
Users Manual for Version 2.1.5 of the
NIST DMIS Test Suite

(for DMIS 5.1)

Thomas R. Kramer (thomas.kramer@nist.gov, phone 301-975-3518)
John Horst (john.horst@nist.gov, phone 301-975-3430)

Intelligent Systems Division
National Institute of Standards and Technology

Technology Administration
U.S. Department of Commerce

Gaithersburg, Maryland 20899, USA

NISTIR 7603
August 19, 2009

Users Manual NIST DMIS Test Suite 2.1.5
Disclaimer
No approval or endorsement of any commercial product by the National Institute of
Standards and Technology is intended or implied.

Acknowledgements
Funding for the work described in this paper was provided to Catholic University by
the National Institute of Standards and Technology under grant Number
70NANB6H013.
ii

Users Manual NIST DMIS Test Suite 2.1.5

Table of Contents
1 Introduction. 1
1.1 Overview. 1
1.2 Downloading and Installing the Test Suite. 3
1.3 Documentation . 4
1.4 Arrangement of this Manual. 5
1.5 Changes from Version 2.1.4 . 5

2 Parsers . 7
2.1 What is in the parsers directory? . 7
2.2 How is the parsers directory arranged? . 7
2.3 How do I use a parser to parse a single DMIS input file? . 8
2.4 How can I use a single command to parse a whole set of DMIS input files? 9
2.5 How do I modify a command that runs a set of test files so that it tests my parser? . 11
2.6 What does the executable parser do when it parses a single DMIS input file? 12
2.7 What does the executable parser do when it parses a set of DMIS input files? 13
2.8 For what purposes may the executable parsers be used? . 14
2.9 What do the parser’s error and warning messages mean? . 14
2.10 What does the parser’s summary report mean? . 15

3 Parser Test Files . 17
3.1 What are the parser test files like? . 17
3.2 What do the “dmi” and “out” filename suffixes mean? . 18
3.3 What is in the parserTestFiles directory? . 18
3.4 For what purposes may the parser test files be used?. 19

4 System Test Files . 19
4.1 What is in the systemTestFiles directory? . 19
4.2 For what purposes may system test files be used? . 20

5 Parser Components . 21
5.1 Who should read this section? . 21
5.2 How is the parserComponents directory arranged? . 21
5.3 What types of files are included in the parserComponents directory? 23
5.4 What are the steps in building a parser from parser components? 24
5.5 How can I build a parser for a computer architecture not included in the test suite?. 26
5.6 What compilers do I need in order to build parsers? . 26
5.7 What are the C++ classes that represent DMIS like? . 27
5.8 How can I use the parser components to help build a DMIS generation system? . . . 27
5.9 How can I use the parser components to help build a DMIS execution system?. . . . 27
5.10 How can I build a parser from my own DEBNF file? . 27
5.11 Can I build a modified parser by editing the C++ code and recompiling?. 28

6 EBNF . 28
6.1 Who should read this section? . 28
6.2 What is EBNF? . 28
6.3 Why use EBNF? . 28
iii

Users Manual NIST DMIS Test Suite 2.1.5
6.4 What is DEBNF? . 28
6.5 What is DEBNF Syntax? . 29
6.6 What DEBNF files are available?. 31
6.7 How is a DEBNF file for a conformance class generated? . 31

7 Generator. 32
7.1 Who should read this section? . 32
7.2 What is the generator? . 32
7.3 How can I build a generator for a computer architecture not in the test suite? 33
7.4 How does the generator work? . 33

Appendix A Using the Test Suite in Conformance Testing .35
A.1 Testing DMIS Generation Systems .35
A.2 Testing DMIS Execution Systems .35
A.3 Checking Characterization Files .36

Appendix B Compiling Source Code in Windows .37
B.1 dmisFull.lib .37
B.2 dmisFullParser .38
B.3 debnf2pars .40
B.4 reformatDmis .41
iv

Users Manual NIST DMIS Test Suite 2.1.5
1 Introduction

1.1 Overview

This manual is a users manual for the NIST DMIS Test Suite, version 2.1.5. The test suite1 is
intended to serve two purposes:

• to help users and vendors use version 5.1 of DMIS (the Dimensional Measuring Interface
Standard),

• to provide utilities and test files for conducting conformance tests on
- DMIS input files
- computer systems that generate DMIS input files
- computer systems that execute DMIS input files.

The test suite and this manual were prepared at the National Institute of Standards and
Technology (NIST). There is also a “System Builders Manual for Version 2.1.5 of the NIST
DMIS Test Suite (for DMIS 5.1)”2 The purpose of the system builders manual is to help system
builders use software provided in the test suite for building systems that implement DMIS. The
test suite, which includes both manuals, may be downloaded from

http://www.isd.mel.nist.gov/projects/metrology_interoperability/dmis_test_suite.htm

In addition, since the test suite is very large (so that prospective users may want to look at the
manuals before deciding whether to download it), the manuals may be downloaded separately
from the same site.

DMIS is the only international standard language (ISO 22093) for input files (programs) used for
the control of dimensional measuring equipment, coordinate measuring machines in particular. It
is also approved by the American National Standards Institute (ANSI). The most recent version of
DMIS approved by the Dimensional Metrology Standards Consortium (DMSC), the organization
that maintains DMIS, is DMIS 5.1. Copies of the standard on CD are available for purchase at
http://www.dmisstandards.org/store.

Because DMIS is a very large language, and only subsets of it need to be implemented for many
applications, subsets called conformance classes have been defined. To conform to a conformance
class, a system using DMIS must fully implement the subset for that class. The DMSC has
defined two “application profiles”, one for Prismatic parts and one for Thin Walled parts. Seven
addenda have also been defined. Each application profile and addendum may be implemented at
three levels. Level 2 includes everything in level 1, plus additional items. Level 3 includes
everything in level 2, plus additional items. The four conformance classes in the test suite are full
DMIS and levels 1, 2, and 3 of the Prismatic application profile, which we will call prismatic1,
prismatic2, and prismatic3.

EBNF (Extended Backus-Naur Form) is a standard formal language for defining the syntax of a
language. Annex C of the DMIS standard is an EBNF definition of the syntax of the DMIS input
language. The term DEBNF (short for DMIS EBNF) is used in this manual to mean the dialect of
EBNF used in DMIS 5.1. Details are given in Section 6.

1. In the remainder of this manual “the test suite” means the NIST DMIS Test Suite, version 2.1.5.
2. In the remainder of this manual “the system builders manual” means the System Builders Manual for Ver-
sion 2.1.5 of the NIST DMIS Test Suite (for DMIS 5.1).
1

Users Manual NIST DMIS Test Suite 2.1.5
As shown in Figure 1, the test suite has eight directories.

Briefly, these contain the following.

The doc directory has this users manual, the system builders manual, and an Excel spreadsheet
defining conformance classes.

The ebnf directory includes a DEBNF file for each of the four conformance classes.

The generator directory contains a system named debnf2pars for automatically generating all the
code in the parserComponents directory. The input to debnf2pars is a DEBNF file.

The parserComponents directory has software from which parsers can be built for the four
conformance classes and three operating systems. The software includes C++ classes for
representing DMIS as well as parsers.

The parsers directory contains executable parsers for the four conformance classes and three

NistDmisTestSuite2.1.5
doc
ebnf
generator

linuxSun
windows

parserComponents
linuxSun
windows

parsers
linux
sun
windows

parserTestFiles
full
prismatic1
prismatic2
prismatic3

systemTestFiles
full
prismatic1
prismatic2
prismatic3

tutorials
linuxSun
windows

Figure 1. Directory Structure of NistDmisTestSuite2.1.5
2

Users Manual NIST DMIS Test Suite 2.1.5
operating systems (Linux, SunOS, and Windows). It also contains scripts and data files for testing
parsers. The parsers are made from the code in the parserComponents directory.

The parserTestFiles directory has a lot of DMIS input files for testing parsers. These are
syntactically correct but do not necessarily make sense as programs.

The systemTestFiles directory has a modest number of DMIS input files that should be
executable on commercial DMIS execution systems.

The tutorials directory contains:
• one tutorial (makeBound) showing how to use the C++ classes for building a single line

of DMIS code,
• one tutorial (generate) showing how to use the C++ classes for building a DMIS input

file generator, and
• one tutorial (analyze) showing how to use the parser and the C++ classes for building a

DMIS input file consumer.

This manual describes how to use the test suite for various purposes.

The largest shortcomings of the test suite are:
• The current test suite tests only the compliance of DMIS input files to the requirements

for input file syntax. There is no checking whether the input files describe useful, logical,
or realizable measurement operations.

• There is currently no test utility for verifying the compliance of a DMIS execution
system to the requirements for system behavior.

• Only four conformance classes are covered.
• For testing completeness of a DMIS generator, only counting the number of times each

DMIS statement is used is implemented. For a robust completeness test, it would be
necessary to implement counting the number of times every definition in the DEBNF file
for a conformance class is used.

• The parsers do not attempt to load files referenced by INCLUD or EXTFIL, so the
parsers may report errors that would not occur if such files were used as provided by
those DMIS statements.

• The parsers check all files lines sequentially, so if a file uses flow of control statements
(such as IF/ELSE/ENDIF or JUMPTO) that cause a file to be executed out of order or
cause some statements not to be executed, the parsers may report warnings incorrectly or
may fail to detect errors for which warnings should be given.

• The parsers do not evaluate variables, so labels that are created or referenced using the
@variable method may cause the parser to report label warnings incorrectly.

1.2 Downloading and Installing the Test Suite

The test suite may be downloaded from:

http://www.isd.mel.nist.gov/projects/metrology_interoperability/dmis_test_suite.htm

Select and download the file NistDmisTestSuite2.1.5.zip.

Unzip the file.

The top level directory that will be created is named NistDmisTestSuite2.1.5. The structure of
this directory is shown in Figure 1 above.
3

Users Manual NIST DMIS Test Suite 2.1.5
1.3 Documentation

The doc directory contains a copy of this users manual, a copy of the system builders manual, and
an Excel spreadsheet defining the DMIS conformance classes. The spreadsheet is the same as the
one in release 2.1.4 of the Test Suite. The doc directory does not contain a copy of the ISO
standard for EBNF (ISO/IEC 14977), but that may be downloaded free of charge from ISO at
http://standards.iso.org/ittf/PubliclyAvailableStandards/index.html.

1.3.1 How is the Excel spreadsheet defining conformance classes arranged?

The arrangement of the Excel spreadsheet defining conformance classes is largely self-evident, so
it is only summarized here. Figure 2 shows the left side of the beginning of the spreadsheet.

The spreadsheet has a main row for each subsection of section 6 of DMIS 5.1. Each row is divided
into subrows that follow the structure of the syntax described in the corresponding subsection of
DMIS 5.1.

The spreadsheet has 11 main columns, the first five of which are showing on Figure 2. The first
main column has the DMIS statement names. For each statement, the second column has a list of
the parameters used by the statement, one subrow for each parameter. The rest of the columns also
have these subrows.

Columns 3 and 4 are for the Prismatic Application Profile and the Thin Walled Application
Profile. These two columns are each divided into four subcolumns. The first three subcolumns are

Figure 2. Excel SpreadSheet
4

Users Manual NIST DMIS Test Suite 2.1.5
for the three levels at which the two application profiles may be implemented. An x in a subrow
and subcolumn means the parameter in the subrow must be implemented at the level of the
subcolumn. The meaning of fourth subcolumn is a little trickier. An x in the fourth subcolumn
means the parameter does not have to be implemented in any application profile or addendum. An
a in the fourth subcolumn means that the parameter must be implemented in at least one
addendum (and in this case an x will be found in the same subrow for one or more of the
addenda).

