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Abstract

This paper summarizes a study of how three state-of-the-art algorithms
from the Face Recognition Vendor Test 2006 (FRVT 2006) are effected by
factors related to face images and the people being recognized. The recogni-
tion scenario compares highly controlled images to images taken of people as
they stand before a camera in settings such as hallways and outdoors in front
of buildings. A Generalized Linear Mixed Model (GLMM) is used to estimate
the probability an algorithm successfully verifies a person conditioned upon
the factors included in the study. The factors associated with people are:
gender, race, age and whether they wear glasses. The factors associated with
images are: the size of the face, edge density and region density. The setting,
indoors versus outdoors, is also a factor. Edge density can change the esti-
mated probability of verification dramatically, for example from about 0.15 to
0.85. However, this effect is not consistent across algorithm or setting. This
finding shows that simple measurable factors are capable of characterizing
face quality; however, these factors typically interact with both algorithm
and setting.
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1. Introduction

Frontal face recognition algorithms have matured considerably in recent
years. The results from the Face Recognition Vender Test 2006 (FRVT 2006)
showed that it is possible to achieve verification rates of 0.01 at a false accept
rate of one in a thousand for frontal face images taken with controlled lighting
and plain backgrounds [1]. Unfortunately, this result is not robust to changes
in imaging conditions. Moving the imaging location to a hallway or outside,
dramatically reduces verification rates.

Intuitively, one suspects that face recognition algorithms succeed on high-
quality images, but perform less well on images of lower quality. The chal-
lenge is to identify factors that characterize “high-quality” images. This leads
to efforts to quantify biometric quality in general [2] and face image quality
in particular [3, 4, 5, 6, 7]. In biometric quality research, one goal is to find
measurable properties of an image that are predictive of match performance.
A second goal is to find universal quality measures. A universal quality mea-
sure is a measurable property of an image that is predictive of performance
for a wide class of matchers.

Understanding factors that influence performance is fundamental to de-
veloping, evaluating, and operating face recognition algorithms. This paper
describes a statistical analysis that quantifies the effects of covariates on three
of the better performing algorithms in FRVT 2006. The statistical analysis
technique for measuring the effect of these covariates is generalized linear
mixed modeling (GLMM).

Covariates, in the context of this paper, are factors independent of an
algorithm that may effect performance; e.g., gender of a person and the size
of the face in an image. The goal of covariate analysis is to identify which
covariates affect algorithm performance and to quantify those effects. This
includes quantifying interactions among covariates.

Person specific covariates are attributes of the person being recognized,
such as age, gender, or race. Person specific covariates can be transitive
properties of people, such as smiling or wearing glasses. Image covariates
are attributes of the image or sensor, such as size of the face or focus of the
camera. Within our framework, we define a quality measures as a covariate
that is measurable, is predictive of performance, and is actionable.

A measurable covariate can be reliably and consistently computed from

2



an image. The edge density and region density measures, to be introduced
shortly, are measurable covariates. Other factors that may influence perfor-
mance, for example hair style, are not easily measured and hence are not
good candidates for quality.

An actionable covariate is one over which a biometric application has a
degree of control over. For example, potential actionable covariates are size
of the face in an image, focus, and whether a person is smiling. Examples of
covariates that are not actionable are gender, race, and age.

Quality measures naturally fit into the GLMM modeling framework. The
GLMM quantifies the effect of quality measures and their interactions with
other covariates. In addition, actionable covariates do not have to be identi-
fied a priori. Rather, one analysis can provide input to assessing impact of
quality measures for multiple applications. In applications where the system
designers can select a limited number of covariates to manipulate, the model
can assist in the selection process.

The primary findings, described in Section 4, are for potential quality
measures or actionable covariates. These covariates are edge density, region
density, face size, and setting. Edge density may be thought of as a proxy for
focus, although it also responds to other important aspects of face images.
Edge density can exert a dramatic influence over face recognition perfor-
mance. Region density does not have as intuitive an interpretation, but it
is modestly predictive of performance. Setting is where an image is taken –
either outdoors or indoors.

Being able to analyze the performance of three algorithms in two settings–
outdoors and in hallways, allows us to examine the universality of quality
measures in terms of both algorithms and settings. Generally, the poten-
tial quality measures exhibit strong interactions with both algorithm and
setting. The one exception to this is region density measured over query
images, which when our full statistical model is used has no significant inter-
action with either setting or algorithm. At a minimum, what these results
underscore is the importance of studying potential quality measures care-
fully and techniques that account for multiple factors. In general, we expect
that choices of face quality measures will have to be qualified with respect
to scenario and algorithm.

The need to qualify quality measures does not, however, diminish the
need for rigorous studies to reveal the factors and combinations of factors
that influence performance. The study presented in this paper quantifies
the relationship between factors both outside user control and under user
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control that influence face recognition performance, and understanding these
relationships is important both to algorithm developers and anyone involved
with deploying facial biometrics.

