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A new program is described for fitting rotation–torsion energy levels in molecules like toluene, in which
the frame (C6H5) has C2v symmetry and the methyl top has C3v symmetry, i.e., for molecules where the
internal rotation barrier is expanded in cos6na, where a is the internal rotation angle and n = 1,2,. . ..
The program is based on the theoretical framework developed by Sørensen and Pedersen in their appli-
cation of the Longuet-Higgins permutation-inversion group G12 to the microwave spectrum of CH3NO2. It
is specifically designed for sixfold barrier molecules, and allows the user to select almost any symmetry-
allowed torsion–rotation term for inclusion in the fitting Hamiltonian. This program leads to a very suc-
cessful fit of transitions in the microwave spectrum of toluene characterized by J 6 30, Ka 6 12, and by the
free-rotor quantum number jmj 6 3. In these fits we included both published and rather extensive
unpublished new measurements, for which fits using other torsion–rotation programs have not been
very successful. The fit presented here uses 28 parameters to give an overall standard deviation of
7.4 kHz for 372 line frequencies, and results in a much improved value for the sixfold barrier for toluene,
V6 = 13.832068(3) cal mol�1.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Most torsion–rotation fitting programs consider an expansion
of the internal rotation barrier in cos3na, where a is the internal
rotation angle and n = 1, 2, . . ., since such an expansion applies to
the large class of molecules (like acetaldehyde) where the frame
(CHO) has a plane of symmetry. In this paper we are concerned
with molecules like toluene (CH3C6H5), where the frame (C6H5)
has C2v symmetry, and the internal rotation barrier requires an
expansion in cos6na.

Wilson, Lin, and Lide wrote an early paper [1] on the group the-
oretical considerations necessary for treating a molecule like
CH3BF2 under the assumption of a rigid top and rigid frame, and
came to the conclusion that a group of order 24 was appropriate.
Nearly a decade later, Longuet-Higgins showed in his paper intro-
ducing the concept of permutation-inversion (PI) groups [2] that
the correct group to use for this molecule is only of order 12 if
the top and frame are allowed to undergo structural distortions
during the internal rotation process. Sørensen and Pedersen used
Longuet-Higgins’ ideas to develop the theoretical expressions and
computer program necessary for fitting the microwave spectrum
ll rights reserved.

ushin).
of CH3NO2 [3], and also confirmed the correctness of Longuet-Hig-
gins’ PI group G12. Much later these ideas were used as the starting
point for treatments of the infrared spectrum of CH3CH2 [4] and
the S1 S0 electronic spectra of p-toluidene [5] and toluene [6,7].

In this paper we closely follow the approach of [3] to develop a
new computer program for fitting torsion–rotation levels in mole-
cules with a C3v top and a C2v frame (and therefore, a sixfold bar-
rier), which allows the user to select essentially any symmetry-
allowed torsion–rotation term for inclusion in the fitting Hamilto-
nian. We then apply this program to fit a relatively large data set
containing old and new measurements of the microwave spectrum
of toluene.

Toluene was chosen for the first application of the program
since published and rather extensive unpublished data are avail-
able, and since fits of these data using other torsion–rotation pro-
grams available have not been very successful to date. Toluene is a
prolate asymmetric top with j = �0.59, and can be considered as a
prototype for molecules with nearly free internal rotation of a
methyl top with a sixfold barrier. The molecular structure, axis sys-
tem, and atom numbering used in the present work are shown in
Fig. 1.

The microwave spectrum of toluene was the subject of several
previous investigations [8–11]. In the seminal study for this mole-
cule, Rudolph et al. [8] assigned several low-J transitions in the
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Fig. 1. Schematic illustration of the molecular structure of toluene, showing also
the orientation of the axis system and the atom numbering used here. The
coordinate system used to define the quantities a0

i in Eqs. (1)–(3) has its origin at Cf,
so that the phenyl group has both an xz and a yz plane of symmetry. For positive V6

and a sixfold potential of the form (1/2)V6(1 � cos6a) the six equivalent minima
resulting from internal rotation of the methyl group will correspond to coplanar
orientation of the symmetry plane of the methyl group and the plane of the phenyl
ring, with one methyl proton in the plane of the ring. Alternatively, for a sixfold
potential of form (1/2)V6(1 + cos6a) and again a positive V6, the equilibrium
configuration will correspond to a perpendicular relative orientation of the methyl
group symmetry plane and the ring plane, i.e., the equilibrium configuration will be
that given by ab initio calculations and laser fluorescence experiments (see text).

Table 1
Character table for the permutation-inversion groupa G12 appropriate for toluene
when internal rotation of the methyl group is feasible (see Fig. 1).

E (ab)(123) (123) (ab)b (23)* (ab)(23)* stat. wt.c

1 d 2d 2d 1d 3d 3d

A1 1 1 1 1 1 1 5
A2 1 1 1 1 �1 �1 5
B1 1 �1 1 �1 1 �1 3
B2 1 �1 1 �1 �1 1 3
E1 2 1 �1 �2 0 0 3
E2 2 �1 �1 2 0 0 5

E C2z E C2z C2y C2x Equivalent
rotatione

a This PI group is isomorphic to the point groups C6v, D3d, and D6. Here we use a
notation that emphasizes the isomorphism with C6v.

b (ab) in this table is a shorthand notation for the set of four permutations
(ab)(cd)(45)(67) in Fig. 1.

c This column gives the nuclear statistical weights for torsion–rotation levels of
the species indicated, for isotopically normal toluene, i.e., for 12C7

1H8.
d These integers indicate the number of elements in each class. The classes of

order 2 contain the element shown and its inverse. The classes of order 3 contain
the element shown and two others obtained by replacing (23) by (12) and (13).

e As defined in [15]. See also Table 2 here.
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m = 0 and m = 3 internal rotation states and measured the dipole
moment. Most importantly they derived the much cited value
V6 = 13.94 ± 0.1 cal/mol = 4.88(3) cm�1 for the sixfold internal rota-
tion barrier. It should be noted, however, that their value was
determined from analysis of a specific splitting affecting m = 3,
K = 1 lines in the spectrum and was based on only two pairs of such
lines identified in the spectrum. Their results were supplemented
later by results for the deuterated [9] and the 13C [9,10] isotopo-
logues that allowed determination of the partial molecular geom-
etry of toluene. In the most recent study of the rotational
spectrum of toluene, the frequency ranges from 3.5 to 26.5 GHz
and 160 to 330 GHz were investigated with four different spec-
trometers [11]. In that study an analysis of the ground state
(m = 0) rotational spectrum of toluene was performed up to rather
high values of J 6 92. Previous microwave spectroscopic work on
toluene has thus resulted in: a data set covering frequency ranges
from 3.5 to 26.5 GHz and 160 to 330 GHz; a determination of the
barrier height, partial geometry, and dipole moment; and a rather
complete analysis of the rotational spectrum of the m = 0 internal
rotation state.

The next natural step in studying the toluene spectrum was to
try to analyze the rotational spectrum of m – 0 states (m = 1, 2,
and 3), lines of which were clearly present in records obtained in
the latest study [11]. Such an attempt was made by two of us
(Z.K. and H.M.) using the XIAM [12] and SPFIT [13,14] programs.
Although these programs allowed making assignments, which in
the majority of cases were confirmed by further analysis using
the new program described below, our m – 0 data could not be
fit to experimental error using either of the two programs.

In the present study we have fit within experimental error a
data set of 372 transitions with J 6 30 belonging to m = 0, 1, 2, 3,
and �3 states using 28 parameters, which gave an overall standard
deviation of 7.4 kHz. Because of the considerable gap between 26.5
and 160 GHz in the frequency range covered to date, we decided to
limit ourselves to J 6 30 transitions, which constrained us to mea-
surements made in the frequency range from 3.5 to 26.5 GHz. In
the future we plan to supplement the presently available data set
by measurements in the 50–150 GHz frequency range, which will
permit us to go smoothly in J assignments from the lower fre-
quency range to higher frequencies. We note in passing that addi-
tion to the fit of high-J transitions already fitted in [11] for the
m = 0 state does not pose any problem for the new program.

The rest of the paper is organized as follows. In Section 2 we re-
view the group theoretical ideas necessary to take advantage of the
symmetry of this molecule. In Section 3 we give a brief description
of the structure of the computer fitting program. Experimental de-
tails and the data set treated here are described in Section 4. Sec-
tion 5 discusses qualitative understanding of the torsion–rotation
levels in toluene and Section 6 gives the fitting results and de-
scribes possible future work on this molecule.

2. Group theory

This section presents many of the ideas in [3], using in places,
however, somewhat different language and/or a somewhat differ-
ent level of detail.

2.1. Permutation-inversion group and coordinate transformations

At equilibrium, toluene belongs to the point group Cs, but as is
now well known, when internal rotation of the methyl group
against the phenyl frame is considered, it becomes necessary to
use the permutation-inversion (PI) group G12 shown in Table 1,
where the atom labels in Fig. 1 are used to indicate the permuta-
tion cycles. In addition, we use in Table 1 the shorthand notation
(ab) to represent the full set of eight permuted atoms in the phenyl
frame: (ab)(cd)(45)(67).

To set up symmetrized basis set functions and to determine
symmetry-allowed terms in the Hamiltonian operator, it is neces-
sary to apply these PI group operations to functions of the torsional
angle a and/or the three rotational angles v,h,/. For this purpose,
we consider the usual [16] equation connecting laboratory-fixed
Cartesian coordinates Ri for each atom to the center of mass R, to
the direction cosine matrix S�1(v,h,/) relating the laboratory-fixed
X,Y,Z axes to the molecule-fixed x,y,z axes, and to a second direc-
tion cosine matrix S�1

i (a,0,0) describing rotation of the methyl
group,

Ri ¼ Rþ S�1ðv; h;/Þ S�1
i ða;0;0Þa0

i � AðaÞ
h i

: ð1Þ

We define S�1
i (a,0,0) to be the identity matrix for i – 1, 2, or 3, so

that a change in the internal rotation angle a does not affect the



Table 3
Symmetry species C in G12 and time reversal symmetry (+) or (�) for some torsional
and rotational operators.

