersection of a ray from 

the origin with a hemisphere facing the origin was determined (bearings which did not yield intersections 

were ignored). The resulting range r(φ, θ) was then perturbed by a small amount obtained from a pseudo 

random generator of Gaussian noise. The corresponding Cartesian coordinates of the perturbed point were 

stored for later processing. 

V. NUMERICAL CALCULATIONS  

A sphere of known radius R was fitted to each dataset using a quasi-Newton minimization procedure 

[28]. Exit conditions for the optimization process were defined by two parameters, the relative step length 

and the relative decrease in the value of the error function. Both were set to 10-7. All calculations were 

performed to double precision on a 32-bit computer. The centroid of the point cloud was selected as a 

starting point for the minimization. Two different error functions were used: the orthogonal error function 

(Equation 9) and the directional error function (Equation 10), each of them yielding fitted sphere centers, 

Uo = [Xo, Yo, Zo] and Ud = [Xd, Yd, Zd], respectively.  
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In addition to the fitted sphere centers, the variances and covariance of Uo were calculated: var(Xo),  

var(Yo),  var(Zo), cov(Xo, Yo), cov(Xo, Zo), cov(Yo, Zo), and similarly for Ud. These error bounds were 

calculated from closed forms derived in [12] with the assumption that the bearings (φj, θj) of the recorded 

points Pj were determined without errors (i.e., they were treated as control variables) and the only source of 

experimental error was due to range measurement rj (φj, θj). The numerical values of the range errors σ(rj) 

were chosen according to instrument specifications provided by the manufacturers, as given in Table I, 

column Err. 

For each dataset and the corresponding pair of Uo and Ud, a separation distance ∆(Uo, Ud) was evaluated 

as ∆ = F(Uo, Ud), where 
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The corresponding error of F(U1, U2) can be derived from the error propagation formula 
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With this notation, the error of separation distance σ(∆) = G(Uo, Ud). If the separation distance ∆(Uo, Ud) is 

less than its error σ(∆) then both fitted sphere centers Uo and Ud are considered the same within the 

statistical error. The ratio ∆/σ(∆) shows how the two error functions used in the fitting of a sphere to the 

same dataset can yield two different sphere centers.  

For some groups of experiments, a sphere was scanned more then once in the same experimental settings 

(column # Runs in Table I with entries larger than 1, i.e. subgroups A1, A2, E1-E3 and group B). For these 

repeated measurements, the spread of the fitted sphere centers and corresponding errors may serve as a 

useful indicator of the repeatability of the scanning procedure. For each pair (m, n) of datasets collected at a 
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given sphere to scanner distance, the separation distance δ(Um, Un) = F(Um, Un) between the fitted sphere 

centers and the corresponding error of separation σ(δ) = G(Um, Un) were calculated using Equations (11,12). 

The number of different pairs (m, n) available for a single sphere to scanner distance is equal to K(K-1)/2, 

where K is the number of repeated measurements listed in column # Runs in Table I. These calculations 

were repeated independently for sphere centers obtained using the orthogonal and directional error function, 

yielding δO, σ(δO) and δD, σ(δD), respectively. Again, the two fitted sphere centers Um and Un are considered 

the same within statistical error if the separation distance δ(m, n) is less than σ(δ). A use of different error 

function may yield different result for the same pair (m, n). 

For some groups of experiments, the sphere center was measured with other more accurate instruments: 

total station or laser tracker (column Alt Instr in Table I). Measurements with these instruments were 

repeated many times and the mean and standard deviation was recorded for each sphere. The resulting 

standard deviations of sphere center locations were at least an order of magnitude smaller than the errors of 

sphere centers fitted to point clouds acquired with the 3D imaging systems. These measurements were used 

to calculate the relative distances between sphere centers which were later used as the ground truth GT(m, 

n). For datasets in A1, B, C, and D2, relative distances between fitted sphere centers D(m, n) = F(Um, Un) 

from the same subgroup were calculated together with corresponding errors σ(D) = G(Um, Un). Then, the 

deviations ε(m, n) from ground truth GT(m, n) were calculated as ε(m, n) = D(m, n) - GT(m, n). We 

assumed no error in the ground truth GT(m, n) and therefore the error of deviation was equal to the error of 

a relative distance, σ(ε) = σ(D). These calculations were repeated independently for the results from the 

orthogonal and the directional fitting, yielding again two pairs of characteristics εO, σ(εO) and εD, σ(εD). 