The last seven columns of the spreadsheet are for the addenda, and each one is divided into three
subcolumns for the levels. An x in any of these columns means the parameter must be
implemented. The addenda are:

• Rotary Table (the only one showing on Figure 2),
• Multi Carriage,
• Contact Scanning,
• In-Process Verification (IPV),
• Quality Information System (QIS),
• Measurement Uncertainty,
• Soft Gaging

1.4 Arrangement of this Manual

The remaining sections of this manual are in order of decreasing interest. Section 2 (“Parsers”),
Section 3 (“Parser Test Files”), and Section 4 (“System Test Files”) are expected to be of interest
to almost all test suite users. Section 5 (“Parser Components”) and Section 6 (“EBNF”) are
expected to be of interest to fewer users. Very few users are expected to have interest in Section 7
(“Generator”). Appendix A is included for conformance testers. Appendix B describes how to use
the Microsoft Visual C++ 2008 Express Edition to compile from source code. As mentioned
earlier, the C++ classes and the tutorials are covered in the system builders manual.

The more esoteric sections start with a subsection, “Who should read this section”, describing the
circumstances in which the section might be of interest.

1.5 Changes from Version 2.1.4

Major changes have been made from the NIST DMIS Test Suite Version 2.1.4 (the most recent
earlier release). Version 2.1.5 does not change the way the test suite can be used for conformance
testing; that is why only the last digit of the version number has been changed. The changes from
version 2.1.4 are:

1.5.1 DEBNF

1.5.1.1 strange constructs

In Version 2.1.4, the DEBNF files contained strange constructs needed for avoiding conflicts if
translated directly into YACC. In Version 2.1.5, the strange constructs have been eliminated so
that the DEBNF is more natural. This is desirable because the C++ classes should be natural and
are generated directly from the DEBNF.

1.5.1.2 callBlock

The DEBNF files in Version 2.1.4 did not define callBlock (because there is no such thing in
DMIS). The DEBNF files in Version 2.1.5 do define callBlock (because callBlocks, which are
5

Users Manual NIST DMIS Test Suite 2.1.5
inserted by the preprocessor, allow DMIS MACROs to be parsed when they are called). If a DMIS
input file is printed back out again from its parse tree, the callBlocks disappear.

1.5.2 Generator

1.5.2.1 C++ classes

Version 2.1.4 did not generate C++ classes. Version 2.1.5 does.

1.5.2.2 DEBNF conversion

While generating YACC, Version 2.1.5 converts natural DEBNF that makes YACC conflicts if
translated directly into YACC into strange DEBNF constructs that do not make conflicts when
translated directly into YACC. Version 2.1.4 did not have this conversion because the DEBNF
already contained the necessary strange constructs.

1.5.2.3 better parsers generated

As described below, the parsers built by the Version 2.1.5 generator are better than those built by
the Version 2.1.4 generator.

1.5.2.4 functionality divided

In Version 2.1.4, only two files were generated for parsing (one YACC file and one Lex file), and
the function of counting DMIS statements was built into the YACC file. In Version 2.1.5, three
files are generated for parsing (one YACC file, one Lex file, and one C++ file). The function of
counting DMIS statements has been removed from the YACC file and put into the C++ file. Now,
a parser that builds a parse tree but does not count DMIS statements is built from the YACC and
Lex and saved in a library. The parser in the library is compiled together with the new C++ file to
build an executable parser that counts DMIS statements. The parser in the library may be built
into other applications that are DMIS consumers.

1.5.3 Parser Components

1.5.3.1 C++ classes

Version 2.1.5 includes C++ classes. Version 2.1.4 did not.

1.5.3.2 more kinds of file

As noted above, Version 2.1.5 has three files (YACC, Lex, and C++) where Version 2.1.4 had two
(YACC and Lex).

1.5.4 Parsers

1.5.4.1 MACRO and CALL

The Version 2.1.5 parsers handle MACRO and CALL better than did the parsers in Version 2.1.4.
MACROs are now parsed only when CALLed.

1.5.4.2 DMIS/ON,OFF

The Version 2.1.5 parsers handle DMIS/OFF and DMIS/ON better than did the Version 2.1.4
parsers.

1.5.4.3 parse tree

Each Version 2.1.5 parser builds a parse tree while parsing. The Version 2.1.4 parsers did not
6

Users Manual NIST DMIS Test Suite 2.1.5
build parse trees.

1.5.4.4 pretty printing

In Version 2.1.5, the C++ classes include functions that can pretty print a DMIS input file from its
stored parse tree. As described in Section 2.3, when the executable parser is used to parse a single
DMIS input file, the file is pretty printed back out again. Version 2.1.4 did not include pretty
printing.

1.5.5 Tutorial Programs

Version 2.1.4 had no tutorial programs. Version 2.1.5 has three.
• makeBound: uses C++ classes to generate one line of DMIS code.
• generate: uses C++ classes to generate an entire DMIS input file.
• analyze: uses the parser utility and C++ classes in a DMIS consumer.

1.5.6 Documentation

Version 2.1.5 includes a DMIS system builders manual. Version 2.1.4 had no such manual.

1.5.7 Testing

1.5.7.1 cycle testing added

In a cycle test: (1) a DMIS input file is parsed then printed out again from the parse tree, (2) the
original input file is reformatted, and (3) it is checked that the reformatted file and the reprinted
file are identical. In Version 2.1.5, all of the scripts that test a set of DMIS files run a cycle test on
every error-free test file and all such test files pass the cycle test. Version 2.1.4 had no cycle test.

1.5.7.2 reformatter

Version 2.1.5 includes a reformatter for running cycle tests. Version 2.1.4 had no reformatter.

2 Parsers

2.1 What is in the parsers directory?

The parsers directory contains executable parsers and files that test the parsers.

2.2 How is the parsers directory arranged?

The structure of the parsers directory is shown in Figure 3 below. There is a subdirectory for
each of three operating systems: Linux, SunOS, and Windows XP. Each of these has a
subdirectory for each of the four conformance classes. Each of those subdirectories contains:

• an executable parser (dmisFullParser, for example),
• a test file that runs a set of test files through the parser (testFullParser, for example),
• a file containing a list of parser test file names (runAllFull, for example),
• a file containing what the parser should print when it processes the preceding file

(runAllFullOut, for example),
• a file containing a list of names of DMIS input files that should be executable on a DMIS

execution system and do not produce motion (runAllFullSysNo, for example),
• a file containing what the parser should print when it processes the preceding file

(runAllFullSysNoOut, for example).

Each subdirectory of the windows subdirectory also contains two auxiliary .bat files used by the
7

Users Manual NIST DMIS Test Suite 2.1.5
test...Parser file.

2.3 How do I use a parser to parse a single DMIS input file?

For all three operating systems, you run a parser by typing a command in a command window.
The same procedure is used for Linux and SunOS. Windows is slightly different.

In all cases, a parser takes one or two command arguments. The first argument is the path to the
DMIS input file to parse. If there is a second argument, it is the name of the file into which the
parser should write its messages. If there is no second argument, the parser writes its messages in
the command window.

2.3.1 Linux and SunOS

Example 1. The following command should be given in the parsers/linux/full directory if you are
using Linux or in the parsers/sun/full directory if you are using SunOS. The command parses the
DMIS input file units1.dmi, writes the message “0 errors 0 warnings” in the command window,
and reprints the text of the input file in the command window. The reprinting is done using the
parse tree built during parsing.

./dmisFullParser ../../../parserTestFiles/full/okInFull/units1.dmi

Example 2. The following command, given in the same directory as Example 1, parses the DMIS
input file units1.dmi, writes the message “0 errors 0 warnings” in the file u1.out, and reprints the
text of the input file in the command window.

./dmisFullParser ../../../parserTestFiles/full/okInFull/units1.dmi u1.out

Example 3. The following command, given in the same directory as Example 1, parses the DMIS
input file units1.dmi, writes the message “0 errors 0 warnings” in the file u1.out, and reprints the
text of the input file in the file u1.dmi.

parsers
linux

full
prismatic1
prismatic2
prismatic3

sun
full
prismatic1
prismatic2
prismatic3

windows
full
prismatic1
prismatic2
prismatic3

Figure 3. Parsers Directory Structure
8

Users Manual NIST DMIS Test Suite 2.1.5
./dmisFullParser ../../../parserTestFiles/full/okInFull/units1.dmi u1.out > u1.dmi
2.3.2 Windows

Example 1. The following command, given in the parsers\windows\full directory, parses the
DMIS input file units1.dmi, writes the message “0 errors 0 warnings” in the command window,
and reprints the text of the input file in the command window. The reprinting is done using the
parse tree built during parsing.

dmisFullParser.exe ..\..\..\parserTestFiles\full\okInFull\units1.dmi

Example 2. The following command, given in the parsers\windows\full directory, parses the
DMIS input file units1.dmi, writes the message “0 errors 0 warnings” in the file u1.out, and
reprints the text of the input file in the command window.

dmisFullParser.exe ..\..\..\parserTestFiles\full\okInFull\units1.dmi u1.out

Example 3. The following command, given in the parsers\windows\full directory, parses the
DMIS input file units1.dmi, writes the message “0 errors 0 warnings” in the file u1.out, and
reprints the text of the input file in the file u1.dmi.

dmisFullParser.exe ..\..\..\parserTestFiles\full\okInFull\units1.dmi u1.out > u1.dmi
2.4 How can I use a single command to parse a whole set of DMIS input files?

There are two ways to run a set of DMIS input files through a parser, as described in Section 2.4.1
and Section 2.4.2. In both methods, you type a command in a command window.

2.4.1 First method for running a set of DMIS input files through a parser

In the first method:
• A new parser process is used for each file.
• The message output of the parser is compared with the expected message output.
• If no error or warning messages are given by the parser, the parsed file is printed back out

again, the input file is reformatted so that it is in the format used by the parser’s printer,
and a check is made that the file printed by the parser is identical to the reformatted file.

• The test stops at the first file for which there is a difference between the actual and
expected message output or between the printed and reformatted files, if there is any
input file for which that happens.

The name of each executable test file implies that the parser is being tested. This is correct when
you have downloaded the test suite and are testing to see if it runs on your computer. However,
once you are satisfied that the parser is working on your computer, you can make a copy of the
executable test file and edit the names of the directories and the files, so that the copy can be used
for testing whatever set of DMIS input files you want to test.

2.4.1.1 Linux and SunOS

In the parsers/linux and parsers/sun directories, an entire set of DMIS input files may be parsed
with the help of a shell script.

To run all the parser test files in the Test Suite for a particular conformance class through a parser,
get into the directory containing the parser for that conformance class and give a command that is
the name of the executable parser test file, which is one of:
9

Users Manual NIST DMIS Test Suite 2.1.5
testFullParser
testPrismatic1Parser
testPrismatic2Parser
testPrismatic3Parser

The testFullParser script processes 312 DMIS input files. It takes 20 seconds or so to run on the
Dell Precision 670 PC running Linux on which the Linux executables were built and about 24
seconds on a Sun Fire V215 running SunOS.

2.4.1.2 Windows

In the Windows XP operating system, an entire set of DMIS input files may be parsed with the
help of a batch file.

To run all the parser test files in the Test Suite for a particular conformance class through a parser,
get into the directory containing the parser for that conformance class and give a command that is
the name of the executable parser test file, which is one of:

testFullParser.bat
testPrismatic1Parser.bat
testPrismatic2Parser.bat
testPrismatic3Parser.bat

The testFullParser.bat batch file processes 312 DMIS input files. It takes about 155 seconds to
run on the Dell Dimension 8300 PC running Windows XP on which the executable was built.