The remainder of this paper is organized as follows. Section 2 provides
a brief review of our prior work using GLMM models to study how multiple
factors influence face recognition performance as well as a brief review of the
FRVT 2006. Section 3 provides a detailed account of the specific GLMM
that is the basis for the study presented. In particular, Section 3.1 details
the specific covariates used in the model and Section 3.2 explains the model
itself, including the process of selecting significant covariates and covariate
interactions. Section 4 summarizes four of the most significant findings of
our study. These involve sensitivity of the three algorithms to where images
are acquired and the size of the face in images. It also involves the response
of algorithms to region and edge density in images. These last two factors
are easily measured properties of face images. Definitions for region and edge
density appear in Appendices B and C. Findings for age, gender and race are
included in Appendix A.

The details presented in Section 3 are critical for anyone wanting to un-
derstand precisely how our analysis has been carried out, but it is not neces-
sary to read Section 3 to understand the practical implications of the results
presented in Section 4.

2. Background

The study presented here is an expansion of a previously published study [8]
that considered a single face recognition algorithm created by fusing similar-
ity scores from the three individual algorithms studied here. This difference
means, principally, that in the results presented below we are able to make
observations about how covariates influence individual algorithms. As a con-
sequence, most of the results presented here are new. However, where we
think the comparison is helpful we relate the findings for individual algo-
rithms back to the findings for the single fused algorithm.

More generally, the study we are presenting here is the most recent in a
series of examinations carried out using linear and generalized linear models
to relate covariates to the performance of face recognition algorithms [9, 10].
This study also represents a review of algorithm performance on the FRVT
2006. Some of the prior papers to include performance results from the FRVT
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Figure 1: Examples of controlled lighting, and indoor and outdoor uncontrolled lighting
imagery.

2006 and Face Recognition Grand Challenge which proceeded it are [1, 11,
12].

The remainder of this background section will briefly summarize FRVT
2006 and specifically the uncontrolled controlled lighting experiment that is
the basis for our study. It will also provide a brief overview of the statistical
model developed in Section 3.

2.1. FRVT 2006

The FRVT 2006 was an independent evaluation of face recognition algo-
rithms administered by the National Institute of Standards and Technology
(NIST) [1]. The FRVT 2006 was the latest in a series of U.S. Government
sponsored challenge problems and evaluations designed to advance automatic
face recognition [13] [14] [15].

This paper analyzes performance on the FRVT 2006 very high-resolution
image set. The very high-resolution images were acquired with a 6 Mega-
pixel Nikon D70 camera. Images were captured under three conditions, see
Figure 1. All images in the data set are full face frontal. The controlled
illumination images were taken in studio conditions with lighting that fol-
lowed the NIST mugshot best practices [16]. The average face size for the
controlled illumination images was 400 pixels between the centers of the eyes.
The indoor uncontrolled illumination images were taken in hallways and in-
door open spaces with ambient lighting. The average face size was 190 pixels
between the centers of the eyes (this is over the entire dataset). The outdoor
images were taken outdoors with ambient lighting. The average face size was
163 pixels between the centers of the eyes.
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Figure 2: A GLMM is first fit to our data and then used to analyze the manner in which
covariates influence the probability an algorithm successfully verifies a person.

Three of the FRVT 2006 top performing algorithms were selected for
study here. They are the same three algorithms that were used to create
the fusion algorithm previously reported on in [8]. In this paper the three
algorithms will be designated as A, B and C.

This study, and its predecessor [8], are the first to include results for un-
controlled illumination images taken outdoor. The FRVT 2006 large-scale
experiment report [1] presented results matching controlled illumination im-
ages to controlled illumination images, and controlled illumination images to
indoor uncontrolled illumination images. We will see that setting, in terms of
indoors versus outdoors, interacts with many of the covariates in our study
and that algorithms behave differently in the two settings.

2.1.1. Statistical Model Overview

Figure 2 provides a pictorial overview of the GLMM used in our study.
The figure accentuates two aspects of this analysis. The first is the process
of developing the model, which involves a variety of steps including selecting
factors to include and fitting the model to the observations. The second
step, labeled analysis, involves using the model to summarize how factors
and combinations of factors effect an estimate of the probability that an
algorithm will successfully verify a person given a specific target and query

6



Table 1: List of covariates eligible for inclusion in the GLMM. For each, the units or the
observed values are indicated. For the query/target pairs of eye distance, edge density and
region density variables, polynomial terms up to cubic order and similar cross-products
were also eligible. In other words, for any query/target pair of these variables, the following
terms were considered: Q3, Q2, Q, T 3, T 2, T , Q2T , QT 2, and QT . The baseline values
of each covariate indicate the value for which the effect is included in the ‘intercept’ term
µ in the GLMM linear predictor; see the text. The asterisked terms were standardized so
that the baseline value was zero.

Covariate Values/Units Baseline
Algorithm A, B, C C
FAR 1/100, 1/1000, 1/10,000 1/1000
Gender Female (F), Male (M) Male
Race Caucasian, East Asian, Hispanic, Other Caucasian
Age years mean
Query Setting Indoors, Outdoors Indoors
Target Eye Distance∗ pixels 0
Query Eye Distance∗ pixels 0
Target Edge Density∗ gradient mag. (x8) 0
Query Edge Density∗ gradient mag. (x8) 0
Target Region Density∗ region count 0
Query Region Density∗ region count 0
Person Wears Glasses No, Yes Yes
Person Id Random Effect N/A

image. In the course of actually developing a study and an associated model
this process is not sequential as implied by the figure, but instead involves
considerable iteration.

