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Synopsis

Upon approaching the liquid–vapor critical point, the spontaneous density fluctuations in a
small-molecule fluid increase in both size and lifetime. Similar increases of the concentration
fluctuations occur near the critical mixing point of a binary liquid mixture. The presence of these
large fluctuations leads to an increase of the zero-shear viscosity, and their persistence in time leads
to viscoelasticity and shear thinning. These rheological phenomena, which are already supported by
theory and experiment, are shown here to obey a generalized form of the Cox–Merz rule. This
relation formally equates the shear viscosityh(ġ) measured at shear rateġ with the magnitude of
the linear complex viscosityh* ~v! measured at frequencyv. Comparisons of theoretical results and
experimental data obtained elsewhere demonstrate that fluids near a critical point obey the
somewhat generalized formh(kCMġ 5 v) 5 uh* (v)u, with kCM 5 0.4. The demonstration is
simplified by showing that the Carreau–Yasuda model in the form (11bAguġtu)2p represents the
theories forh(ġ) and uh* ~v!u near critical points.~The productbAgt is a time constant, and
p 5 0.022 is a universal critical exponent.!. © 2004 The Society of Rheology.
@DOI: 10.1122/1.1807843#

I. INTRODUCTION

Even a fluid as simple as xenon exhibits complex rheology near its liquid–vapor
critical point. Viscoelasticity, shear thinning, and normal stresses are expected in any
small-molecule fluid due to the large, spontaneous fluctuations that occur near the critical
point. The density fluctuations have a broad size distribution characterized by a correla-
tion lengthj. The coupling of density fluctuations to velocity fluctuations increases the
viscosity near the critical point.~A similar increase due to concentration fluctuations
occurs near the critical mixing point of a binary liquid mixture.! As the critical point is
approached,j increases, which causes the viscosity in the limit of zero frequency and
shear rate to increase as

h 5 h0~Q0j!xh. ~1!

The values of the wave vectorQ0 and the ‘‘background’’ viscosityh0 vary from fluid to
fluid; however, the exponentxh 5 0.069 is universal. Thus, Eq.~1! predicts the same
power-law divergence near the liquid–vapor point of a noble gas as it does near the
liquid–liquid mixing point of a micellar solution, a polymer solution, or a mixture as
simple as methanol and cyclohexane.

a!Electronic mail: robert.berg@nist.gov
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A second universal property relevant to the rheology of critical fluids is the time
constant

t 5
6phj3

kBT
5 constant3j31xh, ~2!

that characterizes the distribution of the fluctuation lifetimes.~Here,kB is the Boltzmann
constant andT is the temperature.! Dynamic scaling relates the lifetime distribution to the
size distribution@Hohenberg and Halperin~1977!#. Viscoelasticity is significant at fre-
quencies such thatvt . 1, and shear thinning occurs whenġt . 1. Measurements of
both phenomena are discussed in a later section. Normal stresses, though predicted to
occur, have not yet been measured near the critical point of a small-molecule fluid.

The Cox–Merz rule@Cox and Merz~1958!# equates the viscosityh(ġ) measured at
shear rateġ with the magnitude of the linear complex viscosityh* ~v! measured at
frequencyv. This empiricism is often used to estimate the shear thinning of polymer
melts@Bird et al. ~1987!, Dealy and Wissbrun~1990!#. A slightly generalized form of the
rule,

h~kCMġ 5 v! 5 uh* ~v!u, ~3!

with kCM . 1, has been applied to concentrated suspensions@Gleissle and Hochstein
~2003!#. This article will show that, withkCM ' 0.4, the Cox–Merz rule holds near the
critical point of a fluid composed of small molecules.

The physical origin of the Cox–Merz rule is not well understood. Marrucci~1996!
modified the Rouse model and Ianniruberto and Marrucci~1996! modified the Doi–
Edwards model to obtain consistency with the Cox–Merz rule for polymer melts. More
generally, Renardy~1997! suggested that three phenomenological assumptions are suffi-
cient to establish a similarity relation consistent with Eq.~3!;

~1! The fluid has many relaxation modes with a broad spectrum.
~2! Contributions from different modes superpose.
~3! The stress saturates at large shear rates.

Renardy’s suggestion supports the present result because these assumptions plausibly
apply to near-critical fluids.

To demonstrate the validity of the generalized Cox–Merz rule for critical fluids, this
article will first show that the Carreau–Yasuda model accurately represents the theories
for h(ġ) andh* ~v! near critical points. Using that common representation, it will then
compare the best available measurements of shear thinning and viscoelasticity.

