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4̄-quasi-phase-matched interactions in
GaAs microdisk cavities
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We describe quasi-phase-matched nonlinear interactions in materials that possess 4̄ symmetry, such as
GaAs. 4̄ symmetry together with curved propagation geometries produce quasi phase matching (QPM) with-
out need of external domain inversions. To improve efficiency of nonlinear optical mixing, 4̄-QPM can be
combined with resonant microcavities such as whispering-gallery-mode microdisks. All interacting waves
must be resonant with the cavity, which leads to stringent tuning requirements. We show tuning behavior
for second-harmonic generation in a GaAs microdisk cavity and estimate that, with milliwatt-level external
pumping, approximately 0.1% power-conversion efficiency can be obtained with negligible higher-order non-
linear effects.

OCIS codes: 190.2620, 190.5970, 160.6000.
Quasi phase matching (QPM) is an important tech-
nique for obtaining efficient nonlinear optical mixing
in materials such as LiNbO3 and GaAs. It is achieved
by periodically modulating the nonlinear susceptibil-
ity of a material [1,2]. QPM has enabled the use of
nonlinear materials lacking birefringence (such as
GaAs and related zincblende crystals) for efficient
frequency conversion. For instance, QPM has been
shown in GaAs using periodic domain inversions
[3–5] and by Fresnel phase matching [6]. Phase
matching has also been achieved in GaAs waveguides
using form birefringence [7] and modal phase match-
ing [8]. Recently, quasi-phase-matched frequency
conversion using whispering-gallery modes of an Al-
GaAs circular microresonator has been proposed
[9,10]. In this Letter, we clarify the physical mecha-
nism for QPM in disk-shaped geometries. We distin-
guish between QPM in materials, like GaAs, that
have 4̄ symmetry (4̄-QPM) and effects of the resonant
cavity. The cavity improves conversion efficiency
while imposing constraints on the nonlinear process.
We study the impact of these constraints for the ex-
ample of second-harmonic generation (SHG) in a
GaAs microdisk cavity and note that results can be
readily extended to three-frequency processes in
other crystals possessing 4̄ symmetry.

Conventional quasi phase matching utilizes peri-
odic domain inversions, as depicted in Fig. 1(a). QPM
can also be achieved using the 4̄ symmetry element.
The �001� axes in crystals like GaAs have 4̄ symme-
try, which implies that a 90° rotation about �001� is
equivalent to an inversion. Consider waves propagat-
ing in a square GaAs crystal with [001] surface-
normal, as sketched in Fig. 1(b). The crystal environ-
ment of the waves effectively rotates by 90° four
times, which is equivalent to four domain inversions
(neglecting phase shifts from reflection). The same ef-
fect is present in other bent or curved geometries in-

cluding circular-shaped crystals [Fig. 1(c)]. QPM can
be achieved in these geometries without external do-
main inversions. 4̄-QPM is possible in all nonlinear
crystals with 4̄ symmetry, which include those of the
4̄3m (GaAs, GaP, ZnSe, etc.), 4̄2m (KH2PO4, chal-
copyrites, etc.), and 4̄ crystal classes.

4̄-QPM does not require a resonant cavity, but the
geometry naturally lends itself to incorporation of a
cavity. The optical modes in a cavity can have high
quality factors �Q�, which produce high circulating
powers and can significantly increase overall conver-
sion efficiency. For example, quasi-phase-matched
SHG in a periodically poled LiNbO3 (PPLN) disk
resonator was demonstrated with up to 50% external
power-conversion efficiency [11].

The fields in a microdisk can be calculated using
Maxwell’s equations [9,12]. Let us consider SHG us-
ing a TE-polarized fundamental (with magnetic field,
H1

z, and electric field in the plane of the disk) and
TM-polarized second-harmonic (SH) (with electric
field, E2

z, orthogonal to the disk). Using the coordi-
nates defined in Fig. 1, the fields can be expressed as

H1
z�r,�,z,t� = A1��,t��1�r,z�ei��1t−m1��,

Fig. 1. Propagation geometries for (a) conventional quasi-
phase-matched GaAs, and 4̄-QPM in (b) square-shaped and

(c) circular-shaped GaAs crystals.
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z�r,�,z,t� = A2��,t��2�r,z�ei��2t−m2��, �1�

where Ai�� , t� is the slowly varying amplitude at fre-
quency �i normalized such that �Ai�2 is the energy in
the resonator [13]. The azimuthal number, mi, is an
integer for a resonant mode, and �i�r ,z� is the mode
profile, determined according to [12]. Neglecting loss,
the change in the SH amplitude in a GaAs microdisk
is [9]

�A2

��
= iA1

2�K+ei��m+2�� + K−ei��m−2���, �2�

where �m=m2−2m1, and K+ and K− are the coupling
coefficients calculated from the nonlinear coefficient
and the modal overlap integrals. When �m=+2 or
−2, QPM is achieved.