C Torsionala Momentab Laboratoryc

A1 cos6a (+) JX, JY, JZ

A2 sin6a (+) Jz (�), pa (�) lX,lY,lZ

B1 cos3a (+) Jy (�)
B2 sin3a (+) Jx (�)
E1 exp(±ia)
E2 exp(±2ia)

a The column headed Torsional contains trigonometric functions of the torsional
angle.

b The column headed Momenta contains the torsional angular momentum and
the molecule-fixed components of the total angular momentum operator.

c The column headed Laboratory contains the laboratory-fixed components of the
dipole moment operator and of the total angular momentum operator.
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phenyl frame atoms. For the present paper, we ignore small-ampli-
tude displacement vectors, and consider the a0

i to be constant vec-
tors in an initial coordinate system that puts Cf at the origin, the Cf–
Cg bond along the z axis, and all atoms except H2 and H3 in the xz
plane, as shown in Fig. 1. We also consider the methyl group to have
C3v symmetry for the purposes of defining coordinates, so that

a0
i ¼ S�1½ð2p=3Þði� 1Þ;0;0�a0

1 ð2Þ

for i = 1,2,3. The position of the center of mass A, defined by

Aða;0; 0Þ ¼ ð1=MÞRimiS
�1
i ða; 0;0Þa0

i ; ð3Þ

is in principle a function of a, but for the symmetrical structure cho-
sen to define our coordinates, A is in fact a constant vector lying
along the z axis.

Table 2 gives the transformations of torsional and rotational
coordinates corresponding to the generating operators (ab)(123)
and (23)* for the group in Table 1, as well as for the alternate set
of generators (ab), (123), and (23)*. The equations above can be
used [16] to show that substitution of these transformations on
the right side of Eq. (1) does indeed lead to the desired PI operation
on the left.

2.2. Allowed terms in the torsion–rotation Hamiltonian

A general expression for the Hamiltonian we use may be writ-
ten as follows:

H ¼ ð1=2Þ
P

knpqrs
Bknpqrs0 J2kJn

z Jp
x Jq

ypr
acosð3saÞ þ cosð3saÞpr

aJq
yJp

x Jn
z J2k

h i

þð1=2Þ
P

knpqrt
Bknpqr0t J2kJn

z Jp
x Jq

ypr
asinð3taÞ þ sinð3taÞpr

aJq
yJp

x Jn
z J2k

h i
;

ð4Þ

where the Bknpqrst are fitting parameters; pa is the angular momen-
tum conjugate to the internal rotation angle a; Jx, Jy, Jz are projec-
tions on the x,y,z axes of the total angular momentum J. Allowed
terms in the torsion–rotation Hamiltonian must be of species A1

in the group G12 of Table 1, must be Hermitian, and must be invari-
ant to the time reversal operation (which for a molecule with an
even number of electrons is equivalent to the complex conjugation
operation). Since all individual operators pa, Jx, Jy, Jz, J2,cos3sa and
sin3ta used in Eq. (4) are Hermitian, all possible terms provided
by Eq. (4) will automatically be Hermitian. Therefore, we need only
check the terms for symmetry species and time reversal require-
ments. Table 3 gives the G12 symmetry species for the basic opera-
tors in Eq. (4), as well as their symmetry under time reversal. By
using this table, we find, for example, that both (JzJy + JyJz)sin3a
and (JzJx + JxJz)cos3a are Hermitian, invariant under time reversal,
and of species A1, so each represents a possible term in the Hamil-
tonian. On the other hand, Jzsin6a and (JxJy + JyJx) each fail one of
these criteria, and so cannot occur in the torsion–rotation
Hamiltonian.
Table 2
Transformation propertiesa of the torsion and rotationb variables under various
operations of the PI group in Table 1.

E a v,h,/
(ab) a � p v + p,h,/
(123) a + 2p/3 v,h,/
(ab)(123) a � 2p/6 v + p,h,/
(23)* �a p � v,p � h,p + /

a When the transformations of a, v, h, and / from a given row in this table are
substituted into the right side of Eq. (1), the PI operation on the left of that row is
obtained on the left of Eq. (1). (See [16] for more details.)

b Transformations of the rotational angles are used to determine the equivalent
rotations [15] given in Table 1.
2.3. Determination of the sign of V6

Sørensen and Pedersen were the first to recognize that the sign
of V6 can be determined from microwave spectra [3] when certain
torsion–rotation operators allowed in G12 but forbidden in the group
G24 proposed earlier for molecules with a sixfold barrier [1] be-
come important, e.g., Jy[pasin(3a) + sin(3a)pa] and Jx[pacos(3a) +
cos(3a)pa]. In their treatment of the CD3NO2 spectrum, they
considered two potential functions, one of the form (1/2)V6

(1 � cos6a), the other of the form (1/2)V6(1 + cos6a). The first of
these has a minimum energy of 0 at a = 2np/6 for integer n, and
a maximum energy of V6 at a = (2n + 1)p/6 for integer n, whereas
the second has a maximum energy of V6 at a = 2np/6 for integer
n, and a minimum energy of 0 at a = (2n + 1)p/6 for integer n.
Sørensen and Pedersen found [3] that the standard deviation of
their fits with the two different sign choices differed by a factor
of 5, when 67 lines with J 6 10 were included, and that this differ-
ence rose to a factor of 100 when high-J lines were added. The sign
in the sixfold potential function can thus be determined from a fit,
and structural information about the methyl group orientation can
be obtained, which is quite different from the corresponding sign
in the threefold potential function appropriate for methanol-like
molecules. We now give a slightly more pictorial description of
how this happens.

From a physical point of view, the two terms in the preceding
paragraph arise because of changes in the perpendicular Coriolis
energy contributions caused by various bond-length and bond-an-
gle relaxations that occur during internal rotation of the methyl
group. These terms must be added to the Hamiltonian because
such structural relaxations along the internal-rotation path are
neglected in the highly symmetric definition of the internal-rota-
tion motion implied by Eqs. (1)–(3). The influence of these two
Coriolis terms on the rotational energy levels of toluene can be
understood qualitatively as follows. If the potential energy func-
tion has the form (1/2)V6(1 � cos6a), then the equilibrium confor-
mation occurs at a = 0 and the top of the well occurs at p/6, so
that the Jx[pacos(3a) + cos(3a)pa] term is nonvanishing at the
bottom of the well while the Jy[pasin(3a) + sin(3a)pa] term is non-
vanishing at the top. This corresponds to a b-axis Coriolis contri-
bution to the energy at the bottom of the well (in the coordinate
system of this paper) and a c-axis contribution at the top. If, on
the other hand, the potential energy function for toluene has
the form (1/2)V6(1 + cos6a), then the equilibrium conformation
occurs at a = p/6 and the top of the barrier occurs at a = 0, corre-
sponding to a c-axis Coriolis contribution to the energy at the bot-
tom of the well and a b-axis contribution at the top. These two
‘‘gyroscopic” situations are physically different, and can thus be
distinguished by examining the standard deviation of fits of
torsion–rotation transitions.



Table 5
Multiplicationa table for species of the subgroup G6 of G12 needed to understand basis
set construction in the two-step diagonalization procedure used here.

C A B E1+ E1� E2+ E2�

A A B E1+ E1� E2+ E2�
B B A E2� E2+ E1� E1+

E1+ E1+ E2� E2+ A B E1�
E1� E1� E2+ A E2� E1+ B
E2+ E2+ E1� B E1+ E2� A
E2� E2� E1+ E1� B A E2+

a This multiplication table can be constructed simply by adding r values of the
two symmetry species in a product to obtain the final r value, i.e.,
r(C1 � C2) = r(C1) + r(C2), where r(C) is defined in Table 4.
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Consider next for comparison the case of acetaldehyde CH3CHO,
with a = 0 defined as the configuration where H1 of the methyl
group eclipses the O of the aldehyde group. If the potential energy
function has the form (1/2)V3(1 � cos3a), then the bottom of the
well occurs at a = 0 and the top occurs at a = p/3. If the potential
energy function has the form (1/2)V3(1 + cos3a), then the bottom
of the well occurs at a = p/3 and the top at a = 0. Thus for either
sign choice in the V3 potential, Jy[pa sin(3a) + sin(3a)pa] is zero
and Jx[pa cos(3a) + cos(3a)pa] is non-zero at both the bottom and
the top of the well, i.e., the two different forms of the potential
function allow a b-type Coriolis contribution and forbid a c-type
contribution to the energy at both the top and bottom of the well.
The ‘‘gyroscopic” situations for the two forms of the V3 potential
function can therefore, not be distinguished simply by examining
the quality of fits to torsion–rotation transitions.

Further discussion of the determinability of the potential func-
tion sign as well as of our fitting results for toluene for both sign
choices is presented in Section 6.
2.4. Basis-set functions for the two-step diagonalization procedure

In both diagonalization steps of the present computer program,
we do not actually make use of the full PI group G12, but operate
implicitly with a subgroup G6 of this group that does not distin-
guish between the subscripts 1 and 2 on the A and B species. This
group is isomorphic with the point group C6, and has the advan-
tage, as explained in the footnotes of Tables 4 and 5, that symmetry
species identification and multiplication can be carried out using
integer arithmetic modulo 6, i.e., using arithmetic involving ‘‘only”
the integers 0, ±1, ±2, and 3.

Table 4 gives the character table for this G6 group, which can be
seen to contain complex characters. Since the introduction of sym-
metry species with complex characters leads to some changes in
the real group-theoretical equations most familiar to molecular
spectroscopists, we give in Table 5 the multiplication table for
the species of G6 in Table 4. We also note that Table 4 contains
two ‘‘separably” degenerate E species [17]. Briefly, a separably
degenerate E species is a reducible doubly degenerate representa-
tion with real characters that contains two irreducible non-degen-
erate representations with complex characters. Based on group-
theoretical considerations alone, the two irreducible representa-
tions with complex characters would be assumed to have different
energies at some level of measurement accuracy, but the time
reversal symmetry operation (which is essentially the operation
of complex conjugation for systems with integral electron spin) re-
quires them to have equal energies. We use the idea of separably
degenerate species here only to avoid redundant energy
computations.
Table 4
Character table for the subgroup G6

a of G12 needed to understand basis set constructionb

C0
6 C1

6 C2
6 C3

6

C r(C) E (ab)(123) (123)2 (ab

A 0 e0 e0 e0 e0

E1+ +1 e0 e+1 e+2 e+3

E1� �1 e0 e�1 e�2 e�3

E2+ +2 e0 e+2 e+4 e0

E2� �2 e0 e�2 e�4 e0

B 3 e0 e3 e0 e3

a This PI group is isomorphic to the point group C6, with the PI elements along the top
own class. All irreducible representations are therefore non-degenerate, and some have c
combined in pairs to give reducible representations with only real characters (e.g., E1

illustrate the simple structure of the character table, all characters are expressed as pow
define an integer r(C) = n modulo 6 associated with each irreducible representation C o

b The last two columns indicate the symmetry species of torsional functions of the for
with even and odd K. Note that the rt values in the exp(6s + rt)ia column agree with th
In the first diagonalization step we consider separately blocks in
the Hamiltonian matrix characterized by a given value of rt and K
in the basis set [exp(6s + rt)ia] jKJMi, where s is a positive or neg-
ative integer, so that the torsion–rotation (tr) symmetry species trC
in G6 of all basis functions in any block is given by

trC ¼ tCðrtÞ � rCðKÞ ð5aÞ
rtr ¼ rt þ rr modulo 6; ð5bÞ

where rt is taken from the torsional basis function and rr = 0 or 3
for even or odd values of K, respectively (see Table 4).