That said, the distinction illustrated by the two halves of Figure 2 provide
a useful simplification, and is carried forward into the following two sections,
where Section 3 may be thought of as describing the left side of Figure 2,
i.e. the process of creating the GLMM, and Section 4 may then be thought
of as the process of using the model to shed light on the role covariates play
in changing the estimated probability of verification. Also, reiterating what
we said in the introduction, if your interest lies primarily in results of our
analysis, please skip to Section 4.

3. The Statistical Model

Our study uses a Generalized Linear Mixed Model (GLMM) [17, 18] to
relate a collection of covariates to the verification performance of algorithms.
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For each algorithm, the available data consisted of 110, 514 records of at-
tempts to verify a pair of query and target images. Each attempt was made
on a matching pair of images, i.e., both the query and target images were of
the same person. There were 345 distinct people in the study. Combining
the results for the three algorithms, the dataset consisted of 331, 542 records.
Each record included the person’s identity, the verification outcome, and re-
lated covariates. The verification outcome is determined by a threshold on
the algorithm’s similarity score associated with one of three false accept rate
(FAR) choices: 1/100, 1/1000 and 1/10, 000.

Below we describe the covariates, the model, and the method for selecting
which covariates should be used as predictors in the model.

3.1. Covariates

Table 1 lists the collection of covariates considered for use in the GLMM.
Not all of these are used in the final model; our model selection strategy
is discussed in Section 3.3. On the other hand, covariates may enter the
model in more than one form. In addition to standard terms, covariates
may be involved in interactions with other variables. Furthermore, for the
query and target covariates related to eye distance, edge density, and region
density, a large collection of polynomial terms were also eligible for inclusion.
Heuristically, for a query/target pair of any such variable, terms like Q3, Q2,
Q, T 3, T 2, T , Q2T , QT 2, and QT were considered, where Q represents a
covariate measured on the query image, and T represents a covariate of the
target image. Finally, interactions of polynomial terms with other covariates
were eligible to the extent allowed by our model selection process described
below.

The FAR covariate, which indicates the false accept rate was transformed
to −log FAR. The choice of the face recognition algorithm used for a veri-
fication attempt was treated as a factor with three levels, corresponding to
algorithms A, B and C. These algorithms have been discussed above. The
demographic information for the Gender, Race and Age covariates is avail-
able as part of the FRVT 2006 data. The last covariate related to the person,
as opposed to the image, indicates whether a person was wearing glasses in
the query image.

The next covariate, Query Setting, indicates whether the query image was
acquired indoors or outdoors. Recall that the data used in this study rep-
resent comparisons between target images acquired under highly controlled
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lighting conditions and query images acquired under less controlled condi-
tions. Consequently, every pair of query and target images for which verifi-
cation is tested is tagged as either indoors or outdoors depending upon the
setting in which the query image was acquired. Eye Distance indicates the
number of pixels on the face in the target and query images.

Edge Density is a measure of the edge density in the region of the face.
This measure has been suggested as a good surrogate for whether an image
is in focus [19] and is computed as the average Sobel edge magnitude within
an oval defining the region of the face. In our past work [8] we had labeled
this covariate as ‘FRIFM’. Here, the simpler term ‘Edge Density’ is used.
Details on how Edge Density is computed are included in Appendix B.

Region Density is a count of the number of regions found using a standard
open-source region segmentation routine developed by Comaniciu and Meer
at Rutgers [20]. The routine was run using its medium sensitivity setting and
only regions intersecting the face oval were counted. Details on how Region
Density is computed are included in Appendix C.

It is important to recall that the list of eligible covariates is relatively
small compared to the variety of eligible terms considered over the course of
our model selection process. Also, some eligible covariates were not included
at all—in any form—in the final model. Section 3.3 describes the terms used
in the final model.

3.2. Our Generalized Linear Mixed Model

One of the useful attributes of our GLMM is that it directly relates co-
variates to the expected probability of successful verification, or in essence to
the expected verification rate. The fact that our model produces estimates of
one of the most commonly used performance measures for face recognition,
namely verification rate, makes the task of interpreting results much simpler
than, for example, analysis based on similarity scores [9].

The word generalized in GLMM refers to the sensible assertion that veri-
fication outcomes are Bernoulli distributed, and to a resultant approach that
fits a nonlinear dependency between predictors and expected outcomes. In
contrast, an ordinary linear model assumes Gaussian outcomes and a linear
relationship between covariates and expected outcomes.

There are many types of generalized models with a variety of distribu-
tional assumptions. Each uses a ‘link function’ to introduce nonlinearity
that is appropriate for the particular distributional assumption. When mod-
eling Bernoulli distributed outcomes, the standard link function is the logit
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function (see below). Although our Bernoulli/logit model relates expected
verification outcomes to a nonlinear function of the covariates, it provides a
linear relationship between log odds (log{p/(1− p)}) and the covariates.

