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1. Introduction

Understanding and predicting chemical and microstructural evolution in cement paste

is a long-standing objective in concrete technology. The coupled dissolution and

precipitation reactions that occur when cement powder is mixed with water determine

a number of properties that are practically important, such as the setting time and

the rate of heat release of concrete. Increased understanding of the mechanisms and

rates of hydration reactions that occur in the first hours after mixing, as well as the

development of microstructure, could lead to advances in the design and deployment

of chemical admixtures for controlling these “early-age” properties. Better ability to

predict the early-age properties of concrete could allow more informed decisions in the

field about how to transport and place the material in service.

Accurate prediction of early-age properties of concrete with arbitrary mixture

proportions and chemical composition requires a model that can simulate the rates of the

coupled dissolution/precipitation reactions in a manner consistent with the development

of the solid microstructure. A previous publication describes the development of a

stochastic, lattice-based reaction-transport model that is a promising candidate for

modeling the the reactions and microstructural development leading to setting in

cementitious materials [1, 2]. That model, called HydratiCA,‡ has been demonstrated to

accurately simulate the diffusion of neutral or charged species in dilute and semi-dilute

solutions [1]. It has also been shown to simulate the kinetics of simple unimolecular

or bimolecular reactions, both homogeneously in solution and heterogeneously at solid-

liquid interfaces [2]. Recently, HydratiCA has been used to clarify the mechanisms of the

hydration of tricalcium silicate [3], a major component of portland cement. In contrast

to earlier microstructure models developed specifically for cement paste hydration,

such as CEMHYD3D [4] and µIC [5], the model formulation enables simulation of

realistic chemical kinetics and thermodynamics and provides an intimate coupling to

the development of microstructure.

Earlier studies using HydratiCA invoked several simplifying assumptions about the

system for the sake of computational expediency. For example, to limit the number

of coupled reactions that were simulated, those earlier studies intentionally neglected

the formation of ion complexes in solution. In addition, past simulations necessarily

have been confined to very small systems, no more than 1000 lattice sites with a lattice

spacing of 1 µm, which is enough to model a single cement particle in solution. These

small sizes are justifiable for investigating purely chemical kinetic effects. However,

in cementitious materials and other complex porous media, the representative volume

elements required to compute microstructure properties are much larger, typically by

a factor of 100 or 1000. In such systems, the computational demands are so high for

HydratiCA that it cannot be validated properly unless it is modified to run in parallel

on multiple processors. Recently, this modification has been made, and we now use it

to examine larger-scale systems than have been possible before.

‡ The name HydratiCA is a pseudo-acronym for Hydration by Cellular Automata.
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In the next section, the model and its parallelization are described briefly. In the

Results and Discussion section, we apply the model to several phenomena that are

important in cement chemistry, including the influence of temperature and pH on the

dissolution kinetics and equilibrium of portlandite, and the dissolution and equilibration

of ettringite—a very sparingly soluble mineral in water. Finally, we report simulation

results on the microstructural development of an idealized model of portland cement

paste, and the development of spatial correlations between growing and dissolving

condensed phases.

2. Modeling

The algorithms used in HydratiCA for modeling diffusion and chemical reactions are

based on fundamental kinetic cellular automaton principles [6]. The details and basic

verification of the algorithms are given elsewhere [1, 2]. The material microstructure is

discretized on a regular cubic lattice having a lattice spacing of λ. The initial cement

particle and water microstructure is mapped onto this lattice by assigning a phase (e.g.,

Ca(OH)2 or water) to each lattice site. These materials are themselves finely discretized

into quanta of concentration called cells ; the number of cells of a given material at a

particular lattice point determines its local concentration.

Chemical changes and structural development are simulated by iterating over small

time increments, each of which is decomposed into independent transport and reaction

steps. Diffusion is modeled by allowing each cell at a lattice site to execute a random

walk to a neighboring site. The probability pt of the walk depends on the effective

diffusivity D of the mobile species at the site and the length of the time increment τ

being considered [1],

pt =
τD

λ2
(1)