In the second diagonalization step we must consider together
all functions of different K having the same torsion–rotation sym-
metry trC (i.e., having the same rtr). Tables 4 and 5 indicate, for
example, that basis set functions [exp(6s + rt)ia] jKJMi having
rt = 0 and K = even must be put in the same trC = A matrix
(rtr = 0) as functions having rt = 3 and K = odd, or that torsion–
rotation basis functions having rt = +1 and K = even must be put
in the same C = trE1+ matrix (rtr = +1) as functions having rt = �2
and K = odd, etc. Because separably degenerate species correspond
to degenerate energy levels for a Hamiltonian without external
fields, it is only necessary to diagonalize blocks with trC = A, E1+,
E2+, and B in the second step, corresponding, respectively, to our
choice of rtr = 0, 1, 2, and 3 in the program.

2.5. Torsional and rotational labels for eigenvectors after the first
diagonalization

For the internal-rotation Hamiltonian with a sixfold barrier,

H ¼ Fp2
a þ ð1=2ÞV6ð1� cos 6aÞ; ð6Þ

we can consider two limiting cases for the torsional labels, just as
for the threefold barrier problem. In the high barrier limit, all levels
of interest are well below the top of the barrier V6, and their ener-
in the two-step diagonalization procedure used here.

C4
6 C5

6
exp(6s + rt)ia jKJM>

) (123) (ab)(123)2 rt K

e0 e0 0 Even
e+4 e+5 +1
e�4 e�5 �1
e+2 e+4 +2
e�2 e�4 �2
e0 e3 3 Odd

of the table corresponding to Cp
6, with p = 0, 1, 2, 3, 4, and 5. Every element is in its

omplex characters. The irreducible representations with complex characters can be
= E1+� E1� or E2 = E2+ � E2�). These are called separably degenerate E species. To

ers of e � exp( � 2pi/6). The exponents n of en in the column headed by (ab)(123)
f this PI group.
m exp(6s + rt)ia, where s and rt are integers, and of the symmetric-rotor functions
e r(C) values in the same row.
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gies are essentially those of a harmonic oscillator, given by (vt + 1/
2)hm, with m = (36FV6)1/2 (when F and V6 are in their appropriate SI
units). In the low-barrier limit, all levels of interest are well above
the top of the barrier, and their energies are essentially those of a
particle on a ring, given by Fm2. Molecules with a sixfold barrier
and a CH3 top are normally close to the low-barrier limit, so we
have used m as a torsional label at all stages of our fitting program.
(Note, however, that replacing the CH3 top in any given molecule by
a much heavier CF3 top, could result in a change from low-barrier to
intermediate or high barrier.)

The m labeling scheme after the first diagonalization step is
based on energy ordering, rather than on eigenfunction composi-
tion. The exact scheme is as follows. For the lowest eigenvalue in
a matrix characterized by rt = 0, 1, 2, or 3, we choose m = rt. For
the next four eigenvalues in ascending energy order, we choose
m = rt � 6, rt + 6, rt � 12, rt + 12. Extension of the m labels to
higher eigenvalues follows the same pattern. While the m labeling
scheme described above provides a unique and easily programmed
set of labels, the m label for a given level does not always corre-
spond to the m = 6s + rt value of the torsional basis function with
the largest coefficient in the eigenfunction for that level. This is
especially true for states with m = ±3, ±6, etc., i.e., for 0 – m = 3
or 6 modulo 6.

K labels for eigenfunctions after the first diagonalization are
automatic, since each matrix in the first step is characterized by
a fixed value of K.

2.6. Torsional and rotational labels for eigenvectors after the second
diagonalization

The labeling scheme after the second diagonalization begins by
using eigenfunction composition to determine the m state (as de-
scribed above) to which a particular level belongs, and then uses
the usual asymmetric-rotor energy ordering scheme to assign rota-
tional Ka, Kc labels within a given m state. Our asymmetric-rotor Ka,
Kc labels are thus based on energy ordering. They are unique and
easily programmed, but they frequently do not correspond to the
K value of the rotational basis function with the largest coefficient
in the eigenvector when such a dominant component exists. Some
additional aspects of the torsion–rotation labels described above
are discussed in Section 5.

Because our K labels after the second diagonalization are based
on energy ordering, rather than on eigenvector composition, inten-
sities for transitions between all eigenvectors in each pair of J0 and
J00 manifolds are calculated in the program (see Section 3), to pre-
vent overlooking strong transitions involving unexpected changes
in m or K.

2.7. Recovery of the 1 and 2 subscripts on the A and B functions after
the second diagonalization

It is sometimes desirable to put the 1 or 2 subscript on a given
eigenfunction from the trC = A or B symmetry block, i.e., it is some-
times desirable to work with symmetry species of the full G12 PI
group. This can be done by taking the expectation value of the
symmetry operation (23)*, since an expectation value of +1 indi-
cates A1 or B1, while a value of �1 indicates A2 or B2. Of course,
if an A1/A2 pair or a B1/B2 pair is degenerate to within machine
round-off error, then the eigenvectors returned by the diagonaliza-
tion algorithm will be random linear combinations of the subscript
1 and 2 states, leading to expectation values of +p and �p, respec-
tively, where �1 6p6 +1. The magnitude of p will approach unity
only if the splitting is orders of magnitude larger than machine
round-off error. These incompletely resolved degeneracies will
arise frequently and systematically for high-Ka states with small
asymmetry doublings.
Table 2 indicates that for our first-stage basis set of
[exp(6s + rt)ia] jKJMi, the matrix elements of (23)* are given by
Eqs. (7a) and (7b), respectively, for basis functions with tA
(rt = 0) and tB (rt = 3) torsional symmetry:

htA; s0K 0J j ð23Þ� j tA; sKJi ¼ dðs0;�sÞdðK 0;�Kið�1ÞJ�K ð7aÞ
htB; s0K 0J j ð23Þ� j tB; sKJi ¼ dðs0;�s� 1ÞdðK 0;�KÞð�1ÞJ�K

: ð7bÞ

Applying Eqs. (7a) and (7b) to the second-stage eigenfunctions, we
calculate in our program the expectation value for (23)* for rtr = 0
and 3 and thus determine A1/A2 and B1/B2 labels for non-degenerate
states.

3. Structure of the computer program

The computer program uses the two step diagonalization proce-
dure of Herbst et al. [18], similar to that implemented in BELGI
[19,20]. In the first step a set of torsional calculations is per-
formed with a relatively large torsional basis set of the form
exp[(6s + rt)ia] for each value of K in the range �Jmax 6 K 6 +Jmax,
and for each of the four different values of isig � rt (isig = 0,
+1, +2, +3). In this step only Hamiltonian matrix elements diagonal
in K are considered, and usually only the main purely torsional ef-
fects together with the torsion–rotation coupling about the inertial
a axis are taken into account. In the second step a reduced torsional
basis set is used, which is obtained by discarding all but the lowest
several torsional eigenfunctions for a given K and isig from the
first step. Although the size of the basis set in the first step can
be varied by choosing a value for ktronc (where jsj 6 ktronc),
and the number of torsional eigenfunctions kept in the second step
may be varied by choosing a value for nvt, we currently use 21 ba-
sis functions in the first step and 9 in the second, as it is often done
in fits using BELGI [21]. In the second step, a separate matrix of
dimension (2J + 1)*nvt � (2J + 1)*nvt is built for each pair of
(isig � rtr, J) values, and all desired asymmetric-rotor and tor-
sion–rotation K mixing effects are taken into account.

In the Hamiltonian matrix of the second diagonalization step
we group together basis set functions of given K value, in contrast
to BELGI, where the basis set functions are grouped by torsional
quantum number. Because interaction terms are normally limited
to some maximum value of jDKj, this leads to a banded structure
for the matrix, which becomes more pronounced as J increases,
and which permits the use of efficient diagonalization routines that
take advantage of this special matrix structure. We use the DSBRDT
routine from the Successive Band Reduction (SBR) package [22] to
reduce the banded matrix to tridiagonal form and then use the cor-
responding LAPACK [23] routines to get eigenvalues and eigenvec-
tors of the obtained tridiagonal matrix.

In the program, matrix elements for specific terms in the gen-
eral expression of Eq. (4) are calculated, which the user selects
via sets of k, n, p, q, r, s, t integer indices in the input file. During
input, each set of k, n, p, q, r, s, t integer indices is checked for con-
formity with time reversal and symmetry requirements, to prevent
accidental introduction of symmetry-forbidden terms into the
Hamiltonian. It is also possible at input to define a linear combina-
tion of several different terms as a sum with fixed coefficients, with
that sum then being multiplied by one fitting parameter. A conven-
tional weighted least squares fit is carried out, with special treat-
ment for blended transitions, where an intensity-weighted
average of calculated (but experimentally unresolved) transition
frequencies is put in correspondence with the measured
blended-line frequency.

Intensity calculations for rotation–torsion transitions are simi-
lar to those in BELGI [20,21]. Such intensity calculations are partic-
ularly important for the low-barrier case of toluene, because
normal asymmetric-rotor selection rules are not always a good
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guide for deciding the strongest lines. For this reason, the program
calculates all possible DKa, DKc transition frequencies and intensi-
ties allowed by symmetry in G12 for a given pair of upper and lower
state J values, and displays all transitions with intensities above a
user-set cutoff.

A convenient check of the program code for many of the higher-
order terms was obtained by verifying that eigenvalues E and W of
the Hamiltonians H and H(1+bH), respectively, satisfy W = E(1 + bE)
to machine round-off error. For example, if

H ¼ FðPa � qJzÞ
2 þ ð1=2ÞV6ð1� cos6aÞ ð8Þ

has eigenvalues Ei, and if

HþbH2 ¼FðPa�qJzÞ
2þð1=2ÞV6ð1�cos6aÞ

þbF2ðP4
a�4P3

aqJzþ6P2
aq2J2

z �4Paq3J3
z þq4J4

z Þ
þbFV6ðPa�qJzÞ

2�ð1=2ÞbFV6fðPa�qJzÞ
2
;cos6ag

þð1=8ÞbV2
6ð3�4cos6aþcos12aÞ; ð9Þ

where {A,B} � AB + BA, has eigenvalues Ei þ bE2
i , then there is a high

probability that all terms in these two expressions are correctly pro-
grammed. Because of the peculiarities of our two-step diagonaliza-
tion algorithm, where some operators are included in the first step,
with a larger torsional basis set, while others are introduced only in
the second step, with a truncated torsional basis set (as described
above), the numerical check to machine round-off precision de-
scribed in this paragraph is possible only if the torsional basis set
is not truncated in the second step. Furthermore, agreement to ma-
chine round-off error could not be achieved for a (variable) range of
the highest-energy eigenvalues because eigenvalues of the square
of an operator with off-diagonal matrix elements are not exactly
equal to the square of eigenvalues of that operator, when those
eigenvalues are determined by diagonalizing matrices set up in a
truncated basis set.