II. REPRESENTING THEORY WITH THE CARREAU–YASUDA MODEL

Figure 1 plots the Carreau–Yasuda model@Carreau~1968!, Yasuda~1979!, Yasuda
et al. ~1981!, Bird et al. ~1987!# and compares it with the two best theories for viscoelas-
ticity @Bhattacharjee and Ferrell~1983!# and shear thinning@Oxtoby ~1975!#. The
Carreau–Yasuda model representsh(ġ) by an interpolation between the limits of small
and large shear rate. Its general form

h~ġ!

h~0!
5 @11~lġ!a#~n21!/a, ~4!

has the free parametersn, a, and the time constantl. ~The viscosity at infinite shear rate
is approximated by zero here.!
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Douglas~1992! deduced the form of Eq.~4!, with a 5 2, for near-critical fluids as
follows. First, he observed thath(ġ) is an even function of shear rate becauseh(ġ) is
invariant to the direction of shear. By assuming thath(ġ) was also analytic inġt, he
inferred the existence of a perturbation expansion for small shear rates

h~ġ!

h~0!
5 12A~ġt!21..., ~5!

whereA is an undetermined constant. Resumming this expansion yielded

h~ġ!

h~0!
5 @11Ae~ġt!2#2~xh/2!/~31xh!, ~6!

where Ae 5 2A(31xh)/xh . Douglas deduced the unique exponentn 5 12xh /(3
1xh) based on the physical limith(ġ) } ġ2xh /(31xh) whenġ → `, @see Eq.~2!#. The
limit occurs because large shear rates destroy the fluctuations responsible for the near-
critical viscosity increase. The asymptotic scaling indicated by this argument is consistent
with the exact renormalization group result by Onuki and Kawasaki~1979, 1980!.

Equation~6! is plausible for near-critical fluids because the Carreau–Yasuda equation
with a 5 2 successfully describes many polymer liquids@Bird et al. ~1987!#. However,
Fig. 1 shows that it disagrees with Oxtoby’s calculations at intermediate values ofġt.
The choicea 5 1 yields the representation,

h~ġ!

h~0!
5 @11bAguġtu#2xh /~31xh!, ~7!

which also obeys the asymptotic limit but is more accurate.@Equation~7! can be deduced
from the same reasoning used to obtain Eq.~6! by allowing the dimensionless shear rate
to be the nonanalytic functionuġtu @Douglas~2004!#.! Here, the time constant is ex-
pressed as the productl 5 bAgt, whereb is determined by theory,t is determined by
Eq. ~2!, and the free parameterAg allows for an offset between theory and experiment.
Figure 1 shows that Eq.~7! describes the theory forh(ġ); Oxtoby’s numerical results are

FIG. 1. A comparison of the best theories for viscoelasticity@Bhattacharjee and Ferrell~1983!# and shear
thinning @Oxtoby ~1975!# demonstrates that small-molecule fluids near the critical point obey the generalized
Cox–Merz rule. The shear thinning points were taken from Table I, and the viscoelasticity curve was calculated
from Eq. ~8! with Av 5 1.4. The viscoelasticity calculation and the Carreau–Yasuda representations used the
exponent value inferred from the shear thinning results at large shear rate, namelyxh 5 xh0 5 0.054.
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matched to within 0.06%. Furthermore, Eq.~7! matches Bhattacharjee and Ferrell’s
~modified! theory for uh* ~v!u, which is remarkable given the complexity of the theory.

III. COMPARISON OF THEORIES

Theory predicts the rheology of near-critical fluids to be universal. The two ap-
proaches are mode-coupling~not to be confused with Renardy’s modes! and the dynamic
renormalization group. Calculations have predicted the value of the divergence exponent
xh , the crossover from noncritical to near-critical behavior, and the links among viscos-
ity, thermal conductivity, second viscosity, and diffusion. Reviews have been written by
Hohenberg and Halperin~1977!, Sengers~1985!, Nieuwoudt and Sengers~1987!, Onuki
~1997, 2002!, and Folk and Moser~1998!.

In Fig. 1, superposing the theoretical results foruh* ~v!u andh(ġ) required two simple
modifications touh* ~v!u. Explaining those modifications first requires a brief discussion
of the theoretical results forh(ġ) as well asuh* ~v!u.

The viscoelasticity curve in Fig. 1 is the magnitude of

h* ~v! 5 h~0!@S~Avz!#2xh /~31xh!, ~8!

with Av 5 1.4. The appendix gives a summary, with corrections of errata, of Bhatta-
charajee and Ferrell’s scaling functionS(Avz); its frequency dependence is contained in
the dimensionless argumentz [ ivt/2. Bhattacharajee and Ferrell’s original theory
~1983! definedAv 5 1. An improved calculation recently increased the theoretical value
of Av from 1 to 1.4@Das and Bhattacharjee~2001!#, but the correct value is likely even
larger becauseAv 5 2.0 describes the only quantitative measurements ofh* ~v! @Berg
et al. ~1999!, Flossmanet al. ~2001!#.