In our model, the verification outcomes are expressed as Bernoulli random
variables Yiaj with success probabilities piaj. The subscripts i, a and j index
specific covariates. While our actual model is more complex, this example is
sufficient to illustrate key aspects of the GLMM. For this example, a GLMM
may be defined by the following equation:

log
(

piaj

1−piaj

)
= µ + γa + βB + γj + γaj + πi

where

µ = grand mean
γa = effect of level a of factor A
β = effect of continuous covariate B
γj = effect of the jth FAR level
γaj = interaction effect between A and FAR
πi = person-specific random effect

The right hand side of this equation is called the linear predictor. In it,
the last term πi is particularly important. It is a random variable having
a Normal(0,σ2) distribution. This term is associated with the word mixed
in GLMM because it means that the linear predictor contains both fixed
and random effects. The random effect parameterizes the extra-Bernoulli
variation in verification outcomes associated with unexplained difficulty or
ease of recognizing various people. It also allows outcomes related to one
person to be correlated while outcomes between people remain independent.

In practical terms, the presence of a random effect to account for differ-
ences in recognition difficulty between people is very important. It is well
understood that some people are harder to recognize than others [21], and our
model takes this into account with the randomized person effect. It is called
a random effect because we do not care precisely who is difficult and who
is easy; all that we care about is that some people are harder than others
to recognize. Accounting for this variation reduces the unexplained varia-
tion that would otherwise weaken our ability to detect how other covariates
influence performance.

The other Greek letters in the linear predictor are non-random parameters
which are interpreted analogously to ordinary linear regression, except for
the impact of the link function. For example, µ represents the log odds of
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verification (aside from person-specific impacts) when A and FAR are set at
baseline levels and B = 0. A parameter like γa indicates a discrete effect on
the linear predictor when A moves from its baseline level to the level a.

The effects of variables treated as continuous, such as pixels between the
eyes, are also straightforward. The coefficient β indicates the change in the
linear predictor associated with a one-unit change in B, which in turn can
be directly related to the estimated probability of verification piaj. In our
model, continuous variables are treated in standard units 1, so a one-unit
change in B corresponds to a shift of one standard deviation.

For models of verification performance for face recognition algorithms, it
is important to include a specific covariate that enables sampling of outcomes
at distinct false accept rates (FAR). So, for example, γj may parameterize
the effect of setting FAR at 1

100
, 1

1000
or 1

10,000
. Considering that we examined

only these three FAR values, it would be reasonable to treat the FAR variable
as a factor with discrete levels. This matches the γj parameterization in the
example equation above. However, in much of our past work [9, 10] we have
found that the odds of verification are extremely close to log-linear in FAR
over the FAR range considered here. Therefore it is also reasonable to treat
−log FAR as a continuous variable with corresponding parameter, say, φ. In
the model, this would replace γj with a term −φFAR. We have chosen this
latter option.

One of the most important aspects of models like ours is the ability to
explicitly measure interactions between covariates, as illustrated by the term
γaj. The specific interactions to include in the final model and those to dis-
regard are identified during the overall model selection process summarized
in Section 3.3.

While we are the first group to our knowledge to have introduced the
application of GLMMs for evaluating biometric algorithms, these models
are well-known to statisticians and increasingly used in diverse applications.
Their use has increased over the last 20 years as reliable and efficient com-
putational strategies have been developed for fitting them.

3.3. Model Selection

Model selection involves searching for a reduced set of covariates and in-
teractions that provide a highly effective but parsimonious model for predict-

1The exception is Age which was left encoded as age in years.

11



ing verification performance. This is fundamentally an optimization problem
with the competing objectives of prediction performance and parsimony. In
the project described here, there are two important, serious challenges for
model selection. Both relate to the large size of the dataset, namely 331,542
observations.

3.3.1. Search - Balancing Effectiveness and Parsimony

The first challenge is that fitting these GLMMs is sufficiently computa-
tionally intensive that an exhaustive search over the 2k-sized space of models
is infeasible. Note that k is the number of possible model terms, including
polynomial terms and multi-way interaction terms. k is therefore much larger
than the number of covariates.

The GLMM developed for the fusion algorithm [8] provided us with a
starting point for model selection in this study. To select that model we used
a manual, semi-greedy search strategy guided by pre-established principles
and by expert judgment. Philosophically, the strategy was most akin to
‘backwards elimination’ in that the search generally progressed from larger
models to simpler ones. Intermittent phases of model expansion (‘forward
selection’) were also used to discourage entrapment in local optima.

In the current model, we sought to account also for algorithm-specific
dependencies. Consequently, we added an Algorithm factor to the model
and also tested for all possible interaction effects involving Algorithm. An
iterative strategy was again employed to select algorithm-specific terms that
should be added to the baseline model. In this case, the general philosophy
was ‘forward selection’, i.e., identifying important model additions starting
with the simplest necessary Algorithm effects and progressing toward more
complex terms.

Adding Algorithm and corresponding interaction terms to the GLMM
often better explained verification performance than did the original fusion
model. However, variables often have complex relationships and contain par-
tially shared information. As a result, some of the terms that originated from
the fusion model were no longer necessary and were removed from our final
model. For example, the fusion model included a four way interaction be-
tween between Query Setting, Query Eye Distance, Target Edge Density and
Query Edge Density. While the new model still includes all of these covariates
in lower order interactions, the four way interaction was no longer significant
and was therefore removed. Such removals were interspersed throughout the
overall selection process.
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Notwithstanding such cases, we observed few signs of confounding be-
tween predictors, in that the estimated effects of model terms remained fairly
unchanged when other terms were added or excluded from the model. An im-
portant consequence of this is that the final model choice should be relatively
insensitive to the particular strategy of model selection. Furthermore, our
approach was sufficiently iterative in both directions (‘forwards’ and ‘back-
wards’) to implicitly cover a large portion of the overall model space. Finally,
the nature of GLMMs (and other regression models) and our expansive se-
lection strategy strongly suggest that predictions of verification probabilities
will be quite reliable even if parameters for certain covariates are less certain
as a consequence of partial covariate confounding.