2.4.2 Second method for running a set of DMIS input files through a parser

In the second method:
• Only one parser process runs (so the test is faster), and it parses all the files.
• The test stops if a test file cannot be found but does not stop if there is a parse error.
• No comparison is done.
• The parser counts the number of times each DMIS statement in the conformance class is

used and reports that information after it parses all the files.
• The parser reports the percentage of DMIS statements in the conformance class that were

used in at least one file.
• The parser reports the names of those DMIS statements in the conformance class that

were not used in any of the files.

You can make a file listing the names of the DMIS input files you want to test and use this method
to test them. The file names must include the path (either a relative path starting from the directory
containing the parser or an absolute path).

2.4.2.1 Linux and SunOS

To run a set of DMIS input files through a parser for a particular conformance class, get into the
directory containing the parser for that class and give a command that is the name of the parser
followed by the name of a file containing the names of the DMIS files. The names of the DMIS
files must end in .dmi. If another argument is given, it will be used as the name of a file, and the
printing will go that file. If no additional argument is given, printing will go to the command
window.

Example 1. The following command should be given in the parsers/linux/full directory if you
10

Users Manual NIST DMIS Test Suite 2.1.5
are using Linux or in the parsers/sun/full directory if you are using SunOS. The command runs
all the DMIS input files in the parserTestFiles/full directory through the dmisFullParser. Output
printing goes to the command window:

./dmisFullParser runAllFull

Example 2. To run the same test with output printing going to the file named results, give the
following command. After the test runs, you can use “diff” to compare the results file with the
runAllFullOut file, which contains what results should be.

./dmisFullParser runAllFull results

2.4.2.2 Windows

To run a set of DMIS input files through a parser for a particular conformance class, get into the
directory containing the parser for that class and give a command that is the name of the parser
followed by the name of a file containing the names of the DMIS files. The names of the DMIS
files must end in .dmi. If another argument is given, it will be used as the name of a file, and the
printing will go that file. If no additional argument is given, printing will go to the command
window.

Example 1. The following command should be given in the parsers\windows\full directory. The
command runs all the DMIS input files in the parserTestFiles\full directory through the
dmisFullParser. Output printing goes to the command window:

dmisFullParser.exe runAllFull

Example 2. To run the same test with output printing going to the file named results, give the
following command. After the test runs, you can compare the results file with the runAllFullOut
file, which contains what results should be. In Windows, it does not matter whether or not you
include the .exe suffix in the name of the command.

dmisFullParser runAllFull results

2.5 How do I modify a command that runs a set of test files so that it tests my parser?

This is possible only if your parser is an executable that takes arguments and can be run from a
command window. If you are using Linux or SunOS you need to know how to write a script file;
on Windows you need to know how to write a batch file.

2.5.1 Linux and SunOS

In Linux or SunOS, if you have a parser for full DMIS, for example, start by copying the
testFullParser script file to testMyFullParser (or whatever name you prefer). Edit
testMyFullParser by deleting either the “runOK” function or the “runOut” function defined near
the beginning of the file and editing the other one so that:

• It calls your parser instead of dmisFullParser.
• It takes the arguments your parser takes.
• It performs the output test(s) you want.

Several other items may be need to be changed, particularly near the beginning where variables
are defined and in the last section where files with syntactic errors are tested.

2.5.2 Windows

In Windows if you have a parser for full DMIS, for example, start by copying (using different
11

Users Manual NIST DMIS Test Suite 2.1.5
names for the new files if you prefer):
• testOneFull.bat to testMyOne.bat
• testOneFullOK.bat to testMyOneOK.bat
• testFullParser.bat to testMyParser.bat

Edit testMyOne.bat by changing the file so that:
• It calls your parser instead of dmisFullParser.
• It takes the arguments your parser takes.
• It performs the output test you want (the original calls fc and looks for an error

condition).

Edit testMyOneOK.bat by changing the file so that:
• Five lines are deleted, the first of which is the line containing “reformat”.
• The definition of OK on the first line refers to a file containing what your parser prints if

it parses a file with no errors.
• It calls your parser instead of dmisFullParser.
• It takes the arguments your parser takes.
• It performs the output test you want (the original calls fc and looks for an error

condition).

Edit testMyParser.bat by changing the file so that:
• The first six lines starting with “set” at the top are what you want them to be.
• The setting of TESTOK on line 8 refers to testMyOneOK.bat.
• The setting of TEST on line 9 refers to testMyOne.bat.
• It calls TESTOK to parse files expected to have no errors.
• It calls TEST to parse files expected to have errors.

2.6 What does the executable parser do when it parses a single DMIS input file?

If the first argument to the command to run the parser ends in .dmi, the parser assumes the file is a
DMIS input file and does the following.

When the parser runs, it runs in two stages: preprocess and parse. Wherever there may be an error
in the DMIS input file, an error or warning message is printed preceded by the line number (in the
input file) of the line that caused the problem. In the parse phase, the text of the line that caused
the problem is also printed, up to the point at which the problem occurred. See Section 2.9 for
further details and examples.

2.6.1 Preprocess

The preprocessor reads the DMIS input file and writes the file PrEpRoCeSsDmIs. In general,
one line of input becomes one line of output, except that comments and blank lines are deleted,
continued lines are concatenated together (with the continuation signs removed), and CALL
statements are modified as described below.

The length of every line of the input file is checked. If a line is more than 65536 characters long,
the parser prints an error message and quits.

Each line of the input file is checked to be sure there is a carriage return followed by a line feed at
the end. If one of those characters is found but the other is missing, an error message is printed,
but the missing character is inserted where it belongs and processing continues.
12

Users Manual NIST DMIS Test Suite 2.1.5
If a comment line (one starting with $$) follows a continued line (one ending with $), an error
message is printed, and processing continues.

The line number from the input file is inserted at the beginning of each output line. Where there
are blank lines or continuation lines in the input, those line numbers do not appear in the output.

In order to check MACROs, when the preprocessor reads a DMIS MACRO, it reprints the
MACRO in the preprocessed file and saves the text of the MACRO. At the point where the
MACRO is CALLed, the text of the MACRO is inserted in the preprocessed file with the
arguments to the CALL substituted for the MACRO arguments. This creates a callBlock starting
with the CALL statement and ending with the ENDMAC statement copied in from the MACRO.
For more details, see Section 6.6 and the in-line documentation in parserComponents/linuxSun/
full/source/dmisFull.y of the functions isMacro, isCall, findMacroArgs, findCallArgs,
insertCalledMacro, doCall, and doMacro.

2.6.2 Parse

In the parse phase, the parser reads and parses the PrEpRoCeSsDmIs file. While the parser
parses, it builds a parse tree in terms of the C++ classes that represent DMIS. Details of parse tree
structure are given in the system builders manual.

Error and warning messages in the parse phase are generated either by the parser built by bison or
the lexical analyzer built by flex. Some of the error and warning messages from the lexical
analyzer identify a very specific error (such as “variable reused”) but others are generic. Error
messages from the parser built by bison tend to be generic and are often not intuitively clear.

When the parser parses the preprocessed file and reads a DMIS MACRO, the parser makes no
attempt to parse it (the parser cannot parse it because the types of the arguments are not specified).
But when the parser parses a CALL to the MACRO, it does parse it (in the CALL, the types of the
things that replaced the MACRO arguments are known). If an error occurs while a CALLed
MACRO is being parsed, the line number given is the line number of the CALL, not the line
number of the MACRO.

At the end of the parse phase, a summary message of the form “N errors M warnings” is printed
and the PrEpRoCeSsDmIs file is removed.

2.7 What does the executable parser do when it parses a set of DMIS input files?

If the first argument to the command to run the parser does not end in .dmi, the parser assumes the
file contains a list of names of DMIS input files. The parser handles the files in the list in the order
given and does the following for each.

First, the parser checks that the name ends in .dmi and checks that the file exists. If either of these
checks fails, the parser prints an error message and quits.

Then the parser processes the file as described in Section 2.6, but in addition, it counts the number
of times each type of DMIS statement (DMISMN, FEAT, CONST, etc.) is used.

After parsing all the DMIS input files listed, the parser prints the number of times each type of
DMIS statement in the conformance class was used. It also prints the percentage of DMIS
statements in the conformance class that were used. See Section 2.10 for an example.
13

Users Manual NIST DMIS Test Suite 2.1.5
2.8 For what purposes may the executable parsers be used?

The executable parsers may be used to determine if a file that is supposed to be a DMIS input file
conforms to the DMIS 5.1 standard. This check should be useful in the following situations.

A user or conformance tester wants to determine if a DMIS input file generator generates files that
conform to the DMIS 5.1 standard. The user employs the generator to generate a set of DMIS
input files and then runs the input files through the parser. If an error occurs, the generator is not
fully conformant. If a warning occurs, the generator might not be fully conformant. The number
and type of errors and warnings that occur will give the user an idea of whether the generator is
usable. If the input file generator is supposed to conform to one of the DMIS conformance classes,
the user selects the parser for that conformance class.

A developer wants to check that the DMIS input file generator he or she is building is generating
files that conform to DMIS 5.1. As development proceeds, the developer repeatedly generates
files and runs them through the parser.

A user has a DMIS input file that runs on DMIS execution system X. System X becomes
unavailable and the user would like to run the file on system Y, which is known to conform to
DMIS 5.1. The user runs the file through the parser to determine if it conforms. If it does (and
system Y is known to have adequate size, accuracy, probes, etc.), it will run on system Y. If it does
not, it won’t run on Y.

A user has a DMIS input file and set of CMMs that implement different DMIS conformance
classes. The user wants to know which of the CMMs can execute the input file. The user runs the
file through a parser for each CMM’s conformance class. If an error occurs in the parser for a
class, the file will not run on a CMM that implements that class.

The (non-executable) parsers in library files may be built into DMIS systems as described in the
system builders manual.

2.9 What do the parser’s error and warning messages mean?

If a parser runs into an error during the preprocessing stage, it will print an error message and fix
the problem if it can. If the input file or preprocessing output file cannot be opened or if the parser
reads a line more than 65536 characters long, it will print an error message and quit. Every error
message that can be sent during preprocessing is easy to understand. If there is a preprocessing
error, the line number of the line causing the error will be printed, but the line will not be printed.
For example the following preprocessor error message means that line 3 is the last line of the file
and the endline character is missing from that line.

3: Error - no endline on last line of file

If a parser runs into an apparent error while parsing the preprocessed file, it will print two lines:
(1) the line number from the input file followed by either an error message or a warning message,
and (2) the text of the line on which the error occurred, but only up to the point where an error was
detected. For example, the following two lines mean that an error was found on line 7, and the
error is that a MACRO has two arguments that are the same. The actual line 7 may be longer, but
the parser stopped parsing the line when it ran into the error at the second x.

3: argument reused
M(featdef)=MACRO/x,x
14

Users Manual NIST DMIS Test Suite 2.1.5
The error message above was written by a human. The error messages written by a human are
usually understandable with a little study. Often it will help to refer to the text of the DMIS 5.1
standard.

One type of error that may be puzzling even though a human wrote the message occurs when a
DMIS major or minor word is used that is not in the conformance class of the parser. In this case,
the parser will not recognize the word as a DMIS word, and will try to make sense of it some other
way. For example, ROTAB is a DMIS word not in the Prismatic Level 2 conformance class. If the
dmisPrismatic2Parser reads a file with a ROTAB statement in it, it will assume that ROTAB is the
name of a variable to which a value is about to be assigned, check its list of DECLared variables,
find that ROTAB has not been DECLared, and emit the following message.