Contrary to the laboratory experiments where the location of sphere centers are unknown, the absolute 

location of sphere center is known for the simulated datasets. For these datasets only, the deviation µ(n) of 

fitted sphere center Un from the ground truth and its error σ(µ) were calculated using Equations (11,12) 

where n labels different realizations of Gaussian perturbation. Again, these calculations were repeated 
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independently for the results from the orthogonal and the directional fitting and yielded two sets of 

deviations µO(n) and µD(n).  

 

VI. RESULTS 

In Figures 3 and 4, typical results from fitting sphere to simulated data are shown. A sphere of radius 

R = 0.0762 was located at Q = [19.99, 0.23, 0.02] (arbitrary length units, e.g. meters). Nine different 

realizations of the Gaussian noise with zero mean and standard deviation equal 0.007 were used to generate 

the nine datasets, each containing 1,255 points. Figure 3 shows deviation µ(n) of fitted sphere center from 

Q for the orthogonal and the directional fitting, n = 1,…,9. Nine noise realizations yield 36 pairs of datasets. 

For each pair, the separation δ, its error σ(δ) and the ratio δ/σ(δ) were calculated. In Figure 4 a histogram of 

the ratio is shown for both error functions.  

In Figure 5 a similar histogram shows the ratio δ/σ(δ) calculated for datasets acquired in lab experiments. 

Scans repeated in the same settings yield 9 pairs of datasets for A1 subgroup of experiments, 4 for A2, 18 

for B, 6 for E1 and E3, and 3 for E2. In total, 46 pairs were used to calculate the ratio δ/σ(δ) and to create 

the  histogram shown in Figure 5.  

In Figure 6, a histogram of the ratio ∆/σ(∆) calculated for all 87 datasets is shown where ∆ is a distance 

between sphere centers fitted with the orthogonal and the directional error function to the same dataset.  

Finally, for groups of experiments A1, B, C, and D2, the deviations ε(1, n) from ground truth as a 

function of relative distance between sphere centers GT(1, n) are shown in Figures (7-10).  

VII.  DISCUSSION 

Histogram in Figure 4 shows that nearly 70 % of all pairs of sphere centers fitted to simulated data with 

the directional error have their separation distance δD less than corresponding error σ(δD) (i.e., 

δD /σ(δD) ≤ 1). The spread of fitted sphere centers agrees with the Gaussian distribution and the directional 

fitting passes the repeatability test for datasets perturbed by Gaussian noise. In contrast, datasets acquired in 

the laboratory using 3D imaging systems and processed in the same way yield the histogram shown in 
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Figure 5. This time, the separation distance δD is always greater than σ(δD). In fact, nearly 70 % of all pairs 

are large outliers with δD > 4σ(δD). It is obvious that repeatability test fails for these datasets. This 

distinctive disagreement in the performance of the directional fitting applied to simulated and experimental 

datasets may be due to the fact that the repeatability test assumes that multiple datasets were acquired with a 

scanner operating in a stable mode, i.e. instrument’s parameters were not drifting or slowly oscillating. This 

assumption becomes especially important when the error of fitted sphere center is much smaller than the 

range error σ(rj). The assumption could not be independently verified in the performed experiments.  