3.3.2. Significance

The second model selection challenge resulting from the huge dataset
size is that standard measures of statistical significance are of little help
when sample sizes are so large. Almost any possible covariate or interaction
we might add will have an associated p-value that surpasses ordinary stan-
dards for statistical significance. Consequently, a different and more practical
approach is necessary. We switched from the formal notion of statistical sig-
nificance to the more useful measure of operational significance.

A covariate or interaction effect is deemed operationally significant if it
predicts a change in verification performance equivalent to at least 2 out of
100 people. This degree of change must be attributable to a change in a
single factor level, for example to a one-standard deviation change in eye
distance, edge density, or region density, or to a corresponding change in an
interaction or polynomial term. During the manual model selection process
terms were added and removed from the model based on whether they met
the 2 in 100 change threshold established by this definition of operational
significance.

3.3.3. Selected Terms

We have listed the eligible covariates in Table 1, and have described our
method for selecting model terms derived from this list. The final model
included the following terms. There were main effects for the covariates:
Algorithm, Gender, Race, Age, Glasses, Query Setting, −log FAR, Query
Eye Distance (and its square), Target and Query Edge Density, and Query
Region Density. There were also a variety of interactions. Algorithm in-
teracted with Gender, Race, Age, Glasses, Query Setting, −log FAR, and
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Query Edge Density. This means that in each of these cases the effect of the
corresponding covariate was different for different algorithms.

There were also many interactions with the Query Setting, namely: Gen-
der, Race, Age, Glasses, Query Eye Distance (and its square), and Target and
Query Edge Density. Additionally, Algorithm was involved in a variety of
three-way interactions, all of which also involved Query Setting. The three-
way interactions for Algorithm involved: Gender × Setting, Race × Setting,
Age × Setting, Glasses × Setting, Query Eye Distance × Setting, and Target
and Query Edge Density × Setting. These interactions indicate, for example,
that although the effect of Gender on verification probability differed for the
two Settings, the nature of this difference itself differed between algorithms.

Finally, it is worth noting that Query Region Density was operationally
significant in our final model but did not interact with any other term, most
notably Algorithm. This finding is discussed later in more depth.

4. Findings

Our major findings, particularly as they relate to properties of face images
that might be associated with image quality, are summarized here. Specif-
ically, findings for Region Density, Query Face Size and Edge Density are
presented. We begin with the results for false accept rate (FAR) and indoor
versus outdoor query images.

4.1. Query Setting and FAR

Figure 3 shows how FAR and Setting effect each of the three algorithms.
The vertical axis indicates the probability of verification indicated by our
GLMM. The horizontal axis indicates each of three FAR levels: 1/10, 000,
1/1000 and 1/100. There are a total of six line plots shown, one for each
combination of Algorithm and Setting. Colors red, green and blue are used to
indicate algorithms A, B and C. Solid lines indicate results on indoor query
images and dashed lines indicate results on outdoor query images.

Before we say more about the specific effects presented, let us use this
plot to give some background on how we are presenting information. Plots
of this kind are a visually useful way to present covariate effects, since one
can readily look at the slope of the line to see the relative magnitude of an
effect. It is important to understand that the lines are connecting specific
estimated probabilities of correct verification coming out of the GLMM. So,
for example, the solid red line at the top of the plot connects three estimated
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Figure 3: Response of three algorithms to FAR for the indoor and outdoor query images.
In this case there is no interaction between FAR and Setting and the results are shown
on one plot for convenience. What is evident is that while outdoor images are harder
for Algorithms A and C, there is little difference and even a slight advantage to being
outdoors for Algorithm B.

probabilities of verification generated for algorithm A indoors at FARs of
1/10, 000, 1/1000 and 1/100.

Whenever covariate effects are presented for one or several covariates, the
results are always in the context of having controlled for the other covariates
in our model. Moreover, those other covariates are given the baseline values
indicated in Table 1. So, for example, the probability of verification of about
0.81 for algorithm A on indoor images and FAR = 1/1000 is for Caucasian
males of average age wearing glasses in the query image.

Returning to the question of what these results tell us about FAR, Setting
and Algorithm, the first observation is that the probability of verification
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increases with FAR. This is, of course, a mathematical necessity growing out
of the relationship between false accepts and true accepts.

More interestingly, the plot lines for algorithms A and C exhibit similar
slopes both for indoor and outdoor query images, although they are offset
from each other . This suggests first that FAR and Setting are influencing
these two algorithms in a similar fashion even though there is a notable dif-
ference in absolute level of performance between the two algorithms. Overall,
algorithm A has a higher expected probability of verification than algorithm
C.

It also appears that algorithm B is not behaving in the same fashion as
algorithms A and C when it comes to the manner in which it is influenced by
either FAR or Setting. Most important from an operational standpoint is the
fact that algorithm B does slightly better on query images acquired outdoors
versus query images acquired indoors. It has been commonly assumed that
the outdoor imagery is harder, and indeed this is what we discovered in our
earlier study of the fusion algorithm. Now it appears that although two out
of three algorithms find outdoor images more difficult, it is not universally
true that moving outdoors makes recognition harder.