The ��m= ±2� QPM condition can be related to the
intuitive model shown in Fig. 1(c). Consider a large
GaAs disk where all waves propagate at radius R0.
The magnitude of the wavevector is ki=mi /R0 [10].
Setting the phase mismatch, �k=k2−2k1, equal to
±2� / ��R0� yields �m= ±2.

QPM can often be achieved using higher-order spa-
tial Fourier components of the modulation in the
nonlinear coefficient [2]. The effective nonlinear coef-
ficient in a square geometry [Fig. 1(b)] has a square-
wave dependence versus distance (similar to that in
conventional QPM), which implies that higher-order
QPM is possible. However, Eq. (2) implies that the ef-
fective modulation in a disk geometry has only two
spatial Fourier components (corresponding to e2i�

and e−2i�), so higher-order QPM is not available when
using 4̄-QPM in a disk.

Efficient frequency conversion using 4̄-QPM in a
microdisk cavity requires that (1) all fields are reso-
nant in the cavity, (2) energy conservation is satisfied
(�2=2�1 for SHG), and (3) the QPM condition is met
��m= ±2�. One can readily identify cavity resonances
whose azimuthal numbers are related by �m= ±2,
but there is no guarantee that the generated wave at
2�1 exactly matches a resonance.

To explore implications of these three constraints,
we considered SHG in a GaAs microdisk using �1
�1.9 �m. The fundamental can be produced by a
narrow-linewidth optical parametric oscillator. Both
waves can be coupled into and out of the microdisk
using a tapered optical fiber. In a disk with radius
�2.5 �m and thickness �180 nm, we identified TE-
polarized (�1�1.9 �m, m1=14), and TM-polarized
(�2�0.95 �m, m2=30) modes where �m=2. Both
fields are in the lowest-order vertical modes, while
the fundamental has one radial antinode and the SH
has two. Figure 2 plots the tuning of the microcavity
modes as disk thickness, radius, and temperature are
each varied. From Fig. 2(a), there is only one thick-
ness where energy conservation is satisfied. Simi-
larly, there is only one location in Figs. 2(b) and 2(c)
where 2�2=�1. The observation that each tuning plot
in Fig. 2 produces one crossing point differs from pre-
viously reported results [14]. Typical GaAs micro-

4 4
disks can have Q in excess of 10 [15]. If Q�10 , the
linewidth at 1.9 �m wavelength is ���0.19 nm, so
that the thickness and radius in our example must be
controlled to �t�0.3 nm and �R�2 nm, respectively.
Hence, fabrication requirements for the GaAs micro-
disks are stringent. Higher Q values lead to even
tighter fabrication tolerances. We note that, for this
example, the resonance linewidths are narrower than
the nonlinear-mixing acceptance bandwidths.

We can locate other microdisk geometries that sup-
port doubly resonant, quasi-phase-matched SHG.
The fundamental wavelength, disk thickness, and ra-
dius must be adjusted together to satisfy the three
constraints, which can be summarized by the tuning
map in Fig. 3. Adjusting temperature produces fine
tuning, as seen by the shift caused by �T=50°C.
Also, incrementing m1 (and changing m2 to keep
�m=2) produces other families of solutions. Other
maps like Fig. 3 can be found for �m=−2, and with
mixing of other mode profiles (i.e., different numbers
of vertical and radial antinodes).

Figure 3 can be used to find geometries for doubly
resonant SHG. However, fine tuning will be required
because of uncertainties in the dispersion relation
[16], fabricated dimensions, and in the model [12]
used to predict the resonant wavelengths. The disk
thicknesses are typically fixed by the initial GaAs
growth, while the disk radii can be varied by fabri-
cating an array of microdisk sizes. Additional tuning
can be obtained using temperature or through use of
digital etching [17].