Similarly, probabilistic rules are formulated to simulate chemical reactions at a lattice

site. The probability of the reaction occurring depends on the reaction rate constant

and on the number of cells Nα of each reactant α that participates in the reaction. For

example, the probability of occurrence of the i-th homogeneous reaction is given by [6]

p(i)
rx = kξ

“P
α ν

(i)
α

”
−1

τ
∏
α

max

0,

ν
(i)
α∏

m=1

Nα −m + 1

 (2)

where ξ is a constant model parameter that relates Nα to the molar concentration of

species α, and ν
(i)
α is the molar stoichiometric coefficient of the reactant α participating

in the reaction. Eq. (2) strictly applies only to homogeneous reactions. The same kind of

equation applies for heterogeneous reactions and nucleation events, although the length

scaling is somewhat different [2]. The reaction is allowed if p
(i)
rx exceeds a random number

q ∈ [0, 1] drawn from a uniform distribution. If the reaction occurs at a lattice site, the

number of cells of each reactant (product) is decremented (incremented) by the number
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required by the molar stoichiometric coefficients of the reaction. Reactions that can

proceed at appreciable rates in both forward and reverse directions are modeled as two

separate one-way reactions. Both Eqs. (1) and (2) have been shown to converge, in the

limit τ, λ → 0 to the standard rate equations for diffusion and homogeneous reactions,

respectively [6].

Besides the molar stoichiometric coefficients for the reactants and products, each

reaction is characterized by its absolute rate constant in either the forward or reverse

direction, the solubility product or equilibrium constant at a reference temperature

(taken to be 298 K unless stated otherwise), the activation enthalpy for either the

forward or reverse reaction, the enthalpy of reaction, nucleation energy barriers (for

heterogeneous reactions only), and stoichiometric coefficients of each reaction. These

parameters are sufficient to capture the rate of reaction, the temperature dependence

of the rate, and even the temperature dependence of the equilibrium state for reversible

reactions [2]. In addition to these reaction parameters, several properties of each of

the constituent substances are also required. For simple condensed phases like water

and stoichiometric solids, the density, molar volume, and diffusion formation factor

must be supplied. For mobile ionic solute species, one must provide the electrical

charge, the diffusion coefficient at infinite dilution, and the Kielland ion-size parameters

needed to calculate the activity coefficients using the extended Debye-Hückel equation.

Values for many of these properties can be found in textbooks or other reference

materials [7–10]. Unless stated otherwise, all equilibrium constants, Kielland ion-

size parameters, and other thermodynamic data used in this paper are taken from

the Nagra/PSI chemical thermodynamic database [11]. Finally, for non-stoichiometric

solids, the model simulates compositional and structural variability by microscopic

coprecipitation of two stoichiometric end member phases that span the desired range

of compositions and physical properties, as described more fully in Ref. [3]. Each end

member is assigned values for all the properties just listed, and then the relative rates

of formation of each end member at a lattice site determines the local composition of

the phase. An approach similar to this also is used in the thermodynamic modeling of

non-stoichiometric solids [12].

2.1. Parallelization

Each lattice site in HydratiCA is occupied by numbers of cells of differing types, each of

which represents a discrete concentration of a particular material component or phase.

The algorithms used to compute changes in a site’s cell occupation numbers require

information only from the site and its nearest and next-nearest neighbor sites. This

localization of the algorithms leads to a natural parallel decomposition of the simulation,

by which the lattice is partitioned into sublattices, each of which is assigned to a separate

computational process. Each process uses one CPU processor. A process owns each

of the lattice sites of the sublattice it is assigned, and the owner of a lattice site is

responsible for all of the computations needed to update that lattice site during each
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time step of the simulation. Therefore, lattice sites that are on the surface of a sublattice

must gather data from neighboring lattice sites that are owned by other processes. This

updating is accomplished by surrounding each sublattice with a layer of “ghost” lattice

sites that are images of the actual lattice sites owned by adjacent processes. In the

simulations reported here, the lattice was decomposed into orthorhombic sublattices

that were as close to the same size and as close to cubic as possible for the lattice shape

and number of processes, in an effort to minimize the number of ghost lattice sites.

Inter-process communication is handled using MPI (Message Passing Interface), the

dominant communications protocol used in high-performance parallel computing [13].

If the communications needed to update the ghost lattice sites in each time step

required no computational time (i.e. ideal communications), then simulations would

scale perfectly up to the point at which each process owned a single lattice site. Because

ideal communications are unattainable, parallel execution will be efficient only if each

process owns enough lattice sites to make the overhead of communication time a small

percentage of the overall simulation time.