4: Error - undefined variable
ROTAB

Many error messages are machine-authored, not written by a human. The machine-authored error
messages are generated automatically on the fly by the parser and may be difficult to understand.
They all start with “syntax error”. Here is a machine-authored example.

4: syntax error, unexpected RPAREN, expecting C
y = ASSIGN/MN(x)

In this example, the parser has been reading the ASSIGN statement and has just read the right
parenthesis (known to the parser as RPAREN) following x. The parser knows that the MN
function must have at least two arguments and the arguments are separated by commas (known to
the parser as C). The parser was expecting to see a comma after x, but it saw a right parenthesis
instead, so it stopped parsing the line and printed an error message.

The parser stops trying to parse a line as soon as it finds an error on the line, but then it tries to
continue parsing starting with the next line. Usually this is successful, but sometimes the parser
will become confused and start giving off incorrect error messages. This is most likely to happen
if an error occurs on the first line of a block (such as in a MEAS or GOTARG statement). To deal
with this problem, the error that caused the initial error message should be fixed in the DMIS
input file, and the file should be run through the parser again.

Warning messages usually indicate errors. The parser can be tricked into thinking there is a
problem for multiply DECLared variables, multiply defined labels, and references to undefined
labels even if there is no problem. When it detects a problem of any of those types, since it cannot
be sure there is an error, the parser emits a warning message rather than an error message. The
percentage of cases in which a warning is not actually an error is very low, however.

2.10 What does the parser’s summary report mean?

As described in Section 2.7, the parser for any conformance class may be run by giving it the
name of a file containing a list of names of DMIS input files to parse. If this is done, after parsing
all the files, the parser prints a report giving (1) the names of the files that were parsed and the
errors and warnings for each file, (2) the number of times each DMIS statement in the
conformance class was used, (3) the percentage of DMIS statements in the conformance class that
were used in any of the files that were parsed, and (4) the names of DMIS statements in the
conformance class that were not used in any of the files that were parsed. Items 2 to 4 constitute a
summary report.
15

Users Manual NIST DMIS Test Suite 2.1.5
Example 1 - Suppose a user using a Windows PC gives the following command from the
parsers\windows\full directory:

dmisFullParser.exe runAllFull results

The parser will take a few seconds to run, and it will print a file 2422 lines long named “results”.
The results file will have over 2000 lines giving the names of each DMIS input file parsed and the
warnings and errors for each input file. After that, the results file will have the following summary
report (where many lines have been omitted from the list of DMIS statement uses). The meaning
of the summary report should be obvious. There are no names of DMIS statements that were not
used at the end of the results file because all of the statements were used.

Total statement uses for all files
aclrat 11
algdef 4
assign 223
badtst 4
bound 4
calibMaster 1
calibRtab 3
calibSens 12
...
vform 30
windef 5
wkplan 5
wrist 22
write 10
xtern 5
xtract 6
100.0% of the commands in the conformance class were used.

Example 2 - Suppose a user using a Windows PC gives the following command from the
parsers\windows\full directory:

dmisFullParser.exe ..\prismatic3\runAllPrismatic3 results

This is telling the full DMIS parser to parse the test files for the Prismatic Level 3 parser. There
are lots of statements in full DMIS that are not in the Prismatic Level 3 conformance class. Again,
the parser will take a few seconds to run. This time it will print a file 1757 lines long named
“results”. This time, the file will have the following summary report (where many lines have been
omitted from the list of DMIS statement uses). The summary report indicates that 67.5% of the
statements in full DMIS were used, and there were a lot of statements in full DMIS that were not
used.

Total statement uses for all files
aclrat 8
assign 212
badtst 4
bound 4
calibMaster 1
calibSens 5
16

Users Manual NIST DMIS Test Suite 2.1.5
call 18
...
vform 12
wkplan 5
wrist 7
write 10
xtern 5
xtract 6
67.5% of the commands in the conformance class were used.
The following commands were not used:
algdef calibRtab clmpid clmpsn
cnfrmrul crgdef crmode croscl
crslct cutcom czone czslct
dmehw dmeid dmeswi dmeswv
dmisOff dmisOn fildef fixtid
fixtsn gecomp geom group
litdef lotid mfgdev operid
pameas partid partrv partsn
path planid prevop procid
qisdef rapid recallRotaryTablerefmnt
rotab rotdef rotset saveRotaryTable
scnmod snsgrp tooldf uncertalg
uncertset windef

3 Parser Test Files

Note: In general, parser test files will cause errors in DMIS execution systems. Use files from
the systemsTestFiles directory (see Section 4) if you want to test a DMIS execution system.

3.1 What are the parser test files like?

The files in the parserTestFiles directory conform to the syntax rules implicit in the EBNF for
DMIS plus additional rules about variables and labels.

The syntax rules implicit in the EBNF include the syntax described in the “Input Formats”
descriptions in section 6 of DMIS 5.1, plus the following:

• Integer values (not real values) must be used where DMIS requires integer values.

The additional rules stated in the text of DMIS 5.1 to which the parser test files conform are:
• All variables must be explicitly declared with DECL or implicitly declared by being

parameters of a MACRO.
• A variable of a given name may not be declared twice with DECL or used twice as a

parameter of the same MACRO.
• Wherever a statement or an expression requires a variable to be of a given type, the

variable used must be of the correct type.
• Blocks of a given type may contain only those types of statements that are allowed in

blocks of that type.
• All labels must be defined before they are referenced.
17

Users Manual NIST DMIS Test Suite 2.1.5
• A label of a given type may be defined only once, except for feature labels, since DMIS
allows feature labels to be redefined.

Most of the files in the parserTestFiles directory are not suitable as test files for DMIS execution
systems (systems that carry out the statements in a DMIS input file) because the files:

• may contain semantic errors, such as having a negative number where a positive number
is required,

• may contain nonsense such as attempting to measure points on a feature that are not near
the feature,

• may crash the equipment.

3.2 What do the “dmi” and “out” filename suffixes mean?

Most of the files in the parserTestFiles directory are DMIS input files and have the suffix .dmi.
These are files for testing DMIS parsers.

The OK.out file contains two lines: “0 errors” and “0 warnings”. All the other files in the
parserTestFiles directory that have the suffix .out are files containing the error and warning
messages that the NIST DMIS parser prints when it parses a file with the same base name and a
.dmi suffix. The files in this directory that have the suffix .out are not DMIS output files as
defined in DMIS 5.1.

3.3 What is in the parserTestFiles directory?

As shown in Figure 4, the parserTestFiles directory has four subdirectories: full, prismatic1,
prismatic2, and prismatic3. Each of them has five or six subdirectories, as described below. In
the prismatic subdirectories:

• The subdirectory names have a P1, P2, or P3 suffix.
• The subdirectories contain fewer files than the corresponding subdirectories of the full

directory.
• Many of the files are shorter than the corresponding files in the full directory.

If a test file in one directory has the same base name as a test file in another directory but with p1,
p2 or p3 added (aclrat1.dmi and aclrat1p3.dmi, for example), the file with the p1, p2 or p3 near
the end will be the same as the other file, except that items not required in the conformance class
will have been removed.

1. The annexA… directories contain the examples from Annex A of DMIS 5.1. In most cases
these have been modified by adding DMISMN and ENDFIL.

2. The okIn… directories contain one or more syntactically correct parser test files for each
subsection of section 6 of DMIS 5.1 that must be implemented in the conformance class. The
name of most of these files corresponds to the name of a DMIS statement. These directories also
contain syntactically correct programs testing expressions and the preprocessor of the NIST
DMIS parser.

3. The errorIn… directories contain parser test files with errors in them. The file names of all of
these files include the string Error.

4. The errorOut… directories contain .out files corresponding to the files in the errorIn…
directories. Each file contains the error and warning messages printed by the NIST DMIS parser
when it parses the corresponding file from the corresponding errorIn… directory.
18

Users Manual NIST DMIS Test Suite 2.1.5
3.4 For what purposes may the parser test files be used?

The parser test files may be used by developers building DMIS parsers to check that their parsers
are working correctly. A method of automating this testing is described in Section 2.5.

The parser test files have been used at NIST for:
• debugging the NIST DMIS parsers,
• checking that the EBNF files defining the four conformance classes are correct.

See Section 2.3 and Section 2.4 for descriptions of how to use test files to test parsers.

4 System Test Files

4.1 What is in the systemTestFiles directory?

The systemTestFiles directory contains DMIS input files that may be safely run on a DMIS

parserTestFiles
full

annexAInFull
annexAOutFull
errorInFull
errorOutFull
okInFull
okOutFull

prismatic1
annexAInP1
errorInP1
errorOutP1
okInP1
okOutP1

prismatic2
annexAInP2
errorInP2
errorOutP2
okInP2
okOutP2

prismatic3
annexAInP3
annexAOutP3
errorInP3
errorOutP3
okInP3
okOutP3

Figure 4. ParserTestFiles Directory Structure
19

Users Manual NIST DMIS Test Suite 2.1.5
execution system and should run without error.

As shown in Figure 5, the systemTestFiles directory has four subdirectories: full, prismatic1,
prismatic2, and prismatic3. Each of them has two subdirectories, one for programs that produce
no motion, and one for programs that produce motion.

Each okInNoMotion… subdirectory contains a subset of the files in the corresponding okIn…
directory under the parserTestFiles directory (possibly modified). The subset consists of files
which do not move the axes and do not make semantic errors.

The okInMotion… subdirectories contains files that move the sensor. These files contain
instructions about how to use themselves, including suggestions for editing. The instructions
should be followed. The files in these directories should only be run by a person who is
knowledgeable about using the machine on which they are to be run.

The full/okInMotionFull subdirectory contains the files freeMotion.dmi, gohome.dmi,
IMTS1.dmi, and simple1.dmi. The first two of these move the sensor without attempting to
inspect anything. Each of the last two inspects a specific machined part, which must be available
in order to execute the file.

The prismatic3/okInMotionP3 subdirectory contains the files freeMotionp3.dmi,
gohome.dmi, IMTS1.dmi, and simple1.dmi.

The prismatic2/okInMotionP2 subdirectory contains the files freeMotionp2.dmi,
IMTS1p2.dmi, and simple1p2.dmi.

The prismatic1/okInMotionP1 subdirectory contains only the file simple1p1.dmi.

As with the parser test files, a p1, p2, or p3 before .dmi means the file has been modified to be
suitable for the prismatic1, prismatic2, or prismatic3 conformance class.

4.2 For what purposes may system test files be used?

System test files may be used by users, conformance testers, or developers to determine if a DMIS
execution system can parse and execute DMIS input files correctly. Although many files are

systemTestFiles
full

okInMotionFull
okInNoMotionFull

prismatic1
okInMotionP1
okInNoMotionP1

prismatic2
okInMotionP2
okInNoMotionP2

prismatic3
okInMotionP3
okInNoMotionP3

Figure 5. SystemTestFiles Directory Structure
20

Users Manual NIST DMIS Test Suite 2.1.5
provided, they do not cover all of the functionality of a DMIS execution system. Moreover, the
DMIS output files that should be generated when these input files are executed are not included in
the test suite.

5 Parser Components

5.1 Who should read this section?

Read this section if you want to:
• understand how the test suite parsers were built,
• make a parser for a computer architecture not included in the test suite,
• build a parser starting from a DEBNF file not included in the test suite.

If you want to use any of the parser components in a DMIS generator or executor, see the system
builders manual.