It is our intention, after this program has been tested by appli-
cation to a few more example molecules, to make it available for
general use on the PROSPE website [20].
4. Experimental

The ground state (m = 0) data used in this work are a subset of
the measurements published in [11], in that only transitions with
J 6 30 and Ka6 12 were used. The higher m measurements were
made with three of the spectrometers used in [11]. The majority
of the measurements were carried out at room-temperature with
two different Fourier transform (FT) waveguide instruments in
Kiel. Transitions in the 8–18 GHz region were measured with a
spectrometer using a rectangular absorption cell and capable of
automatic scanning [24,25]. The scanning feature was crucial in
commencing the assignment since it allowed recording of broad
regions of the spectrum centered on successive relevant multiples
of (B + C). Those regions were expected to contain the free-rotation
bandheads formed by low-J R-branches and were the key to initial
assignment of the higher m states. Transitions in the 18–26.5 GHz
region were measured with a Fourier transform waveguide spec-
trometer employing a 36 m long circular waveguide cell [26]. This
region was used to confirm the assignment of lower-J R-branch
transitions and both regions were used in searches for Q-branch
transitions.

The third spectrometer was the pulsed supersonic expansion
Fourier transform cavity spectrometer in Warsaw [27], operating
at 2–18.5 GHz. Although the efficiency of cooling obtained on
supersonic expansion is so high that it normally prohibits observa-
tion of vibrationally excited transitions in this spectrometer, there
is a special case when those transitions involve a lower state of
symmetry having different nuclear spin statistics from those of
the ground state. This phenomenon of cooling of populations to
the lowest A-symmetry and lowest E-symmetry states allowed
observation of strong m = 1 transitions in the supersonic
expansion.

For weighting purposes in the least squares fits, where we take
weight = (1/uncertainty)2, transitions in the data set were
assigned a frequency uncertainty of 2 kHz for the supersonic
expansion measurements and 5 kHz for the waveguide FT mea-
surements. For weaker transitions, uncertainties were increased
to 4 kHz for supersonic expansion and 10, 20 or 50 kHz for wave-
guide data.
5. Qualitative understanding of the energy levels

The low-barrier torsion–rotation energy levels of toluene for
various m states can be understood qualitatively by examining lev-
els obtained from an approximate Hamiltonian containing only the
lowest-order torsional and rotational terms and having the z axis
along the principal a axis,

H ¼ FðPa � qJzÞ
2 þ ð1=2ÞV6ð1þ cos6aÞ þ AJ2

z þ BJ2
x þ CJ2

y ; ð10Þ

together with the concept of an approximate effective rotational
Hamiltonian Hm(rot). For each m, we obtain the effective rotational
Hamiltonian by taking the expectation value of Eq. (10) in a free-ro-
tor basis set to obtain [28]

HmðrotÞ ¼ hmjHjmi
¼ ð1=2ÞV6 þ Fm2 � 2FqmJz þ BJ2

x þ CJ2
y

þ ðAþ q2FÞJ2
z : ð11Þ

We will compare the approximate energy levels from Eq. (11) with
those calculated from constants obtained from our global fit and
plotted against J(J + 1). The four panels of Fig. 2 show such calcu-
lated toluene levels for jmj = 0, 1, 2, and 3, though the levels dis-
played are actually reduced levels of the form E(m, J, K)–
0.5(B + C)J(J + 1), so that a large part of the J-dependence has been
removed.

For m = 0, Eq. (11) becomes

H0ðrotÞ ¼ hm ¼ 0jHjm ¼ 0i

¼ ð1=2ÞV6 þ BJ2
x þ CJ2

y þ ðAþ q2FÞJ2
z ð12Þ

which, as is well known [28], has the form of an asymmetric-rotor
Hamiltonian with Aeff = A + q2F. For toluene, the Aeff modification is
slight. Our fitting results give a value of Aeff = 0.1911 cm�1 (which is
in complete agreement with the asymmetric-rotor fit carried out for
m0 = m00 = 0 transitions in [11]), as well as q2F = 0.0066 cm�1 and
A = 0.1845 cm�1.

For low-J levels, where the term ð1=2ÞðB� CÞðJ2
x � J2

yÞ represent-
ing asymmetric-rotor effects can be neglected, the eigenvalues E of
Eq. (12) give rise to reduced energy levels of the form

EðJ;KÞ � ð1=2ÞðBþ CÞJðJ þ 1Þ ¼ ð1=2ÞV6 þ ½Aeff � ðBþ CÞ=2�K2;

ð13Þ

where K is the angular momentum projection along the principal
a axis. As the eigenvalue of Jz in Eqs. (10) and (11), K is taken in
this section to be a signed quantity. Fig. 2(a) does indeed show,
as expected from Eq. (13), a series of nearly straight, nearly
horizontal lines, with the line beginning on the left with a
point at J = K having an approximate reduced energy of (1/
2)V6 + [Aeff � (B + C)/2]K2. Deviations from horizontal straight line
behavior at low K are due to asymmetric-rotor effects. Asymme-
try splittings can be seen for K = 7 and below on the scale of this
figure.



Fig. 2. Reduced energy levels E–(1/2)(B + C)J(J + 1) for torsional states of toluene with m = 0, 1, 2, and ±3 plotted against J(J + 1) (though the abscissa is labeled in J), as
calculated from our program. Most of the reduced energy levels can be organized into nearly straight, nearly horizontal lines. The lowest-J level of each horizontal line is
circled, and K labels are given near the circled points where space permits. These K labels are determined by setting K = J for the circled points. Panel (a) shows that the circled
levels for m = 0 increase in energy as K2. Panels (b) and (c) show that these levels for m = 1 and 2 fall on curves resembling a parabola tilted to the right. Panel (d) shows that
the circled levels for jmj = 3 fall on a similar tilted parabolic curve, except that a gap of (1/2)V6
2.5 cm�1 has been opened at J = 0 by the sixfold barrier term (see text). Levels
on the part of the tilted parabola starting below the gap in panel (d) are called m = +3 levels in the program. Levels starting above the gap are called m = �3. Torsion–rotation
energy levels with m = 0, +3, and �3 belong to non-degenerate A symmetry species in G12, and their K values are unsigned, indicating that a pair of ±K A levels have the same
energy on the scale of this figure. Torsion–rotation energy levels with m = 1 and 2 belong to doubly degenerate E species. K values on the left limb of the inclined parabolas in
panels (b) and (c) are all negative (for positive m), while those on the right limb are all positive. Note also how the parabolas gradually become wider on going from m = 0 to
jmj = 3.
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For the jmj = 1 states, Eq. (11) becomes

H�1ðrotÞ ¼ hm ¼ �1jHjm ¼ �1i

¼ ð1=2ÞV6 þ F 	 2qFJz þ ðAþ q2FÞJ2
z þ BJ2

x þ CJ2
y : ð14Þ

Interactions between m = +1 and �1 states vanish, since

hm ¼ 	1jHjm ¼ �1i ¼ 0; ð15Þ

which is just an expression of the fact that matrix elements of cos6a
within the two jmj = 1 torsional states vanish. Thus, for the jmj = 1
states, we need consider only m = +1 by itself, since: (i) the upper
and lower signs in Eq. (14) give rise to the same expressions when K
takes all values �J 6 K 6 +J, and (ii) m = +1 and �1 do not interact.
However, the presence of the term linear in Jz in Eq. (14) means that
eigenvalues of Eq. (14) will not resemble those of an asymmetric rotor.

For low-J levels, where asymmetric-rotor effects can be ne-
glected, the eigenvalues E of Eq. (14) for m = +1 give rise to reduced
energy levels of the form
EðJ;KÞ � ð1=2ÞðBþ CÞJðJ þ 1Þ ¼ ð1=2ÞV6 þ F � 2qFK þ ½Aeff

� ðBþ CÞ=2�K2; ð16Þ

where K is again taken to be a signed quantity. This expression can
be compared with the low-J m = +1 reduced energy levels calculated
from our fitting constants and shown in Fig. 2(b). As predicted by
Eq. (16), most reduced energy levels in this figure organize them-
selves into nearly straight, nearly horizontal lines, whose jKj value
can be determined from the lowest J value (left-most point on the
line). Furthermore, the curve connecting the first point of each
straight line, i.e., the curve connecting the circled J = jKj levels in
Fig. 2(b), has the form of an inclined (and distorted) parabola,
whose lowest point is predicted (by differentiating Eq. (16) with re-
spect to K) to occur at K 
 + qF/[Aeff � (B + C)/2] = 1.6. This predic-
tion is in reasonable agreement with Fig. 2(b), where the two lowest
lines for m = +1 have K = +1 and K = +2. More information on parab-
olas can be found in related discussions [29,30] of nearly free-rotor
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torsion–rotation energy levels plotted against K. Note finally that
the splitting patterns of these J = jKj levels cannot be forced into
an asymmetric-rotor-like pattern, since normal asymmetry split-
tings (as in Fig. 2(a)) nearly vanish when J = jKj, whereas no pairs
of nearly degenerate J = jKj levels with the same jKj can be found
in Fig. 2(b).

Using arguments similar to those for jmj = 1, the reduced energy
level expression for jmj = 2 is found to be

EðJ;KÞ � ð1=2ÞðBþ CÞJðJ þ 1Þ ¼ ð1=2ÞV6 þ 4F � 4qFK þ ½Aeff

� ðBþ CÞ=2�K2 ð17Þ

This expression can be compared with Fig. 2(c), which gives the
jmj = 2 reduced energy levels obtained from our fit. Eq. (17) predicts
that the reduced energy levels in Fig. 2(c) will organize themselves
into straight horizontal lines, with the lowest-energy point of the
inclined parabola connecting the circled J = jKj levels occurring at
K 
 +2qF/[Aeff � (B + C)/2] = 3.2. This predicted behavior is again in
reasonable agreement with the observed behavior in Fig. 2(c),
where the two lowest lines for m = +2 have K = +3 and K = +4. The
jmj = 2 splitting patterns can also not be forced into an asymmet-
ric-rotor-like pattern.