HydratiCA’s scaling behavior was examined using up to 448 processes on

the Columbia supercomputer at the NASA Advanced Supercomputing Division

(NASA/NAS). Fig. 1 (a) compares the multiplicative speed-up in identical simulations

as a function of the number of processes. The simulations involved 17 types of cells

with 12 coupled nonlinear reactions on a computational domain with 100 × 100 × 100

lattice sites. Further details of the simulations are discussed in Section 3.3. In Fig. 1

(a), all timings are normalized by the timing for the simulation run on one processor.

The figure indicates that HydratiCA can run effectively on this 100× 100× 100 system

using up to at least 448 processes. However, with increasing numbers of processes, the

actual speed-up diverges from the ideal linear scaling, and that little or no performance

is gained beyond 400 processes. This can be seen more clearly by plotting the same data

in terms of the process efficiency, as shown in Fig. 1(b). Efficiency is defined here as the

percentage of the simulation time that each process devotes to the actual simulation as

opposed to inter-process communication.

It should be noted that the performance indicated in Fig. 1 is dependent on the

number of lattice sites in the system and also on the chemical complexity, that is,

the number of independent chemical components and chemical reactions that must be

considered. If either the number of lattice points or the chemical complexity increases,

the performance will scale better to higher numbers of processes than indicated in the

figure, which was generated using a relatively simple chemical system.

3. Results and Discussion

3.1. Portlandite in Water: Effect of Temperature

To validate the model implementation on a relatively simple aqueous mineral system,

we assume a one-step reaction for the reversible dissolution of portlandite, Ca(OH)2, in
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Figure 1. (a) Multiplicative speed-up factor for identical simulations as a function
of number of processes. Simulations run on a 100 × 100 × 100 lattice of ettringite
particles in aqueous solution. The dashed line is the idealized linear scaling behavior.
(b) Process efficiency for the same simulations as in (a), that is the percentage of
process time devoted to computation as opposed to communication.
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water, along with the speciation of calcium hydroxide in solution according to

Ca(OH)2

k1−⇀↽− Ca2+ + 2 OH− , log Ksp = −5.20 (3)

Ca2+ + 2 OH− k2−⇀↽− CaOH+ , log Keq = 1.22 (4)

The values of the solubility product Ksp and complexation constant Keq are those

reported at 298 K in Ref [11]. We assume a dissociation rate constant of k1 =

7.2 µmol/(m2 · s), inferred from published studies of the kinetics of portlandite

crystal growth [14]. Also based on that data, we assume an activation enthalpy

for portlandite dissolution of ∆H∗
1 = 57.5 kJ/mol. The enthalpy of dissociation

is ∆H1 = −17.06 kJ/mol. A value for the enthalpy of the complexation reaction

could not be found in any of the thermodynamic databases we searched, perhaps

because the heat capacity and its temperature dependence for CaOH+ have not been

measured. Here we assume a value of ∆H2 = −2.16 kJ/mol, which is comparable

to the enthalpies of similar speciation reactions [12]. Similarly, we have not found

a published value of the rate constant k2 for formation of the CaOH+ complex;

however, complexation reactions in solution generally equilibrate rapidly compared with

mineral dissociation and growth [15]. In the absence of any data, we chose to set the

rate constant considerably greater than k1 to promote near-equilibrium conditions in

solution. However, if the rate constant is set too high, smaller time steps are required

to maintain stability of the algorithm embodied in Eq. (2). Through a series of test

simulations, we found that a rate constant k2 = 16.6 mol/(m3 · s), was great enough to

maintain near-equilibrium conditions in solution without requiring significantly smaller

time steps.

The system, shown in Fig. 2, is a cubic volume 100 µm on each side, with a lattice

spacing of 1 µm, containing a suspension of portlandite particles suspended in pure

water. The initial solid volume fraction is 0.237, and the initial specific surface area of

the solid is 1.43 µm2/µm3, which corresponds to a mean equivalent spherical diameter

of 4.2 µm.

Figure 3 shows the predicted total calcium concentration as a function of time

at 293 K, 298 K, and 303 K. The data follow the expected qualitative trends.

That is, the initial rate of dissolution increases with temperature, as expected for

any thermally activated process. In addition, the total calcium concentration near

equilibrium decreases with increasing temperature, also as expected for any net

exothermic dissolution process. Quantitatively, the initial rate of dissolution, calculated

from the limiting value of the slopes at zero time in Fig. 3, are shown in Table 1

and compared with the “target” value that is inferred from the assumed values of k1

and ∆H∗
1 . The calculated rate at 293 K exceeds the true rate by only 3.5 %, and

the discrepancy decreases with increasing temperature, although at the two higher

temperatures the calculated initial rates are slightly lower than the expected values.