5.2 How is the parserComponents directory arranged?

As shown in Figure 6 and Figure 7, the parserComponents directory is divided at the top level
by operating system. Linux and Sun are lumped together at this level since they use identical C++,
YACC, and Lex files; Windows is separate. At the next level down, the directory is divided by
conformance class: full, prismatic1, prismatic2, and prismatic3; in addition, this level has bin
directories for the debnf2pars executables.

In Windows, each of the full, prismatic1, prismatic2, and prismatic3 directories has a source
directory and two other directories, one whose name ends in “Classes” and one whose name ends
in “Parser”. The ones ending in “Classes” contain the classes and also the YACC and Lex. The
ones ending in “Parser” contain the statement counting parser. These directories were built by
Visual C++ 2008 and are arranged as Visual C++ pleases.
21

Users Manual NIST DMIS Test Suite 2.1.5
parserComponents
linuxSun

binLinux
binSun
full

libLinux
libSun
ofilesLinux
ofilesSun
source

prismatic1
libLinux
libSun
ofilesLinux
ofilesSun
source

prismatic2
libLinux
libSun
ofilesLinux
ofilesSun
source

prismatic3
libLinux
libSun
ofilesLinux
ofilesSun
source
source

windows - see Figure 7

Figure 6. ParserComponents Directory Structure - Linux and Sun
22

Users Manual NIST DMIS Test Suite 2.1.5
5.3 What types of files are included in the parserComponents directory?

The parserComponents directory includes:
• executable debnf2pars utilities for generating C++, YACC, and Lex from DEBNF,
• object files that were built from C++ files,
• C++ files that were built

- from a YACC file by bison, or
- from a Lex file by flex, or

parserComponents
linuxSun - see Figure 6
windows

bin
full

dmisFullClasses
Debug
dmisFull

dmisFullParser
Debug
dmisFullParser

source
prismatic1

dmisPrismatic1Classes
Debug
dmisPrismatic1

dmisPrismatic1Parser
Debug
dmisPrismatic1Parser

source
prismatic2

dmisPrismatic2Classes
Debug
dmisPrismatic2

dmisPrismatic2Parser
Debug
dmisPrismatic2Parser

source
prismatic3

dmisPrismatic3Classes
Debug
dmisPrismatic3

dmisPrismatic3Parser
Debug
dmisPrismatic3Parser

source

Figure 7. ParserComponents Directory Structure - Windows
23

Users Manual NIST DMIS Test Suite 2.1.5
- from a DEBNF file by debnf2pars.
• YACC and Lex files that were built from DEBNF files by debnf2pars,
• library files (.a for Linux and Sun, .lib for Windows).
• for Linux and Sun, Makefiles for processing the other components,
• for Windows, auxiliary files generated and used by Visual C++.

We do not attempt to explain YACC, Lex, Makefiles, or C++ here. A good explanation of YACC
and Lex is provided in the book “lex & yacc” written by John R. Levine, Tony Mason, and Doug
Brown and published by O’Reilly. The bison and flex manuals are also quite readable. They are
available for downloading free of charge from http://www.gnu.org/software/bison and http://
flex.sourceforge.net, respectively. Good explanations of Makefiles and C++ are widely available.

5.4 What are the steps in building a parser from parser components?

Note first that the parsers (and their components) for the four conformance classes and three
computer architectures are already completely built. It is not necessary to rebuild anything as
described here. This description is provided in case you want to modify something or you are
curious about how the test suite parsers were built.

The five steps in building an executable parser from components are shown in Figure 8.

DEBNF
file

YACC
file

Lex
file

debnf2pars

C++
.hh file

bison

flex
C++

.cc file
object

file

object
file

statement
counting
parser

compile

link

compile

Figure 8. Steps in Building a Statement Counting Parser

1 2 3 5

C++ class
.cc file

C++ class
.hh file

library
file

compile

C++ stmnt
counting
.cc file

object
filecompile

4

object
file

archive

C++
.cc file
24

Users Manual NIST DMIS Test Suite 2.1.5
As shown in Figure 8, building a parser starting from a DEBNF file includes the following steps.

1. debnf2pars reads the DEBNF file and writes:
• a YACC code file for a DMIS parser,
• a Lex code file for a DMIS lexical analyzer,
• a C++ .cc code file for classes representing DMIS,
• a C++ .hh header file for classes representing DMIS,
• a C++ .cc code file for a system that counts DMIS statements.

2a. Bison reads the YACC file and writes two C++ files (.hh and .cc) for a parser.

2b. Flex reads the Lex file and writes a C++ .cc file for a lexical analyzer.

3a. A C++ compiler reads the .cc file produced by bison, the .hh file produced by bison, and
the .hh file for C++ classes (arrow not shown on Figure 8), and writes an object file
for a parser.

3b. The same compiler reads the .cc file produced by flex and the .hh file produced by
bison and writes an object file for a lexical analyzer.

3c. The same compiler reads the .cc and .hh files for the C++ classes and writes an
object file for the classes.

3d. The same compiler reads the .cc file for a system that counts DMIS statements
and the .hh file for the C++ classes and writes an object file for the system.

4. An archiver combines the object files for the parser, the lexical analyzer, and
the C++ classes into a library.

5. A linker links (1) the object file for the system that counts DMIS statements and
(2) the library file into an executable parser that counts DMIS statements.

In Windows, the file name suffixes are .cpp and .h, not .cc and .hh.

In all cases, the first step, running debnf2pars, requires three non-obvious things:
• The DEBNF file name must have the suffix .debnf (e.g., dmisFull.debnf).
• The DEBNF file must be in the directory from which debnf2pars is invoked.
• In the invocation of debnf2pars, the .debnf suffix must be omitted. For example:

debnf2pars dmisFull

5.4.1 Rebuilding in Linux and SunOS

Everything in is already built, so you do not need to rebuild anything unless either (1) the
executables do not run on your system, or (2) you want to start with your own DEBNF file.

If you want to recompile, the commands required for each step are given for Linux and SunOS in
the Makefiles found in the full, prismatic1, prismatic2, and prismatic3 subdirectories of the
parserComponents/linuxSun directory. Edit the Makefiles so that LINCOMPILE and
LINLINK (or SUNCOMPILE and SUNLINK) are set to point to your C++ compiler. Then run
make commands.

If you are starting with your own DEBNF file, the best way to begin is by creating a new
subdirectory of parserComponents/linuxSun, putting your DEBNF file into the new
subdirectory, copying one of the Makefiles into the new subdirectory, and modifying the
25

Users Manual NIST DMIS Test Suite 2.1.5
Makefile.

5.4.2 Rebuilding in Windows

Everything in is already built, so you do not need to rebuild anything unless either (1) the
executables do not run on your system, or (2) you want to start with your own DEBNF file.

For Windows, all the steps above after C++ code has been generated may be accomplished using
the Microsoft Visual C++ 2008 Express Edition, which may be downloaded from http://
www.microsoft.com/express/vc and used with no charge. This compiler must be run using its
graphical user interface.

To rebuild an already-built executable or library:
• Start Visual C++.
• From the File menu, select Open.
• In the Open Project popup window that appears, use the browser to choose the project

you want. Projects have a “.sln” suffix (dmisFullParser.sln, for example). Then press the
Open button. The popup will disappear.

• From the Build menu, select Rebuild Solution.
• Select Save All from the File menu, then select Exit from the File menu.

Rebuild a library before rebuilding an executable that uses the library.

Instructions for compiling the tutorials in Windows starting from source code are given in
Appendix B. If all you want do is change existing source code and then recompile, the
instructions above should work.

5.5 How can I build a parser for a computer architecture not included in the test suite?

A parser for a computer architecture not included in the test suite can easily be built for any of the
four conformance classes covered by the test suite. The method is to start with the C++ files
dmisFull.cc, dmisFull.hh, dmisFullLex.cc, dmisFullYACC.cc, dmisFullYACC.hh, and
dmisFullParser.cc (or similarly named files for the other conformance classes) and compile
them into an executable using a C++ compiler. The files to compile may be found in the
appropriate source subdirectory in the linuxSun directory. That C++ code is suitable with no
changes for use in other unix-like operating systems.

If you want to build a parser for a computer architecture not included in the test suite from a
DEBNF file not included in the test suite, first rebuild the YACC and Lex Generator as described
in Section 7.3. Then use the generator to produce YACC and Lex files as described in Section
5.10. Then generate C++ from the YACC and Lex files as described in Section 5.10.

5.6 What compilers do I need in order to build parsers?

To build a parser starting with existing C++ code as described in Section 5.4, all you need is a
C++ compiler. Most Linux and unix (such as Sun) systems come with a C++ compiler. You can
download and use the Gnu C++ compiler for free from ftp://ftp.gnu.org/gnu/gcc or http://
ftp.gnu.org/gnu/gcc. For Windows, you can download and use the Microsoft Visual C++ 2008
Express Edition for free from http://www.microsoft.com/express/vc.

To build a parser starting from a DEBNF file as described in Section 5.10, bison (a YACC
compiler) and flex (a Lex compiler) must be installed. Bison and flex are free software already
installed on most Linux and unix (such as Sun) systems. For Linux and unix systems, they may be
26

Users Manual NIST DMIS Test Suite 2.1.5
downloaded for free from ftp://ftp.gnu.org/gnu or http://ftp.gnu.org/gnu. For windows systems
they may be downloaded for free from http://gnuwin32.sourceforge.net or http://sourceforge.net/
projects/gnuwin32.

5.7 What are the C++ classes that represent DMIS like?

The system builders manual explains this.

5.8 How can I use the parser components to help build a DMIS generation system?

The system builders manual explains how to do this. The “generate” tutorial provides an example.

5.9 How can I use the parser components to help build a DMIS execution system?

The system builders manual explains how to do this. The “analyze” tutorial provides an example.

5.10 How can I build a parser from my own DEBNF file?

You can modify one of the four DEBNF files included in the test suite (to define a conformance
class or represent what your system can do, for example). The best way to do this is to comment
out the parts that are not to be included. After modifying the DEBNF file, use the debnf2pars
executable for your computer to produce YACC and Lex files from the DEBNF file. Debnf2pars
may be run using a command of the form.

debnf2pars dmisFull

This command will produce the files dmisFullParser.cc, dmisFull.cc, dmisFull.hh, dmisFull.y,
and dmisFull.lex. Substitute the name of your DEBNF file for dmisFull. See details at the end of
Section 5.4. Then generate C++ files using bison and flex as described below and compile the
C++.

Bison may be run using a command of the form:

bison -d -l -o dmisFullYACC.cc dmisFull.y

This command will produce dmisFullYACC.hh as well as dmisFullYACC.cc. Substitute the
name of your YACC file for dmisFull.y and the name of the C++ file you want for
dmisFullYACC.cc.

Flex may be run using a command of the form:

flex -L -t dmisFull.lex > dmisFullLex.cc

Substitute the name of your Lex file for dmisFull.lex and the name of the C++ file you want for
dmisFullLex.cc.

It is likely that when bison is run you will get messages saying there are useless non-terminals and
useless rules. It is OK to ignore these, but it is better to edit your DEBNF file further by
commenting out the unused parts or by replacing a production with a simpler one, and then rerun
debnf2pars and rerun bison and flex.

It is also possible to write a DEBNF file from scratch and process it as just described, but it is
likely that bison will report conflicts. These warnings should not be ignored. It takes some skill to
modify the DEBNF to eliminate them. Conflicts have already been dealt with in the DEBNF files
included in the test suite, and commenting out parts of those files will not produce conflicts.
27

Users Manual NIST DMIS Test Suite 2.1.5
5.11 Can I build a modified parser by editing the C++ code and recompiling?