Another effect of interest is that algorithm B exhibits a much higher
degree of sensitivity to the choice of FAR. It’s estimated probabilitiy of ver-
ification for the most difficult situation, FAR = 1/10,000 is as low as that
seen for any combination of Algorithm and Setting. At the other extreme, it’s
estimated probability of verification for the easiest situation, FAR = 1/100
is nearly equal to the best achieved by any combination of Algorithm and
Setting.

One other observation about FAR and Setting deserves mention. While
for convenience of presentation we have chosen to combine the results for FAR
and Setting on one plot, in the course of developing our GLMM we found
no significant interaction between these two covariates. This is interesting
especially in light of our previous results for the fusion algorithm, where an
interaction between FAR and Setting was found. The likely explanation for
the difference is as follows. Since algorithms A and C respond to indoor versus
outdoor query images differently than algorithm B, and since algorithm B is
more sensitive to changes in FAR, it makes sense that an algorithm combining
the properties of all three would be sensitive to interactions between FAR
and Setting.
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Query Region Density
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Figure 4: Response of three algorithms to Query Region Density. Three curves are shown,
red, green and blue for algorithms A, B and C respectively. The algorithm B and C curves
lie essentially on top of each other. There is no interaction between region density and
Setting or Algorithm, hence both influence all three algorithms in the same manner.

4.2. Region Density

Figure 4 shows how Query Region Density effects the probability of veri-
fication. Region density is a count of the number of individual regions found
on the face by a region segmentation algorithm. It is a measure of local
homogeneity over the face. The details of how region density is computed
are included in appendix C.

For all three algorithms, the probability of verification increases for face
images with a higher region density. In addition, the magnitude of the in-
crease is enough to be of practical interest. For example, probability of
verification for algorithm A goes from 0.77 for images with low region den-
sity to 0.83 for images with high region density. A similar trend is observed
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for the other two algorithms. Indeed, the trend is not merely similar for the
other two algorithms, there is no interaction effect between region density
and algorithm and hence our GLMM model tells us that algorithms are all
influenced in the same fashion.

It would appear that in Query Region Density we have found the excep-
tion to the rule that simple measures of image properties will not universally
predict behavior across sets of face recognition algorithms. However, while
this result is important, it has a significant caveat. We took the additional
step of fitting alternative GLMMs with effects for Query Region Density and
for various subsets of the covariates included in the full model. This revealed
that the universality of Query Region Density as a predictor of performance
emerges only after controlling for a wide variety of other covariates related
to characteristics of the person and the image.

Without such controls, Query Region Density no longer exhibits such
universality because it partially subsumes effects for the uncontrolled vari-
ables. For example, after removing covariates related to people the effect of
Query Region Density becomes dependent upon Algorithm. Since algorithms
clearly treat types of people differently, this suggests that Query Region Den-
sity compensates for some of the variation in verification performance that
would otherwise be attributable to sensitivities of algorithms to various types
of people. Similarly, after removing the image related covariates, the effect
of Query Region Density becomes dependent upon Query Setting. This has
the analogous implication that Query Region Density likely captures some
aspects of Setting, thereby compensating for some of the variation in verifi-
cation performance that would otherwise be attributable to whether query
images were taken indoors versus outdoors. This raises the intriguing possi-
bility that other universal measures of quality might exist and be discovered
if sufficient other confounding variables are taken into account.

Overall, we think the Query Region Density result is important and war-
rants further investigation. It seems unlikely, as the suite of algorithms we
consider expands and the number of data sets we analyze grows, that the
Query Region Density will remain as clean a result as it appears in this
study. In other words, it is our expectation that it will exhibit interactions
with algorithms and probably with other factors. That said, this is a strong
result and one we hope that algorithm developers will begin to look into
more closely. It’s worth pointing out that there is no particular reason to
think a priori that a high region density should be better than a low region
density. We also examined some of the images that lie at the extremes of
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Figure 5: A sampling of low and high Query Region Density images.

this measure, and we present a sampling in figure 5.

4.3. Query Face Size

Face size, as measured by the number of pixels between the eyes, was
recorded for both target and query images. The average target and Query
Eye Distances are 448 and 168 pixels respectively for those specific FRVT
2006 images included in this study. The associated standard deviations are
39 and 34 respectively. Given the relatively large face sizes in the target
images, the variation is comparatively small and while we looked we did not
find a significant target face size effect.

In contrast, as shown in Figure 6, the size of the query face images mat-
ters a great deal in terms of probability of verification. Note that the three
probability of verification levels shown for each Algorithm and Setting com-
bination in Figure 6 are associated with the mean Query Eye Distance minus
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Figure 6: Response of three algorithms to Query Eye Distance. Probability of verification
is plotted for low, medium and high values, which correspond to 134, 168, and 202 pixels
between the centers of the eyes.

one standard deviation, the mean Query Eye Distance, and the mean Query
Eye Distance plus one standard deviation. In other words, Low, Medium and
High on the horizontal axis corresponds to 134, 168, and 202 pixels between
the eyes.