For jmj = 3 the calculation of the effective rotational Hamilto-
nian is somewhat different [28], because V6cos6a has nonvanishing
matrix elements within the jmj = 3 torsional states (i.e., between
m = +3 and m = �3), leading (when this term dominates other
interactions) to sum and difference torsional eigenfunctions. With-
out this interaction we obtain from Eq. (11) the effective rotational
Hamiltonian

H�3ðrotÞ ¼ hm ¼ �3jHjm ¼ �3i
¼ ð1=2ÞV6 þ 9F 	 6qFJz þ ðAþ q2FÞJ2

z þ BJ2
x þ CJ2

y :

ð18Þ

Introduction of the (1/2)V6cos6a interaction between the close-ly-
ing m = ±3 components, gives the off-diagonal matrix elements

H3ðrotÞ ¼ hm ¼ �3jHjm ¼ 	3i ¼ ð1=4ÞV6; ð19Þ

and leads to a 2 � 2 diagonalization, giving the pair of effective rota-
tional Hamiltonians

H3�ðrotÞ ¼ ð1=2ÞV6 þ 9F þ ðAþ q2FÞJ2
z þ BJ2

x þ CJ2
y

� ½ð1=16ÞV2
6 þ 36F2q2J2

z �
1=2
: ð20Þ

The square root in Eq. (20) will obviously give rise to rather compli-
cated energy level patterns for jmj = 3 levels. Some simplification of
Eq. (20) can be achieved when either the V6 term or the FqJz dom-
inates, since then the square root can be expanded in a Taylor series,
but these cases will not be considered here since neither term dom-
inates for toluene.

Eq. (18) would predict a diagram very similar to Fig. 2(b) and
(c), with the lowest point on the parabola occurring for K 
 4.7.
The effect of the off-diagonal (1/2)V6cos6a interaction in Eq. (19)
is to open up a gap of (1/2)V6 between the K = 0 levels with
m = +3 and m = �3 and to slightly modify the shape of the inclined
parabola. This is in good qualitative agreement with our calculated
jmj = 3 levels, as shown in Fig. 2(d).

Up to this point we have been considering torsion–rotation lev-
els in Fig. 2 only for low J. As is well known, at very high J and very
low Ka, the rotational levels of a prolate asymmetric-rotor regroup
themselves into Kc clusters [31]. The same phenomenon occurs
here, as illustrated by the torsion–rotation levels at the bottom
right in each of the four panels of Fig. 2, but the Kc spacings are
slightly modified by torsion–rotation interaction. The spacing can
be understood by considering a Hamiltonian with the z axis along
the principal c axis, i.e., by performing (x, y, z) ? (y, z, x) on Eq. (10)
to obtain
H ¼ FðPa � qJxÞ
2 þ ð1=2ÞV6ð1þ cos6aÞ þ AJ2

x þ BJ2
y þ CJ2

z

¼ ð1=2ÞV6 þ FP2
a þ ð1=2ÞðAeff þ BÞJ2 þ ½C � ð1=2ÞðAeff þ BÞ�J2

z

�2FqPaJx þ ð1=2ÞðAeff � BÞðJ2
x � J2

yÞ þ ð1=2ÞV6cos6a:

ð21Þ

(Since K is now the projection of J along the principal c axis, we call
it Kc in this paragraph to avoid confusion.) A second-order perturba-
tion calculation (with the last three terms in Eq. (21) as the pertur-
bation), gives a value of 2.24 cm�1 for the spacing between the
Kc = 19 and 20 toluene levels with m = 2 and J = 20. This value differs
by only 2% from the value of 2.20 cm�1 calculated by the program.
This good agreement demonstrates that the Ka,Kc labels used in the
program have their usual connection to asymmetric-rotor energy
level patterns and selection rules for levels with high J and high
Kc. The various panels in Fig. 2 indicate, however, that the Ka,Kc la-
bels used in the program do not have their usual asymmetric-rotor
meaning for levels with low J and low Ka. Since there is no Ka,Kc

labeling scheme which will provide straightforward physical mean-
ing for the whole range of rotational quantum numbers, we use in
the program (and in the tables of line frequencies below) the unique
and simply automated labeling scheme described earlier, while rec-
ognizing that these Ka,Kc labels from the program must be changed
in an appropriate way when trying to extract qualitative under-
standing of the energy level pattern for some ranges of rotational
quantum numbers.
6. Discussion of the molecular constants determined in the fit

Table 6 presents the m = 1, 2, ±3 and m = +3 M m = �3 transition
frequencies of toluene used in the least squares fit, together with
their assignments, measurement uncertainties and observed-
minus-calculated (o�c) residuals. The m = 0 lines can be found in
[11]. (All lines included in the fit and their residuals are given in
the computer output in the archived material.) Transitions in Ta-
ble 6 are grouped into spectroscopic branches. The random distri-
bution of residuals along these branches suggests that any
quantum number-related model inadequacies are below measure-
ment accuracy. An overview of the results in Table 6 is given in Ta-
ble 7, where measurements are divided on the left according to
upper and lower torsional state, and on the right according to as-
signed measurement precision. It can be seen that we have satis-
factory observed-minus-calculated residuals for each category of
lines, although there is somewhat better J quantum number cover-
age and more measured lines for m = 0 and +3 states, than for m = 1
and 2 states. This slight disproportion is a consequence of: (i) fre-
quency range limitations, (ii) the previous very thorough study of
the m = 0 spectrum, and (iii) the energy level structure of the
m = +3 state (see Fig. 2d), which puts many Q-type transitions
within the frequency range of our current study.

Table 8 gives the set of molecular constants determined in the
fit, both in the Bknpqrst notation of Eq. (4) and in a more descriptive
notation [32]. Although a great deal is known about the low-order
constants of toluene from previous work, some additional remarks
are of interest. It can be seen that our set of 28 constants consists of
2 pure torsional constants, 8 pure rotational constants, and 18 tor-
sion–rotation interaction constants. In terms of the ordering
scheme introduced by Nakagawa et al. [33], which is extensively
used for torsion–rotation Hamiltonians with threefold barriers
(see for example [21,32]), we have used terms up to 8th order, with
the number of terms distributed between the n = 2, 4, 6, and 8 or-
ders as 5, 14, 8, and 1. This is consistent with the number of deter-
minable parameters of 5, 15, 32, and 59 for n = 2, 4, 6, and 8, as
calculated from the difference between the total number of sym-
metry-allowed Hamiltonian terms of order n and the number of



Table 6
Assignmentsa, measured transition frequenciesb, and observed-calculated residualsc

from the fit for m = 1, 2, and ±3 states.

Sym0 J0 Ka0 Kc0 Sym00 J00 Ka00 Kc00 Frequency MHz o�c kHz

m = 1
E1 3 2 2 E1 3 0 3 9262.3282(10) 6.2
E1 4 2 3 E1 4 0 4 10933.4502(5) 6.2
E1 5 2 4 E1 5 0 5 13585.9639(5) �5.0
E1 6 2 5 E1 6 0 6 16888.9835(5) �3.7
E1 7 2 6 E1 7 0 7 20452.0941(5) �9.4
E1 8 2 7 E1 8 0 8 24054.7970(5) �4.0
E2 2 1 2 E2 1 0 1 8480.8605(2) �0.5
E1 3 0 3 E1 2 0 2 12399.1203(2) �0.9
E1 4 0 4 E1 3 0 3 16004.8103(2) 1.5
E1 5 0 5 E1 4 0 4 19453.4022(5) 6.0
E1 6 0 6 E1 5 0 5 22877.8998(5) 2.9
E1 7 0 7 E1 6 0 6 26323.3065(5) 3.5
E2 4 1 3 E2 4 1 4 8955.1421(10) �10.5
E2 5 1 4 E2 5 1 5 11995.8529(5) 0.1
E2 6 1 5 E2 6 1 6 15669.3021(5) 2.1
E2 7 1 6 E2 7 1 7 19596.7464(5) �2.5
E2 8 1 7 E2 8 1 8 23516.9640(5) �4.2
E2 3 1 3 E2 2 1 2 12292.1155(2) 1.3
E2 4 1 4 E2 3 1 3 15834.1902(2) 2.2
E2 5 1 5 E2 4 1 4 19301.7052(5) 5.6
E2 6 1 6 E2 5 1 5 22779.2947(5) 4.8
E2 7 1 7 E2 6 1 6 26268.4603(5) 4.2
E2 4 1 3 E2 3 1 2 17879.7694(2) 0.6
E2 5 1 4 E2 4 1 3 22342.4015(5) 1.7
E2 6 1 5 E2 5 1 4 26452.7376(5) 0.5
E2 2 2 1 E2 1 1 0 8584.3803(2) �0.4
E1 3 2 2 E1 2 1 1 13103.3936(2) �1.0
E1 2 1 1 E1 1 1 1 8613.5419(2) �0.8
E2 3 2 1 E2 2 2 1 12930.5248(2) �1.2
E1 4 2 3 E1 3 2 2 17675.9299(4) �0.9
E1 5 2 4 E1 4 2 3 22105.9273(5) 6.2
E1 6 2 5 E1 5 2 4 26180.9212(5) 6.0
E1 5 2 3 E1 4 2 2 21957.8667(5) 5.2
E1 6 2 4 E1 5 2 3 26695.9192(5) 6.2
E1 3 3 1 E1 2 2 0 12894.2410(2) �2.6
E2 4 3 2 E2 3 2 1 17344.1273(4) �2.1
E1 6 2 4 E1 6 2 5 11606.8165(20) 0.7
E1 7 2 5 E1 7 2 6 13239.1058(10) �2.2
E1 8 2 6 E1 8 2 7 16044.7996(50) 39.9
E1 9 2 7 E1 9 2 8 19712.6112(20) �9.6
E1 10 2 8 E1 10 2 9 23809.9313(20) �15.9
E2 9 3 6 E2 9 3 7 15946.2065(20) �13.0
E2 10 3 7 E2 10 3 8 17105.9352(10) 9.0
E2 11 3 8 E2 11 3 9 19578.7349(10) �7.8
E1 4 3 1 E1 3 3 1 17240.7550(4) �2.3
E2 4 4 1 E2 3 3 0 17202.7294(4) �3.9
E1 5 4 2 E1 4 3 1 21629.4650(5) �1.4
E2 5 3 3 E2 4 3 2 21855.9046(5) �1.4
E2 6 3 4 E2 5 3 3 26489.6701(5) �0.5
E2 6 3 3 E2 5 3 2 26118.7716(5) �1.1
E1 5 5 1 E1 4 4 0 21510.7065(5) �5.3
E2 6 5 2 E2 5 4 1 25927.3926(5) �6.3
E1 6 4 3 E1 5 4 2 26073.3138(5) �0.6
E1 14 4 10 E1 14 4 11 22877.6780(50) �20.1
E2 5 4 1 E2 4 4 1 21549.5355(5) �2.8
E2 6 6 1 E2 5 5 0 25818.4078(5) �10.8
E2 15 5 10 E2 15 5 11 24628.6842(20) 11.8
E1 6 5 1 E1 5 5 1 25857.7234(5) �8.8