Figure 5 shows that sphere centers fitted to experimental datasets with the orthogonal error function also 

fail the repeatability test. Only 10 % pairs of the fitted centers have separation distance δO less than σ(δO) 

and large outliers constitute almost half of all cases. It is clear that the performance of the orthogonal fitting 

is equally poor as the directional fitting for datasets acquired in a laboratory. However, for simulated 

datasets the orthogonal fitting is noticeable different from the directional fitting discussed previously. 

Figure 4 shows that only 20% of all pairs have the separation distance δO less than σ(δO), and 40 % of pairs 

are outliers at a level of 3σ(δO). In other words, the spread of sphere centers fitted with the orthogonal error 

is at odds with the Gaussian distribution. Thus, the orthogonal fitting procedure violates the repeatability 

test for multiple datasets perturbed by stationary Gaussian noise. A possibly different performance of the 

directional and the orthogonal fitting was already mentioned in [12]. The Ej component of the directional 

error function is in a form of a deviation between the measured, i.e. noisy quantity rj and the theoretical 

quantity tj(Ud, φj, θj) which does not depend explicitly on rj, as in Equation (10). Therefore, vector Vj 

defined in Equation (8a) does not depend on the measured range rj. This causes sensitivity vector Sj given 

by Equation (8a) to be practically independent of rj for typical datasets (all N measured ranges contribute to 

the Hessian matrix in Equation (8b) but the influence of an individual rj is negligible for typical datasets 

with large N). The j-th component of the orthogonal error function does not have this property and vector Vj 

as well as the corresponding sensitivity vector Sj depend on rj. As a consequence, the covariance matrix of 
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sphere center fitted with the orthogonal error function may be prone to individual random variations in the 

dataset. The orthogonal fitting of a sphere to range data is an example of more general “non-explicit” 

regression discussed in [12].  

The difference in the performance of the orthogonal and the directional fitting is not limited to the 

repeatability issue only. Simulated data allow a direct comparison of a fitted sphere center with the ground 

truth. Deviations µD(n) shown in Figure 3 for nine datasets clearly demonstrate that for most cases µD is less 

than σ(µD) for directional fitting and fitted sphere centers are within the statistical error from the true center. 

For orthogonal fitting, in most cases the deviation µO is a few times larger than corresponding error σ(µO). 

In addition, the deviation µO is usually a few times larger than the deviation µD. This indicates a systematic 

bias in a location of sphere center introduced by the orthogonal fitting procedure. 

For datasets acquired in a laboratory with the 2D imaging systems, a similar comparison between the 

orthogonal and the directional fitting cannot be done because the true location of sphere center is not known 

in the instrument coordinate system. Nevertheless, a histogram of the ratio ∆/σ(∆) shown in Figure 6 

partially supports the conclusion drawn from simulated datasets: fitting a sphere to the same dataset with 

the orthogonal and the directional error function yield two statistically different centers for most of the 

processed datasets. 

In Figures (7-10) the deviation ε(1, n) of a relative distance from the corresponding ground truth GT(1, n) 

is shown. The relative distance D(1, n) between the 1-st and n-th fitted sphere center is calculated and 

compared with the relative ground truth distance GT(1, n) for experiments A1, B, C, D2. If the deviations 

from the ground truth were caused by a purely random process, there should be an equal number of 

deviations with a positive and negative sign. However, the data presented in Figures (7-10) clearly indicate 

the presence of systematic bias which increases with the relative distance GT(1, n). All deviations ε for 

datasets acquired with the scanner In1 (subgroup A1) have a positive sign, most deviations for datasets 

acquired with In2 have a negative sign (groups B and C, subgroup D2). Systematic deviations from ground 
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truth are seen for both directional and orthogonal fitting. After collecting datasets in experiments C and D, 

but before B, the scanner In2 was sent to the manufacturer for regularly scheduled maintenance service 

(discussed here results were not known at the time of service). The regular pattern observed for two 

different instruments belonging to two different classes reveals the presence of a systematic offset that 

increases with distance.  