Several aspects of this finding are striking. First, there is a very significant
interaction between Setting and Query Eye Distance. For outdoor query
images, the probability of verification goes from a low of 0.64 to a high of
0.86 for algorithm A. Moreover, while the absolute levels for probability of
verification differs between algorithms, the overall direction and magnitude
of the affect is the same for all three algorithms on outdoor query images.

The influence of Query Eye Distance on indoor images is markedly dif-
ferent. Overall, changes in Query Eye Distance do not greatly alter the
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estimated probability of verification. Further, the effect differs somewhat be-
tween algorithms. For example, for algorithm C larger face size is associated
with a monotonic decrease in verification probability. In contrast, for algo-
rithms A and B, there is actually a small curve in the shape of the response
that even makes it impossible to support a simple statement such as small
faces are better.

One interesting difference between the previous fusion algorithm study
and this study is that for the fusion algorithm there was a significant in-
teraction between Query Eye Distance, Setting and Edge Density. While
selecting the model being presented here no significant interaction between
Query Eye Distance and Edge Density was found. There is a significant inter-
action between Algorithm, Setting and Edge Density which we will present
next.

4.4. Edge Density

Before proceeding to the results, a comment about nomenclature is ap-
propriate. In our previous study [8] we used the term ’focus’ to discuss edge
density. We did this because our choice of edge density was motivated by a de-
sire to measure, after the fact, whether an image is in focus and Krotkov [22]
suggested edge density is a good surrogate for image focus. Inspection of
our own low and high edge density images subsequently lead us to conclude
that while often low edge density images are out of focus, not surprisingly,
edge density picks up on many other aspects of an image as well. As can be
seen in the examples in Figure 7, it appears factors such as strong lighting or
hair across the face can result in elevated edge density. Therefore, what was
called focus in our previous paper is now described using the more explicit
term ’edge density’. The precise way edge density is computed is described
in Appendix B.

In our study of the fusion algorithm [8] we concluded that by far the
most interesting finding was a four way interaction between Query Face Size,
Setting and Edge Density. Here too, we think that the edge density finding
is the most interesting. Again we see edge density interacting significantly
with Setting. In addition, the dependence on Query Face Size has gone away
and a new significant interaction between Algorithm and and Edge Density
is evident.

Figure 8 summarizes the results for Query Edge Density, Target Edge
Density, Setting and Algorithm. The two rows show results for query images
taken indoors versus outdoors and the three columns show results for each of
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Figure 7: Examples of low and high edge density images.

the three algorithms. Each of the six surface plots indicate the probability
of verification using a thermal color encoding. Each of the six plots has been
further refined to indicate approximately which regions the response surface
correspond to the available data. To put this another way, interior to the
regions bounded by the black outlines are portions of the surface where about
95% of all our observations lie. In order to avoid accidental extrapolation, it
is important to restrict our attention to the interior of these regions.

There are three major aspects of the results shown in Figure 8 to which
we wish to draw attention. First, observe the dramatic range in estimated
probability of verification associated with different edge query densities. In
particular, for the outdoor imagery and algorithm A the estimated proba-
bility of verification drops from a high of nearly 0.90 to a low of 0.10 when
Query Edge Density increases from 15 to 70. This is an almost astonishing
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Figure 8: Interaction between Query Edge Density, Target Edge Density, Setting and
Algorithm.

level of association between a simple image property and the performance
of a face recognition algorithm. In terms of sheer practical significance, it
seriously out ranks the rather modest change ascribed to changes in region
density. Further, while the result on outdoor query images for algorithms B
and C are not identical, they are similar. It is also worth noting that others
have also reported a relationship between edge density and face recognition
performance [5, 7].

The second observation is that the role played by edge density in the
query and target imagery is fundamentally different for the indoor query
images. In other words, while a simple statement to the effect that low edge
density is good in outdoor query images pretty much summarizes the findings
for outdoor images, no analogously simple statement can be made for the
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indoor query images. For the indoor query images, density measured in the
target image plays an important role for algorithms A and B. In particular,
for algorithm A, edge density in the target and query images play roughly
equal roles and it is advantageous to have low edge density in both the target
and the query image. This is not the case for algorithm B, where the relative
importance of edge density in the target and query images is opposite to
that observed in the other five cases. In other words, edge density in the
target image is strongly associated with performance while edge density in
the query imagery is nearly irrelevant.

The third observation concerns the overall nature of the interactions sum-
marized in Figure 8. At the outset of this paper we stated that we found
it extremely unlikely that simple measurable properties of imagery would
ever yield significant and universal predictions of face recognition reliability.
Looking over the results summarized in Figure 8 , it is now possible to ex-
plore that claim further in light of hard quantitative evidence, and the whole
matter turns on the term ’universal’. The results for edge density are indeed
highly encouraging to those of us interested in finding simple measurable im-
age properties that yield significant predictions of face recognition reliability.
What these results undermine is any confidence in thinking of such measures
as independent of other factors. In particular, here the incredibly key role
played by Setting is made explicit, and no where is this more evident in the
complete reversal between the role played by query and target image edge
density for algorithm B moving between indoor and outdoor query images.