m = 2
E1 4 0 4 E1 3 0 3 16650.3153(5) 4.5
E1 5 0 5 E1 4 0 4 20024.7641(5) 2.6
E1 6 0 6 E1 5 0 5 23276.7219(5) 0.5
E1 2 1 2 E1 1 0 1 8506.5453(5) �4.3
E2 3 1 3 E2 2 0 2 12685.1587(5) �0.7
E2 2 1 1 E2 1 1 1 8546.1911(5) 2.0
E1 3 1 2 E1 2 1 2 12843.5234(5) 3.6
E2 4 1 3 E2 3 1 3 18067.7461(5) 5.1
E1 2 2 1 E1 1 1 0 8558.4457(5) 1.0
E2 3 2 2 E2 2 1 1 12853.1851(5) �1.2
E1 4 2 3 E1 3 1 2 17272.4147(5) �1.1
E2 5 1 4 E2 4 1 3 22807.7538(5) 5.2
E2 5 1 4 E2 5 1 5 7980.2960(5) 16.0
E2 6 1 5 E2 6 1 6 12196.5462(10) 10.3

able 6 (continued)

Sym0 J0 Ka0 Kc0 Sym00 J00 Ka00 Kc00 Frequency MHz o�c kHz

E1 3 2 1 E1 2 2 1 12856.4233(5) �3.1
E2 4 2 2 E2 3 2 2 17200.4659(5) �1.4
E1 5 2 3 E1 4 2 3 21888.3302(5) 2.6
E2 3 3 1 E2 2 2 0 12857.8606(5) 1.0
E1 4 3 2 E1 3 2 1 17176.8127(5) �4.9
E2 5 3 3 E2 4 2 2 21602.0872(5) �1.9
E1 7 2 5 E1 7 2 6 8201.6323(10) 2.6
E1 8 2 6 E1 8 2 7 11720.0595(10) 7.8
E1 9 2 7 E1 9 2 8 16043.6560(20) 30.7
E1 6 2 4 E1 5 2 3 26835.8920(5) 3.8
E2 9 3 6 E2 9 3 7 8393.5233(10) �1.8
E2 10 3 7 E2 10 3 8 10678.2165(10) 5.1
E1 4 4 1 E1 3 3 0 17160.2968(5) �0.5
E2 5 4 2 E2 4 3 1 21493.4136(5) �3.9
E1 6 4 3 E1 5 3 2 25915.0748(5) �2.4
E2 4 3 1 E2 3 3 1 17166.1039(5) �1.6
E1 5 3 2 E1 4 3 2 21527.0910(5) �1.0
E2 6 3 3 E2 5 3 3 26076.8963(5) �1.1
E2 5 5 1 E2 4 4 0 21464.2653(5) 1.8
E1 6 5 2 E1 5 4 1 25806.7500(5) �1.4
E1 11 4 7 E1 11 4 8 9653.7309(10) 4.0
E1 12 4 8 E1 12 4 9 10446.0553(10) �20.3
E1 13 4 9 E1 13 4 10 12575.8724(10) �1.4
E1 5 4 1 E1 4 4 1 21475.2409(5) �1.6
E2 6 4 2 E2 5 4 2 25844.6009(5) �2.9
E2 6 5 1 E2 5 5 1 25783.9441(5) �0.7
E1 6 6 1 E1 5 5 0 25769.0899(5) 0.0
E2 14 5 9 E2 14 5 10 11738.9981(10) �0.6
E2 15 5 10 E2 15 5 11 12316.9362(10) 16.7
E2 16 5 11 E2 16 5 12 14168.9632(10) �9.5

m = 3
A1 20 1 19 A2 20 0 20 8566.7622(5) 1.2
A2 21 1 20 A1 21 0 21 9427.5950(10) �3.6
A1 22 1 21 A2 22 0 22 10289.4040(10) �1.7
A2 23 1 22 A1 23 0 23 11149.3240(10) �3.0
A1 24 1 23 A2 24 0 24 12004.9952(10) 12.7
A2 25 1 24 A1 25 0 25 12854.3920(5) 0.0
A1 28 1 27 A2 28 0 28 15350.1059(10) 3.7
A2 2 1 1 A1 1 0 1 7967.0542(5)d �2.9
B1 3 1 2 B2 2 0 2 12604.6570(5) �0.9
A2 5 3 3 A1 5 0 5 9095.6028(10) �2.6
B2 2 2 0 B1 1 1 0 8577.8119(5) �1.9
A1 3 2 1 A2 2 1 1 12013.2625(5)d �2.7
B2 4 2 2 B1 3 1 2 16787.3770(5) �4.7
A1 5 2 3 A2 4 1 3 21558.8323(5) 0.0
B1 20 2 19 B2 20 1 20 8566.7622(5) �3.0
B2 21 2 20 B1 21 1 21 9427.5950(10) �5.4
B1 22 2 21 B2 22 1 22 10289.4040(10) �2.5
B2 23 2 22 B1 23 1 23 11149.3240(10) �3.3
B1 24 2 23 B2 24 1 24 12004.9952(10) 12.6
A1 2 2 1 A2 1 1 1 9086.8284(5)d 3.7
B2 3 2 2 B1 2 1 2 12779.7250(5) �0.5
B2 5 2 4 B1 4 1 4 20787.3809(5) �0.8
A1 7 3 4 A2 7 1 6 14726.7553(10) �17.2
A1 5 2 3 A2 5 1 5 8907.1705(10) 9.2
A1 5 0 5 A2 4 1 3 12641.8804(10) 11.6
A2 6 3 3 A1 6 1 6 11348.4271(20) �36.2
B2 17 3 14 B1 17 2 15 17230.2461(10) �9.1
A1 12 4 9 A2 12 2 10 8283.8315(10) 0.6
A2 13 4 10 A1 13 2 11 10116.9392(10) �2.3
A1 14 4 11 A2 14 2 12 11955.2468(10) 4.3
A2 15 4 12 A1 15 2 13 13768.4827(10) 6.4
A1 16 4 13 A2 16 2 14 15534.8515(10) 1.1
A2 3 3 1 A1 2 2 1 13685.1489(5)d 2.3
B1 4 3 2 B2 3 2 2 17212.9680(5) 1.2
A2 5 3 3 A1 4 2 3 21689.4823(5) �2.3
B2 6 2 4 B1 6 2 5 9191.5159(10) 14.4
B1 7 2 5 B2 7 2 6 13508.8314(10) 9.9
B1 3 3 0 B2 2 2 0 12978.1748(5) �0.2
B1 5 3 2 B2 4 2 2 20975.8900(5) �1.5
B1 12 3 9 B2 12 3 10 8075.5276(10) 0.0
B2 13 3 10 B1 13 3 11 10002.1513(10) 1.4
B1 14 3 11 B2 14 3 12 11894.2178(10) �1.9
B2 15 3 12 B1 15 3 13 13736.9888(10) �1.0
B1 16 3 13 B2 16 3 14 15519.0073(10) �12.3
B2 4 4 0 B1 3 3 0 17504.6262(5) �2.6
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Table 6 (continued)

Sym0 J0 Ka0 Kc0 Sym00 J00 Ka00 Kc00 Frequency MHz o�c kHz

A1 5 4 1 A2 4 3 1 20404.0019(5)d �0.9
B2 6 4 2 B1 5 3 2 25251.3970(5) �3.1
A1 4 4 1 A2 3 3 1 18339.0350(5)d 1.6
B2 5 4 2 B1 4 3 2 21778.2628(5) �2.6
B2 8 4 4 B1 8 3 5 11540.1694(10) �24.2
B1 9 4 5 B2 9 3 6 12847.4094(10) �3.9
B2 10 4 6 B1 10 3 7 15103.1536(10) 1.6
A2 17 4 14 A1 17 3 15 17238.0231(10) �9.2
A2 19 4 16 A1 19 3 17 20405.6316(20) �6.3
B1 7 5 2 B2 7 3 5 11707.2490(10) �13.1
B1 7 5 2 B2 7 3 5 11707.2409(20) �21.2
A1 8 5 3 A2 8 3 6 13393.5743(10) �11.2
B1 10 6 5 B2 10 4 6 9495.9485(10) �1.2
B2 11 6 6 B1 11 4 7 11119.4047(10) 2.6
B1 12 6 7 B2 12 4 8 12593.9917(10) 0.8
B2 13 6 8 B1 13 4 9 14043.0591(10) 12.1
B1 14 6 9 B2 14 4 10 15510.0435(10) 3.1
B2 15 6 10 B1 15 4 11 16931.0419(20) 2.6
A2 8 5 4 A1 8 4 5 10975.0034(10) �16.6
A1 9 5 5 A2 9 4 6 13212.8309(10) �10.8
A1 11 5 7 A2 11 4 8 18153.3049(10) 1.8
A2 14 5 10 A1 14 4 11 26035.0939(50) �12.8
A2 5 5 1 A1 4 4 1 23052.7093(5)d 1.4
B1 6 5 2 B2 5 4 2 26506.2276(5) �1.3
A2 6 5 1 A1 5 4 1 24852.0239(5)d �0.3
A1 7 4 3 A2 7 4 4 9645.6970(10) �10.8
A2 5 5 1 A1 5 4 1 8195.3487(10) 3.2
A1 12 5 7 A2 12 5 8 8593.0173(10) �0.1
A2 13 5 8 A1 13 5 9 11326.6102(10) 2.6
A1 14 5 9 A2 14 5 10 13812.8818(10) 1.1
A2 15 5 10 A1 15 5 11 15945.1104(10) �9.1
A2 8 6 2 A1 8 5 3 12121.0905(10) 6.7
A1 9 6 3 A2 9 5 4 11114.5309(10) 8.8
A2 10 6 4 A1 10 5 5 11193.2896(10) 8.3
A1 11 6 5 A2 11 5 6 12448.2405(10) 11.5
A2 12 6 6 A1 12 5 7 14660.7734(10) �2.6
B1 23 6 17 B2 23 5 18 17175.1262(10) �4.2
B1 29 6 23 B2 29 5 24 20814.0646(20) �3.7
B2 19 6 14 B1 19 5 15 19614.5295(20) �0.5
A1 6 6 1 A2 6 5 1 11165.8759(10) 6.4
B2 10 7 4 B1 10 6 5 10506.5090(10) �8.0
B1 11 7 5 B2 11 6 6 10704.3338(10) 5.5
B2 12 7 6 B1 12 6 7 12245.1339(10) 0.5
A2 22 7 16 A1 22 6 17 14668.1114(10) �7.4
A1 23 7 17 A2 23 6 18 17222.4604(10) �7.0
B1 15 6 9 B2 15 6 10 21611.7102(20) �0.5
B2 15 7 8 B1 15 6 9 8955.8813(10) 2.4
B1 16 7 9 B2 16 6 10 9143.3928(10) 8.8
A2 18 8 10 A1 18 7 11 8318.7513(10) �7.1
A1 19 8 11 A2 19 7 12 11313.6324(10) 0.5
B1 21 8 13 B2 21 7 14 14581.6366(10) 1.2
A2 15 8 8 A1 15 7 9 14939.1531(20) 10.7
A2 20 8 13 A1 20 7 14 13100.4427(10) 3.7
A1 21 8 14 A2 21 7 15 13115.0151(10) 4.7
B2 23 9 14 B1 23 8 15 11721.5626(20) �11.7
B2 23 9 14 B1 23 8 15 11721.5645(10) �9.8
B1 24 9 15 B2 24 8 16 14536.9535(10) �13.5
A1 15 8 7 A2 15 8 8 9369.0884(10) 10.2
B1 16 9 7 B2 16 9 8 10967.6945(10) 2.5
B2 17 9 8 B1 17 9 9 10237.8034(10) 4.8
B1 18 9 9 B2 18 9 10 12193.4994(10) 11.7
A1 22 10 13 A2 22 9 14 14203.6053(10) 20.9