One major difference between 4̄-QPM in a GaAs
microdisk and QPM in a PPLN disk is the QPM con-

Fig. 2. 2�2 and �1 resonances for a GaAs microdisk as a
function of (a) thickness, (b) radius, and (c) temperature. In
each graph, one parameter is varied while the others are
fixed to t=0.177 �m, R=2.45 �m, or T=23°C.

Fig. 3. (Color online) Map of microdisk geometries sup-
porting doubly resonant, 4̄-QPM SHG with �m=2. Solid
(dashed) lines represent T=23°C �73°C�. The wavelength

range is limited to 1.85 �m��1�1.98 �m.
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straint; in the former, QPM is a function of the disk
size, while in the latter, QPM depends on the periodic
poling rather than disk size. Required diameters for
GaAs microdisks are around 2 �m to 10 �m for dou-
bling �1�2 �m, whereas PPLN disks can be much
larger (�1 mm diameters [11]). Thus, the mode spac-
ings are much larger in GaAs disks that in PPLN
disks. Combined with the fact that modes in the
PPLN disk need not be related by �m= ±2, finding
disk geometries suitable for multiply resonant fre-
quency conversion will be more difficult in a 4̄-QPM
GaAs microdisk than in a PPLN disk cavity.

The conversion efficiency for SHG in a GaAs micro-
disk can be calculated using coupled-mode theory
[13,14]. The coupled-mode equations are

�a1

�t
= i�1a1 − 	 1

	 1
0 +

1

	 1
c 
a1 + s1� 2

	 1
c ,

�a2

�t
= i�2a2 − 	 1

	 2
0 +

1

	 2
c 
a2 + sNL, �3�

where ai are related to Ai in Eq. (2) by ai
=Ai exp�i�it�. 	 i

0 and 	 i
c are the intrinsic and

external-coupling photon lifetimes, respectively. Each
	i is related to the corresponding quality factor by
Qi=�i	i /2. The total quality factor �Qi

t� can be deter-
mined from the coupling �Qi

c� and intrinsic �Qi
0� qual-

ity factors using 1/Qi
t=1/Qi

c+1/Qi
0. The fundamental

is coupled to an external pump given by �s1�2=P1
in and

is assumed to remain undepleted. The nonlinear
source, sNL, can be calculated from Eq. (2) using

sNL = ia1
2
�FSR,2K±, �4�

where K±=K+�K−� for �m=−2 �+2�. 
�FSR,2 is the
free-spectral range (FSR) at �2 in units of angular
frequency. The FSR is related to the group velocity of
the modes [18], which enters the expressions through
the energy normalization for Ai [13]. Assuming
steady state, Eqs. (3) and (4) yield

P2
out =

2

	 2
c �a2�2

=
4Q2

c

�2�1 + Q2
c /Q2

0�2	 4Q1
c

�1�1 + Q1
c /Q1

0�2
P1

in
�FSR,2�K±�
2

.
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We calculated the SHG conversion efficiency in a
GaAs microdisk for the process described in Fig. 2.
Taking Q1

0=Q1
c =Q2

0=Q2
c =2�104 and P1

in=1 mW, the
predicted output power is P2

out=1.1 �W, and the con-
version efficiency is �2=P2

out/P1
in=0.11%. In compari-

son, a GaAs sample of length 2�R�15 �m with con-
focal focusing produces �2�10−6% for P1

in=1 mW.
Inside the microdisk, the circulating fundamental
and SH powers are 130 mW and 43 �W, respectively.
High circulating intensities may produce higher-
order nonlinearities, but we estimate, for these wave-
lengths and disk size, that self-phase modulation re-
quires 3.2 W of circulating fundamental power, and
two-photon absorption of the SH requires 2.5 W of
circulating SH power.

We have described a QPM method available in ma-
terials with 4̄ symmetry. 4̄-QPM can be readily inte-
grated with resonant cavities. We give three con-
straints necessary for combining 4̄-QPM with
microdisk cavities and explored experimental param-
eters for observing SHG in GaAs microdisks. Using
1 mW of fundamental power, SHG can be observed
without higher-order nonlinear effects. Quasi-phase-
matched nonlinear mixing in microdisk structures
will have interesting applications in development of
miniature sources for spectroscopy and sensing and
in generation of entangled photons for quantum in-
formation.
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