To more clearly depict the accuracy with which the model predicts the equilibrium

state of the system, the inset of Fig. 3 compares the near-equilibrium total calcium
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Figure 2. Suspension of portlandite particles suspended in water. The cubic lattice
is 100 µm on each side, with a lattice spacing of 1 µm.

Table 1. Comparison of calculated and target initial dissolution rates of portlandite
in water at 293 K, 298 K, and 303 K.

T (K) Calculated Rate Target Rate Difference

(µmol ·m−2 · s−1) (µmol ·m−2 · s−1) (%)

293 5.00 4.83 3.5 %

298 7.00 7.19 -2.6 %

303 10.50 10.51 -0.1 %

concentration, [Ca2+] + [CaOH+], (solid) with the recommended values (dashed)

published by the International Union of Pure and Applied Chemistry [16]. The greatest

discrepancy, occurring at 293 K, is 0.9 mmol/L or 4 %. We also have compared the

total calcium concentration, as well as [Ca2+] and [CaOH+] individually, to the values

predicted by the GEMS-PSI thermodynamic modeling software package [17], which uses

the Nagra/PSI thermodynamic database [11]. Again, the maximum discrepancy is less

than 1 mmol/L (about 4 %) and occurs at 293 K.

It is important to note that different thermodynamic modeling software packages
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Figure 3. Prediction of the time dependence of the total calcium concentration in
solution for dissolution of portlandite in pure water at 298 K. Dashed lines in the inset
represent experimentally measured values of equilibrium total calcium concentration
reported in [16].

and databases may not agree on the equilibrium state of a system, even for one as simple

as portlandite in water. For example, the thermodynamic calculations just described

were repeated with the PHREEQC thermodynamic modeling software package using the

LLNL and WATEQ4 databases, hereafter referred to collectively as P/LW. At 298 K

, P/LW agrees to within 1 mmol/L with the cited experimental data, with the GEMS

software package calculation, and with the HydratiCA calculation of total calcium

concentration. However, at 293 K, P/LW calculates a total calcium concentration

of 29 mmol/L, which is about 7 mmol/L, or about 33 %, higher than either the

experimental value, the value calculated by GEMS, or the value predicted by HydratiCA.

Similarly, at 303 K, P/LW calculates a total calcium concentration of 14 mmol/L, which

is about 6 mmol/L, or about 30 %, lower than any of the other values. Clearly, the

temperature dependence predicted by P/LW near 298 K for this system, although in

the correct direction, is much too severe, and is most likely due to its approximation

of activity coefficients using the Davies equation instead of the extended Debye-Hückel

equation as implemented by GEMS and by HydratiCA.

3.2. Portlandite in Water: Effect of pH

In portland cement pastes, the solution in the capillary pore space typically has a high

pH (12 to 13), the value depending in part on the concentration of readily soluble alkali

salts in the cement. Therefore, it is important for a model of cement hydration to
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Figure 4. Prediction of the time dependence of the total calcium concentration in
solution for dissolution of portlandite in pure water. Dashed lines indicate expected
equilibrium total calcium concentrations calculated by GEMS-PSI thermodynamic
modeling software [17].

adequately capture the effect of solution pH on the dissolution kinetics and equilibrium

solubility of minerals. As a prototype example, we consider the behavior of portlandite

in aqueous solutions of NaOH. The same system is used as in the last section, except

that the particles are now suspended in an aqueous solution of NaOH at concentrations

of either 0.87 mmol/L, 8.7 mmol/L, or 43 mmol/L at a constant temperature of 298 K.

In addition to reactions (3) and (4), we also need to consider the formation of the NaOH0

complex in solution according to

Na+ + OH− k3−⇀↽− NaOH0 , log Keq = −0.18 (5)

Again, to ensure that this complexation reaction is sufficiently rapid to keep it from

being rate-controlling, we assume k3 = 16.6 mol/(m3 · s), the same value used for the

CaOH+ complexation reaction.

Figure 4 shows the time dependence of the total calcium concentration at three

different NaOH concentrations. The first noteworthy feature of the plot is the near-

equilibrium predictions of total calcium concentration, compared to expected values

calculated by GEMS-PSI (dashed lines). The simulation values exceed the expected

values by about 0.001 mmol/L at all three concentrations. The reason for this small

but systematic discrepancy is not known, although it appears to be about the same

magnitude and sign as for portlandite in pure water from the last section.