The C++ code generated by flex and bison that does lexical analysis and parsing
(dmisFullLex.cc, dmisFullYACC.cc, and dmisFullYACC.hh) has a lot of giant switch
statements and arrays of numbers and names. Hand-editing that part of the code is effectively
impossible and should not be attempted. Many auxiliary functions are included that could be hand
edited, but it would be better to edit them in the YACC (dmisFull.y) or Lex (dmisFull.lex) files
where they also appear and then re-run flex or bison to regenerate the C++ code. That way your
changes will survive if the C++ is regenerated.

The C++ code that represents DMIS (dmisFull.cc and dmisFull.hh) is easy to read and may be
edited by hand. However, this code is used in dmisFull.y, so it may be necessary to change that
also when those files are edited. If you want to try hand editing that code, read about it in the
system builders manual first.

6 EBNF

6.1 Who should read this section?

Read this section if you:
• are building a DMIS parser by modifying a DEBNF file,
• want to deal with a DEBNF file for some other reason,
• are curious about DEBNF.

6.2 What is EBNF?

EBNF (Extended Backus-Naur Form) is an international standard language for describing the
syntax of formal languages. EBNF is ISO standard 14977. A copy of the final standard may be
downloaded free of charge from ISO at http://standards.iso.org/ittf/PubliclyAvailableStandards/
index.html. The standard gives a good intuitive description of the EBNF language.

6.3 Why use EBNF?

It is a good idea to use a formal syntax language such as EBNF to describe a computer-readable
language such as DMIS because a formal language allows the syntax of the target language
(DMIS) to be specified completely and unambiguously. It is difficult to give a complete and
unambiguous description of syntax any other way. It is a good idea to use a standard formal
syntax language because being a standard ensures the language has been carefully developed and
is publicly available to all.

6.4 What is DEBNF?

DEBNF (DMIS EBNF) is a dialect of EBNF used in the DMIS standard to define the syntax of
DMIS. All of the semantics (meanings) of DEBNF are consistent with those of EBNF, but
DEBNF uses some conventions that provide a shorthand allowing it to provide additional
meanings that could be expressed in EBNF but would require many more pages.

DEBNF uses some, but not all, of the extensions to BNF provided by EBNF.

To be consistent with the DMIS standard, DEBNF is used in the NIST DMIS test suite.
28

Users Manual NIST DMIS Test Suite 2.1.5
6.5 What is DEBNF Syntax?

6.5.1 Overview

A DEBNF file is a list of productions. Each production sets a production name to be equivalent to
a list of definitions. Each definition is a list of expressions. An expression may be (among other
things) the name of a production, a token, a single character, or an optional. A production name is
also called a non-terminal symbol.

For example, the DEBNF production for the DMISMN statement is:

dmismnStm = DMISMN , ’/’ , stringConst , c , versionTag , # ;

In this example:
• The name of the production is dmismnStm.
• = is an assignment symbol equating the name on the left to the definition on the right.
• There is only one definition, and it has six expressions.
• DMISMN is a token.
• ’/’ is a slash.
• c is a the name of a production that represents a comma.
• stringConst and versionTag are the names of other productions.
• # is an end-of-line symbol.
• The expressions are separated by commas, and the production is ended by a semicolon.

The production means that a dmismnStm is equivalent to the token DMISMN followed by a slash
followed by a stringConst followed by a comma followed by a versionTag and an end-of-
line.

The order in which productions are given in a DEBNF file is irrelevant except that the top-level
production (inputFile for DMIS) must be given first. The order in which the alternate
definitions of a production is given is also irrelevant. The ordering of the expressions in a
definition, however, is significant. It is OK if a production has no definitions, and it is OK if there
are no expressions in a definition.

6.5.2 Rules of Standard EBNF

The following are the elements of standard EBNF used in DEBNF. Standard EBNF includes
additional elements that are not needed (and, hence, not used) in DEBNF.

1. An EBNF file is a list of productions in which every production name except the first one is
used in defining some other production.

2. A production consists of a non-terminal symbol followed by an equal sign, followed by a
(possibly empty) list of alternative definitions, followed by a semicolon.

3. A definition is a list of expressions separated by commas.

4. A vertical bar | is used between the definitions of a production. For example, the following
means strVar6 may be either the token LONG or the token SHORT:

strVar6 = LONG | SHORT ;

5. An expression is a symbol name (token or non-terminal), a single character, a group, a constant,
or an optional.
29

Users Manual NIST DMIS Test Suite 2.1.5
6. Symbol names start with a letter and include only letters and digits.

7. A single character must be preceded and followed by an apostrophe, e.g. ’/’ .

8. A group is two alternatives enclosed in parentheses (other types of groups are allowed in full
EBNF). The alternatives are separated by a vertical bar. For example, the spelling of the token
AND is defined as follows in the DEBNF file for full DMIS.

AND = ’.’ , (’A’|’a’) , (’N’|’n’) , (’D’|’d’) , ’.’ ;

This means the spelling may be any of .AND. , .ANd. , .AnD. , .And. , .aND. , .aNd. ,
.anD. , .and. .

9. A constant is any string of printable characters or space surrounded by apostrophes, for
example ’**’ or ’Not defined here’.

10. A simple optional expression in a production is set off using square brackets.
For example, a , [b , c] , d means that either a,d or a,b,c,d is allowed.
Simple optional expressions (and multiple optional expressions, which follow) may be nested.
For example, a , [b ,[c]] , d means a,d or a,b,d or a,b,c,d is allowed.

11. A multiple optional expression in a production is set off using square brackets preceded by a
digit (full EBNF allows any positive integer) and an asterisk. The digit gives the upper limit on the
number of repetitions. For example, a , 2*[b , c] , d means a,d or a,b,c,d or
a,b,c,b,c,d is allowed.

12. White space (spaces, tabs, and newlines) may be used anywhere except inside symbol names
and constants and has no meaning. Thus, a single definition may extend across several lines.
Spaces (but not tabs or newlines) may be used inside a constant, where they are part of the
constant.

13. Comments are indicated by being enclosed with (* at the beginning and *) at the end.
Multiple comments on the same line are allowed and may occur in the middle of definitions. For
example, the following is allowed: a , b , (* comment1 *) c , (* comment2 *) d.
Comments that extend across several lines are also allowed, but comments may not be nested.
Comments have no formal meaning. They are treated like white space.

6.5.3 Conventions of DEBNF

DEBNF uses the following conventions in addition to the rules for standard EBNF.

1. Token - A word in upper case letters is a token, e.g. DMISMN. In a DMIS input file, the word
must appear using the same characters as in the DEBNF file, with the following exceptions. First,
in the DMIS file, either lower case or upper case letters may be used (and mixed, e.g. DmisMn).
Second, since the EBNF standard requires that a symbol name start with a letter and include only
letters and digits, DMIS tokens that start with a dot, digit, or minus sign or contain an underscore
have been spelled differently. The new spellings are given as productions near the beginning of
the DEBNF file. If a token appears on the left side of a production, the right side gives its spelling.

2. The name of a production other than a production spelling a token must start with a lower case
letter (digits are also allowed, but underscores are not allowed), except as provided in the next
paragraph.

3. The name of a data type that is not meaningfully defined by a production must start with an
30

Users Manual NIST DMIS Test Suite 2.1.5
upper case letter and contain a least one lower case letter, e.g. StringVarname. The characters
to be used for these data types in a DMIS input file are specified in section 5 of DMIS 5.1. In order
to make the DEBNF file be legitimate EBNF, these data types are given dummy definitions in the
DEBNF file.

4. A comma is represented by a production whose name is c. This is to avoid having a mix of
literal commas and separator commas, which is very hard to read. For example, the definition of
DMISMN given earlier could also be written as follows, but the eye stumbles at the literal comma.

dmismnStm = DMISMN , ’/’ , stringConst , ’,’ , versionTag , # ;

5. In the DEBNF representation of DMIS, the end of a line of a DMIS input file is indicated by the
character. This is the only DEBNF convention that violates the rules of EBNF. In a DMIS input
file, the end of a line is indicated by a carriage return followed by a line feed, i.e. ASCII 13
followed by ASCII 10.

6. DEBNF does not require any specific syntax or naming convention for lists. Lists that are not
optional could be represented in at least three ways. It is not obvious from the right side of a
production that a list is being defined. Therefore, to make DEBNF files easier to comprehend, the
DEBNF files in the test suite use two conventions. First, the name of a list always ends in “List”.
Second, the definition of a simple list (repetitions of a single type of item) usually has the
following form.

itemList = [itemList , c] , item ;

6.6 What DEBNF files are available?

The ebnf directory contains four DEBNF files: one each for full DMIS, prismatic1, prismatic2,
prismatic3. No addenda are included.

Annex C of DMIS 5.1 contains an 83-page DEBNF file for all of DMIS. The dmisFull.debnf file
in the ebnf directory differs from Annex C of DMIS 5.1 by having blocks defined, which makes it
several pages longer. Also, the callBlock in the dmisFull.debnf file in the ebnf directory does not
exist in DMIS. As described in Section 2.6.1, the preprocessor creates a callBlock from a call
statement. The DMIS file printer in the dmisFull.cc file knows that only the first line of a call
block should be printed, so the call block disappears (as it should) if a DMIS file is printed back
out again.

6.7 How is a DEBNF file for a conformance class generated?

In theory, a DEBNF file for a conformance class is constructed by starting with the DEBNF file
for all of DMIS and commenting out those items that are not included in the conformance class on
the Excel spreadsheet defining conformance classes. This almost works in practice, but in some
cases one DEBNF statement must be commented out and replaced by a new one. For example,
datumLabel is defined to be either dLabel or daLabel. In the prismatic conformance class,
in some places where full DMIS uses datumLabel, both dLabel and daLabel are allowed,
but in other places only daLabel is allowed. Where only daLabel is allowed, it is necessary to
comment out datumLabel and replace it with daLabel.
31

Users Manual NIST DMIS Test Suite 2.1.5
7 Generator

7.1 Who should read this section?

Read this section if you:
• want to build a parser for a DEBNF file not included in the test suite for a computer

architecture not included in the test suite (so you need a generator that will run on that
architecture),

• want to modify the generator and you are familiar with YACC and Lex,
• are curious about how the generator works.

To use the generator to build a parser, you do not need to know how the generator works, only
how to use it. That is described in Section 5.

Warning: the generator is built using YACC and it writes YACC. Also, it creates a parse tree when
it parses EBNF and it builds parsers that build parse trees. Keeping the two levels (generator and
generated) separate in your mind is a lot like simultaneously patting your head and rubbing your
stomach.

7.2 What is the generator?

The generator is software that will read a file written in DEBNF and will automatically write five
files:

• a YACC file for a parser of the language described in the DEBNF file,
• a Lex file for the lexical analyzer used by the parser,
• a C++ code file for a system that runs the parser and counts DMIS statement uses.
• a C++ header file defining classes for representing DMIS,
• a C++ code file implementing the functions and methods declared in the header file.

The executable that does the work is named debnf2pars. A parser built by debnf2pars builds a
parse tree in terms of the C++ classes as it parses. Further details about the C++ classes are given
in the system builders manual.

Source code for the generator is in the generator directory. The structure of that directory is
shown in Figure 9. There is no binLinux or binSun because the executables that would go in
those directories are built directly in the subdirectories with those names in the
parserComponents/linuxSun directory.

generator
linuxSun

ofilesLinux
ofilesSun
source

windows
debnf2pars

Debug
source

Figure 9. Generator Directory Structure
32

Users Manual NIST DMIS Test Suite 2.1.5
7.3 How can I build a generator for a computer architecture not in the test suite?