Bhattacharjee and Ferrell constructed Eq.~8! by assuming that their mode-coupling
result

h* ~v!

h~0!
5 12

xh

31xh
ln@S~Avz!#, ~9!

expressed the first terms of an exponential expansion. Thus, in the limitvt @ 1, where
S(Avz) } ln(z), the exponential form of Eq.~8! has the required power-law dependence
(vt)2xh /(31xh).

The shear thinning points of Fig. 1 represent the only published calculation of shear
thinning at intermediate values ofġt. Oxtoby’s results appeared only as a curve; the
values used to draw that curve are listed in Table I.

For large reduced shear ratesġt, Oxtoby’s results approach

TABLE I. Theoretical values for shear thinning@Oxtoby ~1975!#.

ġt h(ġ)/h(0)

3.770 0.9929
9.42 0.9861

18.85 0.9786
37.70 0.9700
75.4 0.9603

131.1 0.9508
188.5 0.9450
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h~ġ!

h~0!
. 12

xh0

31xh0
ln~bġt!; ~10!

whereb is a universal coefficient. The value of the exponentxh0 5 0.054 reflects the
approximations used by Oxtoby; it is smaller than later theoretical values and the accu-
rate experimental valuexh 5 0.069 @Berg et al. ~1999!#. The valueb 5 0.121 derived
from Oxtoby’s results may differ from its true value due to the same approximations; the
parameterAg in Eq. ~7! allows for that possibility.

Two modifications to the analytical expression forh* ~v! @Eq. ~8!# allow it to be
compared to the numerical calculations ofh(ġ) @Table I# at the same level of approxi-
mation. The first modification, as suggested by comparing Eqs.~9! and~10!, is the use of
the same approximate exponentxh0 5 0.054. The second modification is an adjustment
of the frequency scale factor toAv 5 1.4. ~Generalizing the Cox–Merz rule withkCM
Þ 1 allows such an adjustment.! Figure 1 shows that the result is in close agreement

betweenh(ġ) and uh* ~v!u over the range 4, ġt , 189.

IV. COMPARISON OF MEASUREMENTS

This section shows that, within the scale factorAg , the Carreau–Yasuda model rep-
resents experimental data as well as theoretical results forh(ġ) anduh* ~v!u. Experimen-
tal measurements are possible near the critical mixing point of a binary liquid mixture
because careful control of temperature and concentration in the laboratory allows corre-
lation lengths as large as 1mm and fluctuation lifetimes as large as 1 s. Measurements are
possible also near the liquid–vapor critical point, but gravitational stratification usually
adds a significant complication@Moldover et al. ~1979!#.

Figure 2 shows the data of Berget al. ~1999!, who measured viscoelasticity in xenon
in microgravity. This is the only quantitative measurement of near-critical viscoelasticity.
Previous observations ofh* ~v! in carbon dioxide@Bruschi and Santini~1979!, Bruschi
~1982!#, xenon @Izumi et al. ~1981!#, and binary liquid mixtures@Izumi et al. ~1981!,
Berg and Moldover~1988!# were only semiquantitative. Figure 2 includes a Carreau–

FIG. 2. Viscoelasticity near the liquid–vapor critical point of xenon. The theoretical curve is Eq.~8! with the
experimental valuesAv 5 2.0 andxh 5 0.069. The Carreau–Yasuda representation withAg 5 1.30 is nearly
identical.
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Yasuda representation that consists of Eq.~7! with the experimentally determined expo-
nentxh 5 0.069 and the valueAg 5 1.3060.02.

Figure 3 shows the shear-thinning data of Hamanoet al. ~1995!, who used a Couette
viscometer to create a uniform shear field in a micellar solution. Previous observations of
h(ġ) in capillary viscometers@Allegra et al. ~1971!, Steinet al. ~1971!, Yang and Meeks
~1971!, Tsai and Mclntyre~1974!, Hamanoet al. ~1982!, Pegg and McLure~1984!,
McLure and Clements~1997!# were similarly quantitative, but the effective shear rate
used to describe the inhomogeneous shear field introduced an ambiguity into the analy-
ses. Shear-thinning capillary data are better analyzed with the Weissenberg–
Rabinowitsch equation.~See Example 10-2-32 in@Bird et al. ~1987!#.!

Figure 3 includes two Carreau–Yasuda representations that differ only in the value of
Ag . Using Ag 5 0.5560.06 in Eq. ~7! representsh(ġ)/h(0). However, usingAg
5 1.3060.02 in Eq.~7! representsuh* ~v!u/h~0! in Fig. 2. Therefore, the generalized

Cox–Merz rule holds withkCM 5 0.55/1.30. 0.4.