m = �3
B1 2 0 2 B2 1 0 1 8513.2174(5) �8.2
B2 3 0 3 B1 2 0 2 12723.0622(5) �3.1
B1 4 0 4 B2 3 0 3 16877.7193(5) �2.8
B2 5 0 5 B1 4 0 4 20961.6418(5) �1.6
B1 6 0 6 B2 5 0 5 24963.9204(5) �0.6
A2 2 1 1 A1 1 1 0 9097.4572(5)d 0.3
A1 3 1 2 A2 2 1 1 13632.9094(5)d �1.1
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Table 6 (continued)

Sym0 J0 Ka0 Kc0 Sym00 J00 Ka00 Kc00 Frequency MHz o�c kHz

A2 4 1 3 A1 3 1 2 18151.0691(5)d 2.4
A1 5 1 4 A2 4 1 3 22643.9567(5)d 0.5
A1 2 1 2 A2 1 1 1 7977.7921(5)d 4.3
A2 3 1 3 A1 2 1 2 11954.9221(5)d �3.7
A1 4 1 4 A2 3 1 3 15919.4783(5)d �2.5
A2 5 1 5 A1 4 1 4 19869.8834(5)d �1.9
A1 6 1 6 A2 5 1 5 23807.0282(5)d �2.7
A1 5 1 4 A2 5 1 5 8363.2376(10) �4.9
A2 6 1 5 A1 6 1 6 11658.1096(10) 13.3
B1 10 2 8 B2 10 2 9 8473.2851(10) �13.2
B2 11 2 9 B1 11 2 10 11610.0573(10) 1.0
B1 3 2 2 B2 2 2 1 12812.8261(5) 4.3
B2 4 2 3 B1 3 2 2 17063.1099(5) 0.5
B1 5 2 4 B2 4 2 3 21295.8534(5) �0.1
B2 6 2 5 B1 5 2 4 25507.0299(5) 0.1
B2 3 2 1 B1 2 2 0 12892.0270(5) 2.5
B1 4 2 2 B2 3 2 1 17260.0325(5) �3.8
B2 5 2 3 B1 4 2 2 21685.4289(5) 1.9
B1 6 2 4 B2 5 2 3 26175.9618(5) 0.4
A2 4 3 1 A1 3 3 0 17144.8780(5) 0.9
A1 5 3 2 A2 4 3 1 21456.0109(5) 5.5
A2 6 3 3 A1 5 3 2 25787.6472(5) 0.2
A1 4 3 2 A2 3 3 1 17140.6250(5) 3.0
A2 5 3 3 A1 4 3 2 21441.1666(5) 2.3
A1 6 3 4 A2 5 3 3 25748.3042(5) �1.9
A1 15 3 12 A2 15 3 13 9789.6866(10) 1.2
A2 16 3 13 A1 16 3 14 13169.6608(10) �5.3
A1 17 3 14 A2 17 3 15 17084.4930(10) 7.0
A2 18 3 15 A1 18 3 16 21418.8830(10) �0.9
A1 19 3 16 A2 19 3 17 25984.0791(10) 7.2
B1 5 4 2 B2 4 4 1 21439.5091(5) 6.2
B2 6 4 3 B1 5 4 2 25747.1714(5) 2.9
B2 19 4 15 B1 19 4 16 9032.6251(10) �5.8
B1 20 4 16 B2 20 4 17 12273.9621(10) 2.4
B2 5 4 1 B1 4 4 0 21439.7281(5) 1.3
A1 23 5 18 A2 23 5 19 8865.3682(10) �3.8
A2 24 5 19 A1 24 5 20 12076.3057(10) �1.2
A1 6 5 2 A2 5 5 1 25739.3154(5) 11.7
A2 6 5 1 A1 5 5 0 25739.3154(5) �0.2

m = �3 +3
A1 22 0 22 A2 22 4 18 15970.8547(10) 5.4
A2 23 0 23 A1 23 4 19 13852.9884(10) 6.1
A1 24 0 24 A2 24 4 20 11479.6572(10) 7.6
A2 25 0 25 A1 25 4 21 8956.5853(10) 13.4
B1 22 1 22 B2 22 5 18 15973.7345(10) �4.6
B2 23 1 23 B1 23 5 19 13853.8788(10) �6.4
B1 24 1 24 B2 24 5 20 11479.8750(10) �15.7
B2 25 1 25 B1 25 5 21 8956.5853(10) �29.1
A1 16 0 16 A2 16 7 10 11579.2446(10) 6.1
A2 22 1 21 A1 22 7 15 11251.3890(10) 10.9
A1 23 1 22 A2 23 7 16 8012.4732(10) 11.0
B1 26 2 24 B2 26 8 18 15458.6873(20) 15.8
B2 27 2 25 B1 27 8 19 13792.2804(10) �16.8
B1 28 2 26 B2 28 8 20 11169.2181(20) 0.5
B2 22 2 21 B1 22 8 15 11726.6687(20) 8.1
B1 23 2 22 B2 23 8 16 8088.9963(10) 19.8
A2 27 3 25 A1 27 9 19 14043.9061(10) 0.6
A1 28 3 26 A2 28 9 20 11241.2957(10) 14.1
A2 29 3 27 A1 29 9 21 7974.5918(20) �4.5
A1 27 3 24 A2 27 12 15 10526.6805(10) �13.6

m = +3 �3
A1 21 6 15 A2 21 1 20 11438.4671(10) �10.5
A1 28 7 21 A2 28 1 27 11126.1558(10) 12.0
B1 21 6 16 B2 21 1 21 11281.9545(50) �8.0
B2 16 9 8 B1 16 1 16 10564.4233(10) 6.1
A1 18 11 7 A2 18 1 17 8124.3007(10) 14.1
A2 19 11 8 A1 19 1 18 14479.9208(50) 46.5
B2 22 12 11 B1 22 2 20 9669.2884(10) �6.9
A2 21 10 12 A1 21 2 20 10052.9627(10) �0.3
B1 28 8 21 B2 28 2 27 11141.5703(10) 3.2
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Table 6 (continued)

Sym0 J0 Ka0 Kc0 Sym00 J00 Ka00 Kc00 Frequency MHz o�c kHz

B2 29 8 22 B1 29 2 28 14012.7732(10) 7.5
B2 26 11 16 B1 26 3 24 11167.1221(10) �6.2
B1 29 14 16 B2 29 4 25 10964.8262(10) �1.7
A1 30 12 19 A2 30 4 27 8732.9536(10) �3.7

a The eight assignment columns give the upper state (0) torsion–rotation sym-
metry in G12, and J, Ka, Kc rotational quantum numbers followed by the same
quantities for the lower state (00).

b The measurements are given in MHz; their uncertainties are given in kHz in
parentheses. Measurements for m = 0 transitions can be found in [11].

c The o-c values are residuals in kHz from our final least squares fit. The full fit is
given in Table S1 of the electronic supplementary information.

d The m = ±3, K = ±1 doublet lines of the type that were used in [8] for barrier
determination from their splitting. Note that m = �3 lines of this type have tradi-
tional Ka labels (essentially because m = �3 levels with J = K in Fig. 2 increase
monotonically in energy, similar to m = 0), but that m = +3 lines of this type are
given non-traditional Ka values by the labeling algorithm of the program (see text).

Table 7
Summary of the least squares fit.

Organized by torsional state Organized by measurement precision

m
0a m

00a #b Jmax
c rmsd unce #f Jmax

c rmsd

0 0 91 30 3.7 2 26 5 1.5
1 1 58 15 8.0 4 6 5 3.1
2 2 44 16 7.4 5 169 30 3.4
�3 �3 46 24 4.6 10 147 30 8.3
+3 +3 107 29 8.3 20 19 29 14.5
±3 	3 33 30 13.5 50 5 21 29.6

a Upper and lower state free-rotor quantum number m.
b The number of transitions in a given category. The total number of transitions is

379, some of which are blended.
c The maximum J in a given category.
d The root-mean-square obs-calc residual for a given category in kHz. The overall

rms is 7.4 kHz and the overall weighted rms is 0.75.
e The assigned measurement precision for a given category in kHz.
f The number of measured lines in each category. Some of the lines correspond to

blended transitions. The total number of different line frequencies is 372.
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symmetry-allowed contact transformation terms of order n�1
[33].