To build a generator for a computer architecture not included in the test suite, use a C++ compiler
for that architecture to compile and link the following files found in the generator/source
directory:

debnf2parsLex.cc
debnf2parsYACC.cc
debnf2parsYACC.hh
ebnfClasses.cc
ebnfClasses.hh

7.4 How does the generator work?

The generator:
• parses in the DEBNF file (causing a parse tree and two arrays of tokens to be built),
• adds a lot of data to the parse tree that is needed in subsequent steps,
• prints two files for the C++ classes needed to represent DMIS,
• modifies the parse tree by finding productions which, if transcribed directly into YACC,

would cause a conflict in bison and replacing them with productions which look strange,
recognize the same grammar, and will not cause conflicts in bison.

• prints a YACC file for a parser,
• prints a Lex file for the parser, and
• prints a C++ file for the system that uses the parser and counts DMIS statements.

The DEBNF parser in the generator was built using YACC and Lex. DEBNF is fairly small
language. Only about three of the 200 or so pages of the YACC file for the generator,
debnf2pars.y, are actually YACC for parsing DEBNF and parse tree building. The rest of
debnf2pars.y is C++ code for adding data to the parse tree, modifying the parse tree, and writing
C++, YACC, and Lex files.

The structure of a parse tree for the part of EBNF covered by DEBNF is defined in the
ebnfClasses.hh file. Doubly linked lists are used in the parse tree. Manipulation functions for
the lists are defined in ebnfClasses.cc. BNF is a subset of EBNF, so the EBNF parse tree
structure also works for BNF. The semantics of DEBNF are identical to those of a subset of
EBNF, so an EBNF parse tree works for DEBNF.

The extensions to BNF which are used in DEBNF can all be replaced by more verbose but
equivalent BNF statements. These extensions are various forms of optional production. The
generator replaces all the optional productions in the parse tree with their BNF equivalents, so that
the parse tree becomes a BNF parse tree.

YACC productions are equivalent to BNF productions, so the rules in the YACC file would be
relatively straightforward to print from the BNF parse tree if there were no actions following the
rules. Since the actions build a parse tree in terms of C++ classes generated from the unmodified
EBNF productions while the rules are for the modified productions, generating the YACC file is
very complex.

The generator is not purely data driven. Several things specific to DMIS are hard-coded (or semi-
hard-coded) as strings in the generator which are inserted as code in the YACC and Lex files that
are generated. The Lex file, in particular, contains quite a few arcane constructions for dealing
with the peculiarities of DMIS.
33

Users Manual NIST DMIS Test Suite 2.1.5
In addition to generating a lot of YACC code, the generator writes a lot of C++ code for auxiliary
functions in the YACC file it writes.

The source code for the generator is heavily commented. The comments provide many more
details about how the generator works. Start with the in-line documentation of the main function.
34

Users Manual NIST DMIS Test Suite 2.1.5
Appendix A Using the Test Suite in Conformance Testing

DMIS conformance testing is desirable so that:
• DMIS users can be assured that DMIS generation systems and DMIS execution systems

conform to the DMIS standard.
• Vendors of DMIS generation systems and DMIS execution systems can have formal

recognition that their systems conform to the DMIS standard.

A full discussion of DMIS conformance testing would be longer than this manual. This appendix
presents only how the current test suite may be used to do some types of conformance testing.

A.1 Testing DMIS Generation Systems

If a DMIS generation system is claimed to implement one of the four conformance classes
covered by the test suite, the test suite may be used to determine (to a limited extent) whether the
system writes files that conform to that class.

To do this, the conformance tester should obtain a set of DMIS input files generated by the system
and run the files (as described in Section 2.4.2) through the parser for that conformance class
included in the test suite. Parser output should be sent to a file. The output file from the parser may
be examined to determine:

• if there are errors in any of the DMIS input files,
• how many times each DMIS statement in the conformance class was used.
• what percentage of the DMIS statements in the conformance class were used,
• the names of the DMIS statements that were not used.

The test described above is not ideal because:
• It does not determine which alternatives for a given DMIS statement are implemented.

That is, it is only a coarse-grained coverage test, not a fine-grained test.
• It does not determine whether any of the input files do what the person who used the

system to generate the files wanted done.
• If the files are obtained from the system vendor, the conformance tester will have to take

it on faith that the files were generated by the system and may be deceived.
• If the files are not obtained from the system vendor, the conformance tester will have to

get access to the system, learn how to use the system, and use it to generate files. This is
enormously time consuming.

• It is not clear that requiring all DMIS statements in the conformance class to be used is a
sensible requirement. For example, if GOTARG is never used, that does not imply that
any functionality is missing from the system, since the same functionality may be
obtained by a series of GOTOs. The important point is that the generation system should
be able to generate input files that do everything that can be done by a system that
implements all the statements in the conformance class, and the test does not determine
whether the system does that.

A.2 Testing DMIS Execution Systems

If a DMIS execution system is claimed to implement one of the four conformance classes covered
by the test suite, the test suite may be used to determine (to a limited extent) whether the system
executes files that conform to that class.
35

Users Manual NIST DMIS Test Suite 2.1.5
To do this, the conformance tester should run the no-motion system test files in the test suite for
that conformance class through the execution system. All of them should execute without error or
warning. The conformance tester might also run the system test files that do produce motion.
They also should run without error or warning. To run the programs that inspect parts, the
conformance tester will have to have the parts.

The test described above is not ideal because:
• The systems test files in the test suite do not fully cover the requirements of the

conformance class.
• The conformance tester will have learn how to set up and operate the system or get

someone else to do it.
• The test suite does not include DMIS output files corresponding to the input files, so it

will be difficult to judge whether the output files produced by the system are correct.

A.3 Checking Characterization Files

Section 5.5 of the DMIS 5.1 standard describes characterization files. A characterization file may
be used by a vendor of a DMIS system to specify which statements in the DMIS vocabulary are
supported by the system. The first part of the input section of a characterization file is to be
written in DEBNF. If that part of the input section (everything between “CHFIL1” and
“ENDCH1”) is placed in a separate file (call it F), a conformance tester may check F by running
it through the parser generator in the test suite.

If F is processed without error by debnf2pars (the YACC-Lex generator portion of the parser
generator), that means that the DEBNF syntax used in F is correct. If the YACC file generated
from F is processed without error or warning by bison, that means that F does not have any
references to undefined non-terminals or any unreferenced non-terminals. If F was prepared
according to the instructions in the DMIS 5.1 standard by commenting out items that are not
implemented in the system, bison should emit no warnings about reduce/reduce or shift/reduce
conflicts in the YACC file. If debnf2pars, bison, and flex do not report any errors, then the parser
builder should be able to build a parser for DMIS input files that conform to the characterization
file. That parser may be used as described in Appendix A.1 or Appendix A.2 to test files that are
generated by the system (if it is a generator) or executed by the system (if it is an executor). This
will show whether a DMIS generation system writes what is claimed in F (with the limitations
described in Appendix A.1) or whether a DMIS execution system reads what is claimed in F (with
the limitations described in Appendix A.2).

If the C++ code produced in the parser generator by bison and flex will not compile, but no error
or warning was reported by debnf2pars, bison, or flex, that probably indicates a bug in
debnf2pars, not an error in F. There are no known bugs in debnf2pars, however.
36

Users Manual NIST DMIS Test Suite 2.1.5
Appendix B Compiling Source Code in Windows

This appendix gives instructions for compiling source code for Windows using the Microsoft
Visual C++ 2008 Express Edition. If you are using some other version of Visual C++, these exact
instructions are not likely to work, but they may be helpful hints.

B.1 dmisFull.lib

These are instructions for making dmisFull.lib. This already exists. Unless it does not run on your
machine, it does not need to be remade.

The easiest way to remake dmisFull.lib is to follow the instructions in Section 5.4.2 using the
project file “dmisFullClasses.sln” in the parserComponents\windows\full\dmisFullClasses
directory. If that does not work, then follow the instructions given here.

Instructions almost identical to these can be used in the prismatic directories. Just substitute
“Prismatic1”, “Prismatic2”, or “Prismatic3” for “Full”.

These instructions assume that a subdirectory of the parserComponents\windows\full directory
named dmisFullClasses does not yet exist. If you want to try these instructions, first delete or
rename the dmisFullClasses subdirectory.

1. Start Visual C++. If it is already running, shut it down and restart it.

2. From the File menu, select New and then Project. This brings up a popup with two large
boxes on top, and three long thin boxes on the bottom, with a check box after the last one.

3. In the top left (Project types) box, select Win32.

4. In the top right (Templates) box, select Win32 Console Application.

5. In the bottom boxes put:

Name - dmisFull

Location - <NDTS>\parserComponents\windows\full
where <NDTS> is the full path to the test suite, for example:
R:\proj\dmis\kramer\NistDmisTestSuite2.1.5

Solution Name - dmisFullClasses

Create directory for solution - leave checked

Then press OK.

6. In the popup that appears, press Next (not Finish).

7. This brings up a popup labeled Application Settings.

Under Application Type, select Static library

Under Additional Options, first uncheck Precompiled header, then press Finish. This puts
control back into the main Visual C++ window.

8. To get the project to use the source code, in the Project menu of the main window, select
Add Existing Item. This brings up a file browser window. It may be necessary to select Add
Existing Item multiple times, since only one or two items at a time can be added.
37

Users Manual NIST DMIS Test Suite 2.1.5
From the <NDTS>\parserComponents\windows\full\source directory, select the following
source code files, and then press Add:

dmisFullLex.cpp
dmisFullYACC.cpp
dmisFull.cpp
dmisFullYACC.h
dmisFull.h

Visual C++ will appear to put the files in a location shown in the Solution Explorer
hierarchy window on the left of the main window. This is a project hierarchy, not a directory
hierarchy (although it looks like a directory hierarchy). If the source code is put in the
wrong place, it can be dragged up or down the hierarchy into the right place. Header files go
in the fake HeaderFiles directory, and .cpp files go in the fake SourceFiles directory.

9. To make a library, select Build Solution from the Build menu.

The library will appear in the file

<NDTS>\parserComponents\windows\full\dmisFullClasses\Debug\dmisFull.lib

A second Debug directory will also appear in the following location, but the library is not in
it (it has the object code).

<NDTS>\parserComponents\windows\full\dmisFullClasses\dmisFull\Debug.

Visual C++ does not like the sprintf function and issues a lot of warnings about it. These can
be ignored.

10. Select Save All from the File menu, then select Exit from the File menu.

B.2 dmisFullParser

These are instructions for making the dmisFullParser executable. This already exists. Unless it
does not run on your machine, it does not need to be remade.

The easiest way to remake dmisFullParser is to follow the instructions in Section 5.4.2 using the
project file “dmisFullParser.sln” in the parserComponents\windows\full\dmisFullParser directory.
If that does not work, then follow the instructions given here.

Instructions almost identical to these can be used in the prismatic directories. Just substitute
“Prismatic1”, “Prismatic2”, or “Prismatic3” for “Full”.

These instructions assume that a subdirectory of the parserComponents\windows\full directory
named dmisFullParser does not yet exist. If you want to try these instructions, first delete or
rename the dmisFullParser subdirectory.

1. Start Visual C++. If it is already running, shut it down and restart it.

2. From the File menu, select New and then Project. This brings up a popup with two large
boxes on top, and three long thin boxes on the bottom, with a check box after the last one.