5. Conclusion

Researchers in fingerprint recognition have reported success in their efforts
to develop universal measures of biometric quality [2, 23, 24]. It is therefore
an interesting question to ask why it has been difficult to find universal
quality measures for face recognition. At least two aspects of face recognition
evident in this study come to mind. The first is that the variety of algorithms
and presumably their features used to encode faces is much greater than
in fingerprints. Second, the external sources of variability are intrinsically
larger.

This first observation is backed up by what we’ve just seen about algo-
rithms A, B, and C and the marked difference in how they have responded
to Setting or Edge Density. One has to infer from these results that there
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are substantial internal differences in how these algorithms encode faces and
perform recognition.

The second issue is the variability of face images. The characterization of
the variability is arguably harder to pin down since ultimately the variability
is tied to an application. In our results, we found the shift from acquir-
ing images indoors to outdoors showed a significant change in the observed
behavior of the three algorithms. Further, there is no simple universal gen-
eralization that captures how the change in Setting influences the behavior
of the algorithms.

It therefore seems fair to conclude that it is essential to continue the
exploration of factors that matter in terms of improving face recognition
performance, it is problematic at best to commit ourselves prematurely to
an overly simplistic interpretation of what constitutes a high-quality face
image. For specific scenarios and classes of algorithms, trends will emerge
as additional studies extend our understanding of the factors are associated
with successful face recognition.

A. Age, Gender, Race and Glasses

Figure 9 shows results for Age, Gender, Race and Glasses. The Age
finding further corroborate those of previous studies that older people are
more easily recognized. The distribution of young versus old people in the
data set used here is highly skewed towards younger people and consequently
this is not the best data set in which to carry out a careful study of age. Note
therefore our plot in figure 9 has been truncated at age 30 in order to avoid
suggesting findings based on only a handful of people.

Perhaps the most interesting aspect of the findings with respect to Gen-
der is the lack of consistency between Algorithms and Settings. Algorithm
B is particularly striking in terms of what happens when trying to recognize
women indoors versus outdoors. Note the estimated probability of verifica-
tion indoors is about 0.75 and it drops to about 0.62 outdoors. In light of the
fact that algorithm B performs essentially equally well indoors and outdoors
for men, the result for women is intriguing. The interaction between Setting
and Gender is much less notable for algorithms A and C.

All three algorithms found East Asians easier to recognize than Cau-
casians. We have observed this sort of result before, where an ethnic group
comprising less than 50% of the data set exhibits an advantage in terms of es-
timated probability of verification [10]. Note that the 30k and 74k shown on
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Figure 9: Covariate effects for Age, Gender, Race and Glasses. The vertical axis is esti-
mated probability of verification and the legend is the same for all four plots.
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the horizontal axis indicate the number of distinct observations, i.e. matched
pairs, for each of the two groups. It is of some interest that we observe that
algorithm B, which unlike algorithms A and C, was developed in Asia expe-
riences a more marked decrease in estimated probability of verification when
shifting from East Asians to Caucasians.

Perhaps the least surprising finding in our entire study is that the es-
timated probability of verification drops precipitously for people who were
photographed without glasses during enrollment, i.e. during the acquisition
of the target images, and who then chose to wear glasses in the query images.
For algorithm A, the drop for indoor query images goes from an estimated
probability of verification of 0.82 down to an estimated probability of verifi-
cation of 0.26.

Somewhat more surprising, however, is the fact that going outdoors ac-
tually improves the estimated probability of verification for people wearing
glasses. Again using algorithm A to illustrate, the estimated probability of
0.26 climbs to 0.48 when the person is outdoors. The one last comment
we would make about glasses is that algorithm C, which on the whole has
the lowest level of performance, demonstrates considerably less sensitivity to
glasses. So much so that, for the indoor query images with people wearing
glasses algorithm C has a higher estimated probability of verification then
either algorithms A or B.

B. Computation of Edge Density

Edge density as discussed in this paper is based on a measure that has
been shown to perform well at estimating the quality of focus of an im-
age [22]. Computing the measure is simple. First, the original image (Fig-
ure 10a) is normalized using code from the CSU Face Recognition Evaluation
System[25]. This code geometrically registers the face and uses an elliptical
mask centered on the face to remove non-face pixels (Figure 10b).

The edge density is produced by first finding the image derivative in both
the horizontal (Dx) and vertical (Dy) dimensions by convolving the image
with Sobel filters. The Sobel filters are unnormalized which produces values
that are 8 times larger than a standard image derivative. The edge magnitude
(Em) is computed as the magnitude of the gradient (Figure 10c).

Em =
√

D2
x + D2

y (1)
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Edge Density is the average edge magnitude for all of the unmasked pixels
on the face.

C. Computation of Region Density

The face region density is an estimate of grayscale homogeneity of the face
region. Like Edge Density, images are first processed using the normalization
code from the CSU Face Recognition Evaluation System[25] to produce a
gray scale image geometrically normalized. An elliptical mask centered on
the face is used to remove non-face pixels (Figure 10b).

To identify contiguous regions in the resulting face image, the Rutgers
image segmentation algorithm[20] was run on the normalized images to pro-
duce a labeled segmentation. The segmentation algorithm produces three
outputs which refer to as Low (under), Medium (quant), and High (over).
The Medium setting was used for our model (Figure 10d). The Region Den-
sity used in the GLMM is the count of distinct regions found within the
masked face oval.
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