The error bars of individual points for the sparse datasets D2 shown in Figure 10 are much larger than 

corresponding error bars for dense scans A1, C, B shown in Figure (7-9), as predicted by Equations (5) and 

(7).  

VIII.  CONCLUSIONS 

Fitting sphere to range data with the directional error function is a very sensitive and convenient test of 

instrument performance. The described procedure is able to generate a single point in 3D space with a very 

small error, much smaller than the experimental error of individual range measurement. This is due to the 

fact that modern 3D imaging systems can collect hundreds of thousands of data points within a second and 

the variances of fitted sphere centers scale as 1/N with the number of data points. Thus, even small 

irregularities in the instrument performance (for example, departure from stationary regime) could be 

detected. 

The comparative study of NLS sphere fitting to range data reveals that the choice of error function for 

minimization is important. Investigation of two functions, the directional and the orthogonal function, show 

that the orthogonal fitting should not be used to test the instrument performance. The results obtained for 

simulated datasets show that orthogonal fitting yields sphere centers systematically different from a true 

sphere location. This, in turn, causes the spread of fitted centers to be a few times larger than calculated 

variances of those centers and a failure of repeatability test. Directional fitting yields very different results: 

sphere centers fitted to the same simulated datasets are within calculated variances from a ground truth and 

repeatability test is passed.  
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For datasets acquired in a laboratory, repeatability test fails for sphere centers fitted with the directional 

error function: the actual spread of fitted centers is four or more times larger than calculated errors. This 

could happen if the instrument used for scanning introduces a non-zero bias to the collected range data. The 

bias and associated spread are smaller than the instrument range error. Yet, they can both be detected 

because variances of sphere centers fitted to the large datasets scale as 1/N.   
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Table and Figure Captions 

 

Table I)  Summary of experimental settings (see text for details). 

 

Fig. 1)  Geometrical interpretation of two error functions used in NLS sphere fitting:  Pj is a measured 

point and Oj is the corresponding theoretical point for the orthogonal fitting. Dj is the corresponding 

theoretical point for the directional fitting when line-of-sight coming trough Pj: a) intersects with the sphere 

surface; b) does not intersect.  

 

Fig. 2)  Four spheres used in laboratory experiments (after [11]).  

 

Fig. 3)  Simulated datasets: comparison of the deviations µ(n) of the fitted sphere center from the ground 

truth. The spheres were fitted using the orthogonal and the directional error function. Each deviation µ(n) 

has its own error bar determined from Equations (11), (12).  

 

Fig. 4)  Simulated datasets: two histograms for orthogonal and direction fitting showing the normalized 

separation distances δ/σ(δ) of pairs of sphere centers.  

 

Fig. 5)  Lab experiments: two histograms for orthogonal and direction fitting showing the normalized 

separation distances δ/σ(δ) of pairs of sphere centers.  

 

Fig. 6)  Lab experiments: histogram of the normalized separation distances ∆/σ(∆) between sphere centers 

fitted with the orthogonal and directional error functions to the same datasets.  
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Fig. 7)  Lab experiments, subgroup A1: deviation ε(1, n) of the relative distance D(1, n) between the first 

and the n-th fitted sphere center from the corresponding ground truth as a function of  D(1, n): a) orthogonal 

fitting; b) directional fitting. Error bars were determined from Equations (11), (12).  

 

Fig. 8)  The same as in Figure 7 but for datasets in group B:  a) orthogonal fitting; b) directional fitting. 

 

Fig. 9)  The same as in Figure 7 but for datasets in group C. a) orthogonal fitting; b) directional fitting. 