There is a correlation problem involving the F and q parameters
that should be discussed in connection with Table 8. Initially the
parameter q was treated in the fit as an adjustable parameter. (This
is the way the q parameter is treated in BELGI [19,20].) Neverthe-
less in our final fit we decided to use the form shown in Table 8,
where the FðPa � qPaÞ2 þ AP2

a part of Eq. (10) is regrouped as
Table 8
Fitted parameters from the toluene jmj 6 3 data set.

ntra Operatorb Parameterb,c

220 P2
a

F

211 PaPa �2qF
202 P2

a
Aeff � (1/2)(B + C)

P2 (1/2)(B + C)

P2
b�P2

c
(1/2)(B-C)

440 (1/2)(1+cos6a) V6

431 P3
aPa qm

(1/2){Pa,sin3a}Pc q3c

422 P2
aP2 FJ

P2
aP2

a
FK

(1/2)(PaPb + PbPa)cos3a D3ab

413 PaPaP2 qJ

PaP3
a

qK

(1/2){Pa; ðP2
b � P2

c Þ}Pa qbc

404 �P4 DJ

�P2P2
a

DJK

�P4
a

DK

�2P2ðP2
b � P2

c Þ dJ

�{P2
a ; ðP

2
b � P2

c Þ} dK

651 P5
aPa qmm

642 P4
aP2

a
FmK

P4
aP2 FmJ

P2cos6a V6J

(1/2)(PbPc + PcPb)sin6a D6bc

633 P3
aP3

a
qmK

624 P2
aP4

a
FKK

P2
aP2P2

a
FJK

853 P5
aP3

a
qmmK

a n = t + r, where n is the total order of the operator, t is the order of the torsional par
b {A,B} = AB + BA. The product of the operator in the second column of a given row an

torsion–rotation Hamiltonian of the program. The numerical value of the parameter det
c Parameter nomenclature based on the subscript procedures of [32]. Note, however

simplify their correspondence to the coefficients Bknpqrst in the Hamiltonian of Eq. (4).
d All values are in cm�1. Statistical uncertainties are shown as one standard uncertain
e This column is included as an aid to the reader in understanding how the terms of th

multiplied by its appropriate partner expression from Eq. (4) and then artificially set to
FP2
a þ ðAþ q2FÞP2

a � 2FqPaPa, with the corresponding fitted param-
eters in the program being B0000200 = F, B0100100 = �2Fq and
B0200000 = Aeff � 1/2(B + C), instead of F, q and A � 1/2(B + C). The
two forms give an identical root-mean-square (rms) deviation of
the fit, but the regrouped constants are less correlated, i.e., when
F, q and A � 1/2(B + C) are floated, F and q are highly correlated
with each other (correlation coefficient �0.9997) as well as both
Valueb,d (cm�1) Eq. (4) terme

5.466956(51) B0000200

�0.379765511(92) B0100100

0.1199611083(65) B0200000

0.0711555699(17) B1000000

0.01281837326(83) B0020000 � B0002000

4.83783617(94) (1/2)(B0000000 + B0000020)
0.07238(11) � 10�3 B0100300

�8.5536(26) �10�3 B0001101

�0.3677(13) � 10�6 B1000200

�3.592(27) � 10�6 B0200200

0.2048(18) �10�3 B0110010

0.11250(16) � 10�6 B1100100

0.1279(43) � 10�6 B0300100

0.05124(18) �10�6 B0120100 � B0102100

0.0041957(98) � 10�6 �B2000000

0.012096(71) � 10�6 �B1200000

0.02647(22) � 10�6 -B0400000

0.0013451(28) � 10�6 �2(B1020000 � B1002000)

0.014971(44) � 10�6 �2(B0220000 � B0202000)

2.268(11) � 10�6 B0100500

�0.1848(30) � 10�6 B0200400

0.00198(14) � 10�6 B1000400

�5.5186(11) � 10�6 B1000020

8.6517(68) �10�6 B0011002

0.0330(18) � 10�6 B0300300

�1.036(54) � 10�9 B0400200

0.1244(81) � 10�9 B1200200

�1.97(16) � 10�9 B0300500

t and r is the order of the rotational part, respectively.
d the parameter in the third column of that row gives the term actually used in the
ermined in the present least squares fit is given in the fourth column of that row.

, that a few higher-order parameters differ by a factor of 2 from Table 2 of [32] to

ty in the last two digits, type A, k = 1 in the notation of [36].
e Hamiltonian are coded in the program. If each Bknpqrst coefficient in this column is
+1.0, the operator in column 2 is obtained.



Table 9
Comparison of selected fitted parameters with previous results.

Parameter This work Previous work Refs.

V6 (cm�1) 4.83783617(94) 4.88(3) [8]
V6 (cal mol�1) 13.8320679(27) 13.94(10) [8]
F (MHz) 163895.2(15) 166726.46a [8]
q 0.03473281(32) 0.03436362b [8]
Aeff = A + Fq2 (MHz) 5729.53387(21) 5729.47685(22) [11]
B (MHz) 2517.475482(57) 2517.478322(52) [11]
C (MHz) 1748.905156(56) 1748.856375(43) [11]
DJ (kHz) 0.12578(29) 0.125438(14) [11]
DJK (kHz) 0.3626(21) 0.37914(58) [11]
DK (kHz) 0.7935(65) 0.8101(27) [11]
dJ (kHz) 0.040324(85) 0.0401403(48) [11]
dK (kHz) 0.4488(13) 0.44741(17) [11]

a Calculated in [8] from an assumed value of Ia = 3.14 uÅ2.
b Given by Ia/Ia, where Ia = I0a + Ia, and I0a results from A0 = 5729.325(60) MHz

fitted in [8].
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being correlated with A � (1/2)(B + C) (correlation coefficients
±0.994). No large correlation between the B0000200, B0100100 and
B0200000 parameters is observed in the regrouped case.

In Table 9 we compare some of our parameters with previ-
ously determined values [8,11]. The presently determined height
of the sixfold barrier, V6 = 4.8378362(9) cm-1, is in good agree-
ment with V6 = 4.88(3) cm-1 determined by Rudolf et al. [8]. The
33 transitions of the m = +3 M m = �3 type that were measured
and fit in the present study add considerably more confidence
to the V6 value, since the gap between m = +3 and m = �3 states
is known to be directly connected to the height of the sixfold po-
tential barrier. This is a rather different situation from that in [8]
where the splitting in two pairs of J = 3 2, jmj = 3, jKj = 1 transi-
tions constituted the basis for evaluation of V6. Even though tran-
sitions of this type are no longer the sole basis for the
determination of V6 we have also considerably extended mea-
surements of such transition pairs, and remeasured the four tran-
sitions from [8] at the greater precision offered by the waveguide
FTMW spectrometer used in the present study. The pertinent
transitions are identified in Table 6 and are also listed separately
in Table S2. We note finally that a number of very different
exploratory fits of the present data set gave V6 values that were
stable at the level of 10�5 cal/mol, even though the F values from
these fits differed by as much as 8%. We hope that addition of
transitions with higher m values (see below) will give an F value
that is as stable as the present V6 value.
Fig. 3. Comparison of the observed room-temperature rotational spectrum of toluene
calculation from the current fit. Dashed lines indicate assigned Q-type transitions fallin
Values of m are marked for all transitions with jmj63. The remaining strong lines in the pr
although jmjP4 transitions are outside the scope of the present stage of the analysis.
The values of Aeff, B, C, and the quartic centrifugal distortion
constants are in good agreement with those from the recent
m = 0 study [11]. The level of the current understanding of the low-
er-J room-temperature spectrum of toluene is illustrated in Fig. 3.
All R-type transitions in the plotted spectra are accounted for up to
jmj = 5, even though the current fit is up to jmj 63. All but the two
strongest lines in the J = 2 1 region appear to follow an approx-
imate intensity profile consisting of two free-rotation type wings,
one to low- and the second to high-frequency from the free-rota-
tion band center at 2(B + C) = 8532.7 MHz (see Fig. 12.14 of [34]
for an oblate top case). In the J = 3 2 region there is a much larger
number of strong lines to high-frequency from the corresponding
band center at 3(B + C ) = 12799.1 MHz, although there is a discern-
ible clustering of unassigned jmj > 5 lines around this frequency.

It is also of considerable interest to discuss the cos3a and sin3a
structural relaxation terms determined in our study and the possi-
bility of determining the sign of the V6 potential term from micro-
wave data alone. Although our fit of the current data set does
indeed prefer the plus sign in the sixfold potential function, the dif-
ference between fits with plus and minus signs is not very pro-
nounced. The fit with a plus sign gives an rms deviation of
7.4 kHz, whereas the fit with a minus sign gives an rms deviation
of 8.9 kHz. Moreover, if several m = 2 Q-type transitions from the
region where m = 1 and m = 2 levels start to overlap are excluded,
then a fit without any cos3a or sin3a relaxation terms at all can be
obtained with only a slightly larger rms deviation of 9.9 kHz,
meaning that these structural relaxation terms are only marginally
important for the current dataset. The explanation for this fact pre-
sumably lies in the relative lack of Dm – 0 interactions in the cur-
rent data set. From the point of view of the Hamiltonian matrix, the
cos3a and sin3a relaxation terms appear as DK = 1 interaction
terms between different m states, and it is expected that these
terms will be most important in the region with overlapping en-
ergy levels from jmj = 1 and jmj = 2. (Sørensen and Pedersen had
numerous transitions involving levels in such overlap regions
when they determined the sign of V6 in their nitromethane study
[3]). In our current dataset only a few m = 2, Q-type transitions fall
in the region with overlapping jmj = 1 and jmj = 2 energy levels,
and probably many more transitions from this region will have
to be included in the fit before we can see striking differences be-
tween fits with the plus and minus sign choice in the potential
function.

Summarizing this issue we can say that the present microwave
data set does not allow a determination of the sign of the V6 poten-
tial function with good confidence from the rms deviation of the fit.
in the vicinity of two successive low-J bandheads of R-type transitions with a
g in these regions and the diamond symbols mark lines that are in the current fit.
ediction are for jmj=4 and 5 and are seen to have clear counterparts in the spectrum,
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Nevertheless, the sign of V6 preferred by our current fit, which cor-
responds to the equilibrium configuration in which one hydrogen
atom of the methyl top is perpendicular to the plane of the phenyl
ring, rather than lying in the plane of the ring, is in agreement with
ab initio calculations [6,35] as well as with the results of an S1–S0

fluorescence study of toluene [7]. We hope that expansion of our
data set to higher J will allow us to make a more definitive state-
ment on the sign of V6 obtained from microwave data only.

In the future we plan to test the model and the program further
by including toluene transitions involving higher values of jmj and J
in our fits. For the purpose of going up smoothly in J assignments,
we plan to supplement the presently available data set by mea-
surements in the 50–150 GHz range, which will fill the gap in cur-
rent coverage. Also there are still many lines in the available
records which remain unassigned, some of which certainly corre-
spond to higher jmj and J transitions.

In conclusion, the present fit is the first fit to experimental accu-
racy of a rather extensive data set of jmj 63 transitions in toluene.
This fit can also be taken as a demonstration of the correctness of
the new program on the example molecule toluene.
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