As a check on the kinetic behavior, the instantaneous rate of dissolution at zero

time is expected to be exactly the same as in the absence of NaOH because [Ca2+], and
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therefore the ionic activity product (IAP) for portlandite, is still zero initially. Indeed,

the mean dissolution rate over the first 0.5 s of dissolution is equal to the predicted value

in the second column of Table 1 at 298 K. It is clear from Fig. 4, however, that the rates

become unequal within seconds, which also is expected because increased concentrations

of OH− with increasing concentrations of NaOH result in a higher IAP as soon as the

concentrations of the other species are nonzero.

3.3. Solubility of Ettringite in Water

Having validated the model implementation in terms of the influence of temperature and

pH variations on a simple mineral, we now test the model on a more chemically complex

mineral. For this purpose, we choose the mineral ettringite, for which the dissociation

reaction may be modeled as [12]

Ca6Al2(SO4)3(OH)12·26 H2O

k4−⇀↽− 6 Ca2+ + 2 Al(OH)−4 + 3 SO2−
4 + 4 OH− + 26 H2O , log Ksp = −45.09 (6)

which has a reaction enthalpy of ∆H4 ≈ 204.5 kJ/mol at 298 K [12, 18]. Ettringite is

an important mineral in portland cement both as a product of the reaction between

tricalcium aluminate and calcium sulfate, and also at later times where it participates

in chemical degradation processes [8]. It provides a good test of the model because its

solubility product is nearly 40 orders of magnitude lower than that of portlandite. The

concentrations of calcium and hydroxyl ions in solution are both an order of magnitude

less than the equilibrium concentrations for portlandite and, in addition, aluminate and

sulfate ions are also present in even lower concentrations. Thermodynamic modeling

calculations indicate that more than a dozen solute species should be present in solution

at equilibrium with ettringite, six of which—Ca2+, CaOH+,SO2−
4 , CaSO0

4, Al(OH)−4 ,

and OH−—should be present in greater than trace concentrations. Therefore, we must

account for a second speciation reaction, in addition to reaction (4),

Ca2+ + SO2−
4

k5−⇀↽− CaSO0
4 , log Keq = 2.44 (7)

In the absence of reported rate data, we once again assume k5 = 16.6 mol/(m3 · s)to
prevent this speciation reaction from being rate-controlling.

The system used is the same as shown in Fig. 2, except that the solid phase

is now identified as ettringite instead of portlandite. Table 2 shows the near-

equilibrium concentrations of solute components at 298 K and compares them to the

concentrations predicted by the GEMS-PSI thermodynamic modeling application [17]

assuming the same solubility product. It should be noted that solid Al(OH)3, gibbsite,

is thermodynamically expected to precipitate in small quantities. However, for the

purposes of this calculation we have neglected the formation of gibbsite both in

HydratiCA and in the thermodynamic calculations. As the table indicates, the predicted

concentrations are well-matched to the thermodynamic calculations, with no more than
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Table 2. Comparison of calculated and expected values of the solute concentrations
in equilibrium with ettringite at 298 K, neglecting the possibility of gibbsite formation.

Component Calculated Expected Difference

(mmol/L) (mmol/L) (mmol/L)

Ca2+ 1.83 1.80 0.03

OH− 1.31 1.29 0.02

SO2−
4 0.85 0.84 0.01

Al(OH)−4 0.67 0.66 0.01

CaSO0
4 0.16 0.16 0.00

CaOH+ 0.04 0.03 0.01

a 0.03 mmol/L absolute difference. The values given in Table 2 also are consistent

with the range of solution compositions found in available experimental studies [19–22].

Therefore, even for sparingly soluble minerals that may be in equilibrium with solute

components at concentrations as low as several µmol/L, the model implementation

provides good calculations of equilibrium and kinetics.