 

Fig. 10)  The same as in Figure 7 but for datasets in subgroup D2: a) orthogonal fitting; b) directional 

fitting. Large error bars are consequence of low scanning density and small number of data points N.  
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Type R [m] Model Err [mm] 
A1 9 4.05 21.19 888 1,199 D 0.0508 In1 0.1 2 18 LT
A2 4 1.72 23.88 1,093 1,196 D 0.0508 In1 0.1 2 8 LT
B 6 15.07 159.91 523 741 B 0.0762 In2 7 3 18 TS
C 7 9.99 99.92 1,096 1,297 B 0.0762 In2 7 1 7 TS

D1 11 10.85 65.84 1,268 3,813 D 0.0508 In2 7 1 11 LT
D2 11 10.85 65.84 13 59 D 0.0508 In2 7 1 11 LT
E1 1 6.26 6.26 177,326 187,469 A 0.1015 In3 10 4 4 N/A
E2 1 6.26 6.26 45,573 46,371 A 0.1015 In3 10 3 3 N/A
E3 1 6.26 6.26 19,962 20,073 A 0.1015 In3 10 4 4 N/A
F 3 5.86 6.01 138 275 C 0.0762 In3 10 1 3 N/A

Group
# 

Dist
Min_D 

[m]
Max_D 

[m]
# 

Runs
Tot # 
Sets

Alt Instr
Min # 
Points

Max # 
Points

Sphere Instrument

 

Table I. of experimental settings (see text for details).
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Figure 1. Geometrical interpretation of two error functions used in NLS sphere fitting:  Pj is a measured point and Oj is the 
corresponding theoretical point for the orthogonal fitting. Dj is the corresponding theoretical point for the directional fitting 
when line-of-sight coming trough Pj: a) intersects with the sphere surface; b) does not intersect. 
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Figure 2. Four spheres used in laboratory experiments (after [11]). 
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Figure 3. Simulated datasets: comparison of the deviations µ(n) of the fitted sphere center from the ground truth. The 
spheres were fitted using the orthogonal and the directional error function. Each deviation µ(n) has its own error bar 
determined from Equations (11), (12). 
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Figure 4. Simulated datasets: two histograms for orthogonal and direction fitting showing the normalized separation 
distances δ/σ(δ) of pairs of sphere centers. 
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Figure 5. Lab experiments: two histograms for orthogonal and direction fitting showing the normalized separation distances 
δ/σ(δ) of pairs of sphere centers. 

0

0.1

0.2

0.3

0.4

0.5

1 2 3 4  > 4

∆ / σ(∆) 

F
re

qu
en

cy

 
Figure 6. Lab experiments: histogram of the normalized separation distances ∆/σ(∆) between sphere centers fitted with the 
orthogonal and directional error functions to the same datasets. 
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Figure 7. Lab experiments, subgroup A1: deviation ε(1, n) of the relative distance D(1, n) between the first and the n-th 
fitted sphere center from the corresponding ground truth as a function of  D(1, n): a) orthogonal fitting; b) directional 
fitting. Error bars were determined from Equations (11), (12). 
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Figure 8. The same as in Figure 7 but for datasets in group B:  a) orthogonal fitting; b) directional fitting. 
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Figure 9. The same as in Figure 7 but for datasets in group C. a) orthogonal fitting; b) directional fitting. 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

24 

 

 

 

-14

-12

-10

-8

-6

-4

-2

0

2

0 10 20 30 40 50 60 70

D(1, n)  [m]

ε
(1

, n
) 

   
[m

m
]

a)

-14

-12

-10

-8

-6

-4

-2

0

2

0 10 20 30 40 50 60 70

D(1, n)  [m]

ε
(1

, n
) 

   
[m

m
]

a)

 

-14

-12

-10

-8

-6

-4

-2

0

0 10 20 30 40 50 60 70

D(1, n)  [m]

ε
(1

, n
) 

   
[m

m
]

b)

-14

-12

-10

-8

-6

-4

-2

0

0 10 20 30 40 50 60 70

D(1, n)  [m]

ε
(1

, n
) 

   
[m

m
]

b)

 
Figure 10. The same as in Figure 7 but for datasets in subgroup D2: a) orthogonal fitting; b) directional fitting. Large error 
bars are consequence of low scanning density and small number of data points N. 