3. In the top left (Project types) box, select Win32.

4. In the top right (Templates) box, select Win32 Console Application.
38

Users Manual NIST DMIS Test Suite 2.1.5
5. In the bottom boxes:

Name- dmisFullParser

Location - <NDTS>\parserComponents\windows\full
where <NDTS> is the full path to the test suite, for example:
R:\proj\dmis\kramer\NistDmisTestSuite2.1.5

Solution Name - dmisFullParser

Create directory for solution - leave checked

Then press OK.

6. In the popup that appears, press Next.

7. This brings up a popup labeled Application Settings.

Under Application Type, select Console Application.

Under Additional Options, first uncheck Precompiled Header, then check Empty Project.

Then press Finish. This puts control back into the main Visual C++ window.

8. To get the project to use the source code, in the Project menu of the main window, select
Add Existing Item. This brings up a file browser window. It may be necessary to select Add
Existing Item twice, since only one item at a time can be added.

From the <NDTS>\parserComponents\windows\full\source directory, select the following
source code files, and then press Add:

dmisFullParser.cpp
dmisFull.h

Visual C++ will appear to put the files in a location shown in the Solution Explorer
hierarchy window on the left of the main window. This is a project hierarchy, not a directory
hierarchy (although it looks like a directory hierarchy). If the source code is put in the
wrong place, it can be dragged up or down the hierarchy into the right place. Header files go
in the fake HeaderFiles directory, and .cpp files go in the fake SourceFiles directory.

9. To get the project to use the dmisFull library, in the Project menu of the main window,
select Add Existing Item. This brings up a file browser window.

From the <NDTS>\parserComponents\windows\full\dmisFullClasses\Debug directory,
select dmisFull.lib.

When you add dmisFull.lib, Visual C++ will display a popup window asking if you want to
create a rule for making dmisFull.lib.

Press the No button.

In the hierarchy window on the left of the main window, dmisFull.lib goes directly into
dmisFullParser, not in any fake directory.

10. To make the executable dmisFullParser, select Build Solution from the Build menu. The
executable will appear in the file

<NDTS>\parserComponents\windows\full\dmisFullParser\Debug\dmisFullParser.exe
39

Users Manual NIST DMIS Test Suite 2.1.5
You may want to copy it to:

<NDTS>\parsers\windows\full

11. Select Save All from the File menu, then select Exit from the File menu.

B.3 debnf2pars

These are instructions for making the debnf2pars executable. This already exists. Unless it does
not run on your machine, it does not need to be remade.

The easiest way to remake debnf2pars is to follow the instructions in Section 5.4.2 using the
project file “debnf2pars.sln” in the generator\windows\debnf2pars directory. If that does not
work, then follow the instructions given here.

These instructions assume that a subdirectory of the generator\windows directory named
debnf2pars does not yet exist. If you want to try these instructions, first delete or rename the
debnf2pars subdirectory.

1. Start Visual C++. If it is already running, shut it down and restart it.

2. From the File menu, select New and then Project. This brings up a popup with two large
boxes on top, and three long thin boxes on the bottom, with a check box after the last one.

3. In the top left (Project types) box, select Win32.

4. In the top right (Templates) box, select Win32 Console Application.

5. In the bottom boxes:

Name - debnf2pars

Location - <NDTS>\generator\windows
where <NDTS> is the full path to the test suite, for example:
R:\proj\dmis\kramer\NistDmisTestSuite2.1.5

Solution Name - debnf2pars

Create directory for solution - leave checked

Then press OK.

6. In the popup that appears, press Next.

7. This brings up a popup labeled Application Settings.

Under Application Type, select Console Application.

Under Additional Options, first uncheck Precompiled Header, then check Empty Project.
Then press Finish.

This puts control back into the main Visual C++ window.

8. To get the project to use the source code, in the Project menu of the main window, select
Add Existing Item. This brings up a file browser window. It may be necessary to select Add
Existing Item multiple times, since only one or two items at a time can be added.

From the <NDTS>\generator\windows\source directory, select the following source code
files, and then press Add:
40

Users Manual NIST DMIS Test Suite 2.1.5
debnf2parsLex.cpp
debnf2parsYACC.cpp
debnf2parsYACC.h
ebnfClasses.cpp
ebnfClasses.h

Visual C++ will appear to put the files in a location shown in the Solution Explorer window
on the left of the main window. This is a project hierarchy, not a directory hierarchy
(although it looks like a directory hierarchy). If the source code is put in the wrong place, it
can be dragged up or down the hierarchy into the right place. Header files go in the fake
HeaderFiles directory, and .cpp files go in the fake SourceFiles directory.

9. To make the executable, select Build Solution from the Build menu.

The executable will be in

<NDTS>\generator\windows\debnf2pars\Debug\debnf2pars.exe

B.4 reformatDmis

These are instructions for making the reformatDmis executable. This already exists. Unless it
does not run on your machine, it does not need to be remade.

The easiest way to remake reformatDmis is to follow the instructions in Section 5.4.2 using the
project file “reformatDmis.sln” in the parsers\windows\reform\reformatDmis directory. Then
copy the executable into parsers\windows. If that does not work, then follow the instructions
given here.

These instructions assume that a subdirectory of the parsers\windows directory named reform
does not yet exist. If you want to try these instructions, first delete or rename the reform
subdirectory.

1. Start Visual C++. If it is already running, shut it down and restart it.

2. From the File menu, select New and then Project. This brings up a popup with two large
boxes on top, and three long thin boxes on the bottom, with a check box after the last one.

3. In the top left (Project types) box, select Win32.

4. In the top right (Templates) box, select Win32 Console Application.

5. In the bottom boxes:

Name - reformatDmis

Location - <NDTS>\parsers\windows\reform
where <NDTS> is the full path to the test suite, for example:
R:\proj\dmis\kramer\NistDmisTestSuite2.1.5

Solution Name - reformatDmis

Create directory for solution - leave checked

Then press OK.

6. In the popup that appears, press Next.
41

Users Manual NIST DMIS Test Suite 2.1.5
7. This brings up a popup labeled Application Settings.

Under Application Type, select Console Application.

Under Additional Options, first uncheck Precompiled Header, then check Empty Project.
Then press Finish.

This puts control back into the main Visual C++ window.

8. To get the project to use the source code, in the Project menu of the main window, select
Add Existing Item. This brings up a file browser window.

From the <NDTS>\parsers\windows\reform directory, select the following source code file,
and then press Add:

reformatDmis.cpp

Visual C++ will appear to put the file in a location shown in the Solution Explorer window
on the left of the main window. This is a project hierarchy, not a directory hierarchy
(although it looks like a directory hierarchy). If the source code is put in the wrong place, it
can be dragged up or down the hierarchy into the right place. Header files go in the fake
HeaderFiles directory, and .cpp files go in the fake SourceFiles directory.

9. To make the executable, select Build Solution from the Build menu.

The executable will be in
<NDTS>\parsers\windows\reform\reformatDmis\Debug\reformatDmis.exe

10. Copy reformatDmis.exe into <NDTS>\parsers\windows
42

	Users Manual for Version 2.1.5 of the NIST DMIS Test Suite (for DMIS 5.1)
	1 Introduction
	1.1 Overview
	Figure 1. Directory Structure of NistDmisTestSuite2.1.5

	1.2 Downloading and Installing the Test Suite
	1.3 Documentation
	1.3.1 How is the Excel spreadsheet defining conformance classes arranged?
	Figure 2. Excel SpreadSheet

	1.4 Arrangement of this Manual
	1.5 Changes from Version 2.1.4
	1.5.1 DEBNF
	1.5.1.1 strange constructs
	1.5.1.2 callBlock
	1.5.2 Generator

	1.5.2.1 C++ classes
	1.5.2.2 DEBNF conversion
	1.5.2.3 better parsers generated
	1.5.2.4 functionality divided
	1.5.3 Parser Components

	1.5.3.1 C++ classes
	1.5.3.2 more kinds of file
	1.5.4 Parsers

	1.5.4.1 MACRO and CALL
	1.5.4.2 DMIS/ON,OFF
	1.5.4.3 parse tree
	1.5.4.4 pretty printing
	1.5.5 Tutorial Programs
	1.5.6 Documentation
	1.5.7 Testing

	1.5.7.1 cycle testing added
	1.5.7.2 reformatter

	2 Parsers
	2.1 What is in the parsers directory?
	2.2 How is the parsers directory arranged?
	Figure 3. Parsers Directory Structure

	2.3 How do I use a parser to parse a single DMIS input file?
	2.3.1 Linux and SunOS
	2.3.2 Windows

	2.4 How can I use a single command to parse a whole set of DMIS input files?
	2.4.1 First method for running a set of DMIS input files through a parser
	2.4.1.1 Linux and SunOS
	2.4.1.2 Windows
	2.4.2 Second method for running a set of DMIS input files through a parser

	2.4.2.1 Linux and SunOS
	2.4.2.2 Windows

	2.5 How do I modify a command that runs a set of test files so that it tests my parser?
	2.5.1 Linux and SunOS
	2.5.2 Windows

	2.6 What does the executable parser do when it parses a single DMIS input file?
	2.6.1 Preprocess
	2.6.2 Parse

	2.7 What does the executable parser do when it parses a set of DMIS input files?
	2.8 For what purposes may the executable parsers be used?
	2.9 What do the parser’s error and warning messages mean?
	2.10 What does the parser’s summary report mean?

	3 Parser Test Files
	3.1 What are the parser test files like?
	3.2 What do the “dmi” and “out” filename suffixes mean?
	3.3 What is in the parserTestFiles directory?
	Figure 4. ParserTestFiles Directory Structure

	3.4 For what purposes may the parser test files be used?

	4 System Test Files
	4.1 What is in the systemTestFiles directory?
	Figure 5. SystemTestFiles Directory Structure

	4.2 For what purposes may system test files be used?

	5 Parser Components
	5.1 Who should read this section?
	5.2 How is the parserComponents directory arranged?
	Figure 6. ParserComponents Directory Structure - Linux and Sun
	Figure 7. ParserComponents Directory Structure - Windows

	5.3 What types of files are included in the parserComponents directory?
	5.4 What are the steps in building a parser from parser components?
	Figure 8. Steps in Building a Statement Counting Parser
	5.4.1 Rebuilding in Linux and SunOS
	5.4.2 Rebuilding in Windows

	5.5 How can I build a parser for a computer architecture not included in the test suite?
	5.6 What compilers do I need in order to build parsers?
	5.7 What are the C++ classes that represent DMIS like?
	5.8 How can I use the parser components to help build a DMIS generation system?
	5.9 How can I use the parser components to help build a DMIS execution system?
	5.10 How can I build a parser from my own DEBNF file?
	5.11 Can I build a modified parser by editing the C++ code and recompiling?

	6 EBNF
	6.1 Who should read this section?
	6.2 What is EBNF?
	6.3 Why use EBNF?
	6.4 What is DEBNF?
	6.5 What is DEBNF Syntax?
	6.5.1 Overview
	6.5.2 Rules of Standard EBNF
	6.5.3 Conventions of DEBNF

	6.6 What DEBNF files are available?
	6.7 How is a DEBNF file for a conformance class generated?

	7 Generator
	7.1 Who should read this section?
	7.2 What is the generator?
	Figure 9. Generator Directory Structure

	7.3 How can I build a generator for a computer architecture not in the test suite?
	7.4 How does the generator work?

	Appendix A Using the Test Suite in Conformance Testing
	A.1 Testing DMIS Generation Systems
	A.2 Testing DMIS Execution Systems
	A.3 Checking Characterization Files

	Appendix B Compiling Source Code in Windows
	B.1 dmisFull.lib
	B.2 dmisFullParser
	B.3 debnf2pars
	B.4 reformatDmis