V. CONCLUSION

Three subtleties require mention. First, the understanding of critical fluctuations as
physical ‘‘clusters’’ having a size distribution is incomplete. Sator’s helpful review@Sator
~2003!# describes the correspondence between the thermodynamics and microscopic mor-
phology of simple fluids in terms of clusters. A recent molecular dynamics simulation of
a Lennard-Jones fluid@Campiet al. ~2001!# yielded distributions of cluster sizes but not
cluster lifetimes. Second, dynamic renormalization group theory strictly applies only
when the fluid is so close to its critical point that Eq.~1! yields h @ h0 . That
‘‘asymptotic’’ region is experimentally inaccessible due to the small value of the expo-
nentxh . Fortunately, there is a broader, accessible region where ‘‘crossover’’ effects are
sufficiently small for Eqs.~1!, ~7!, and ~8! to be accurate. The multiplicative form of
those equations is a postulate@Ohta~1977!# that reconciles the results of mode coupling
with those of the dynamic renormalization group@Sengers~1985!#.

FIG. 3. Shear thinning near the critical mixing point of a micellar solution. The data were taken at five
temperature differences from the critical temperature; smaller differences caused larger values of the charac-
teristic fluctuation lifetimet. Both curves use the experimental valuexh 5 0.069 in the Carreau–Yasuda
representation of Eq.~7!. The curve usingAg 5 0.55 represents the shear thinning data shown here, and the
curve usingAg 5 1.30 represents the viscoelastic data of Fig. 2. Therefore, the Cox–Merz rule holds with
kCM 5 0.55/1.30. 0.4.
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The third subtlety is that the data of Fig. 3 were not corrected for a shift ofTc caused
by shear rate. Theory predicts a shift of

@Tc~0!2Tc~ġ!#/Tc~0! } ~t0ġ!1/n~31xh!, ~11!

wheret0 is the amplitude for the fluctuation decay timet andn is the critical exponent
for the correlation lengthj @Onuki and Kawasaki~1979!, Onuki ~1997!#. The simplest
application of Eq.~11! is to decrease the time constant that appears in Eq.~7! from
t(T2Tc(0)) to t(T2Tc(ġ)). That correction would have increased the value ofAg
from 0.55 to 0.85 without changing the general result. The correction was not used
because its validity is unclear in the present context. In particular, it makes Eq.~7!
independent of shear rate atTc , a result that disagrees with both theory@Onuki and
Kawasaki~1980!# and experiment@Hamanoet al. ~1992!#.

At experimentally accessible temperatures the effects of shear thinning and viscoelas-
ticity in near-critical fluids are rather small. Nevertheless, rheological studies near critical
points may interest polymer scientists because the associated theories have little empiri-
cism. A detailed explanation of the Cox–Merz rule in near-critical fluids seems feasible
as well as desirable. Such an explanation might, for example, calculate the value ofkCM ,
which is presumably universal. More generally, it would add to the connections between
near-critical fluids and polymer liquids already pointed out by Douglas~1992!.

Improved experiments are also desirable. Ideally, they would measureh(ġ) and
h* ~v! in the same fluid, and the data would have a span and accuracy comparable to Fig.
2. A rheometer adapted for small viscosity and millikelvin temperature control could
measureh(ġ) and h* ~v! in a uniform shear field near the critical mixing point of a
binary liquid mixture. Measurements of the normal stresses in the same mixture also
would be interesting.

APPENDIX: FREQUENCY-DEPENDENT SCALING FUNCTION S„z…

This Appendix reproduces the scaling functionS(z) derived by Bhattacharjee and
Ferrell ~1983!. Two typographic errors in the original published expressions for ln(S4)
and forR(z) are corrected.

The dependence of the viscosity on correlation lengthj and frequencyv is

h~j,v! 5 h~j,0!S2xh /~31xh!, ~A1!

where the argument of the scaling functionS(z) is the scaled frequency defined byz
[ 2 ivt/2. Bhattacharjee and Ferrell used the decoupled-mode theory to calculateS(z)

to single-loop order. They accurately approximated their result in closed form by an
average of calculations in two and four dimensions

S~z! . ~S̃2!2/3~S̃4!1/3. ~A2!

Here, the tilde refers to additional rescalings given by

S̃2~z! [ S2~~2/e!3z! and S̃4~z! [ S4~~8/e!z!. ~A3!

The scaling functionsS2 andS4 are given by

ln~S2! 5 S z

z21D1S z

z21D2

ln~z! ~A4!

and
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ln~S4! 5 S231
2

zD1S12
3

z
1

1

z2Dln~z!1S52
5

z
1

1

z2DR~z!, ~A5!

where

R~z! 5 S 1

~124z!1/2D lnS 11~124z!1/2

12~124z!1/2D , uzu ,
1

4
,

~A6!

R~z! 5 S 1

~4z21!1/2D tan21@~4z21!1/2#, uzu >
1

4
.
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