3.4. Phase Correlations in Hydrating Cement Paste

By tracking the development of the microstructure of a 3-D system, one could begin

to investigate spatial correlations between growing and dissolving phases. Some solute

species in cement, like aluminate ions, are added to solution by dissolution of tricalcium

aluminate (C3A)§ and tetracalcium aluminoferrite (C4AF), but not by tricalcium silicate

(C3S). These aluminate ions are needed for the growth of minerals like ettringite or

calcium monosulfoaluminate, but not for portlandite. Silicate ions are added to solution

by dissolution of C3S and C2S, but not from C3A or C4AF, and are needed for the growth

of calcium silicate hydrate gel (C–S–H) but not portlandite or ettringite. Therefore, a

hydrating cement paste is composed of a set of coupled reaction networks, similar to

those being studied in biological systems [23, 24], and the topology of these networks,

along with the transport rates of the solute species, may give rise to spatial correlations

between different dissolving and growing phases in cement paste.

As an example, we conclude with a preliminary result for a system composed of

C3S, C3A, and gypsum (CaSO4·2 H2O) suspended in water, as shown in Fig. 5(a).

This represents a highly idealized portland cement paste. The microstructure at time

t = 0 is shown in Fig. 5(a), and the assumed reactions are given in Table 3. The total

solid volume fraction of the system is 0.32, which is somewhat more dilute than typical

portland cement binders in concrete.

As the initial particles dissolve, solid hydration products are formed. In particular,

§ In this section, we adopt conventional cement chemistry notation by which single letters are used to
denote simple oxide components of cement minerals, e.g. C = CaO, A = Al2O3, F = Fe2O3, S = SiO2,
H = H2O.
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Figure 5. Simulated suspension of tricalcium silicate, tricalcium aluminate,
and calcium sulfate dihydrate in water: (a) initial suspension microstructure, (b)
microstructure after three hours of hydration, and (c) same microstructure with silicate
phases subtracted to reveal the calcium sulfate and calcium aluminate phases more
clearly. The color scheme is: light blue = C3S, light brown = C–S–H, dark blue =
portlandite, gray = C3A, yellow = gypsum, green = ettringite.

calcium silicate hydrate and portlandite are possible hydration products of the

dissolution of C3S (see reactions 1,4–6 in Table 3). Ettringite and portlandite are

possible hydration products formed by the dissolution of C3A and gypsum (see reactions

2,3,6, and 7 in Table 3). These two reaction networks are coupled through Ca2+ and

OH− ions in solution, which are common to both networks.

Because Al(OH)−4 and H2SiO2−
4 have lower intrinsic diffusion coefficients in water

than Ca2+, OH−, or SO2−
4 , one might expect to observe ettringite to form in the vicinity

of C3A, and C–S–H to form in the neighborhood of C3S, the sources of Al(OH)−4 and

H2SiO2−
4 , respectively.

A growing body of experimental [25–27] and modeling [3, 28] evidence strongly

suggests that C–S–H nucleates heterogeneously on the surfaces of C3S, so in this

simulation the nucleation barrier for C–S–H on C3S was set low enough to encourage

C–S–H nucleation exclusively on C3S surfaces. Therefore, a strong spatial correlation

between C–S–H and C3S is expected to arise due to nucleation effects. However, neither

portlandite nor ettringite are assumed to nucleate preferentially on any solid surfaces, so

the locations of their precipitation should be dictated only by the relative abundance of

solute species from which they form. In fact, the preliminary results of this simulation

indicate that the locations of ettringite and portlandite are strongly correlated with

C3A, but are not correlated significantly with either C3S or gypsum. This can be seen

visually in Fig. 5(c), where the proximity of ettringite crystals to tricalcium aluminate is

readily observed. To probe the effect quantitatively, radial distribution functions (RDF)

for both ettringite and portlandite were calculated from the simulated microstructure

at 3 h of hydration. The RDF of a phase i gives the ratio of the concentration of that

phase to its average concentration, φi(r)/〈φi〉 as a function of distance r from a reference

point. Fig. 6 plots the RDF for portlandite using surfaces of C3A, C3S, or gypsum as the

reference point. For example, the curve with the circular points is the radial distribution
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Table 3. Summary of assumed reactions and reaction parameters for hydration of
idealized portland cement. k+ is the reaction rate constant in the forward direction
(left to right) for each reaction.

Reaction k+ (298 K) log Keq

(mol/(m2 · s))
1 Ca3SiO5 + 3 H2O −−⇀↽−− 3 Ca2+ + H2SiO2−

4 + 4 OH− 5.2× 10−7 −17.0

2 Ca3Al2O6 + 6 H2O −−⇀↽−− 3 Ca2+ + 2 Al2O
−
4 + 4 OH− 2.0× 10−6 −10.3

3 CaSO4·2 H2O −−⇀↽−− Ca2+ + SO2−
4 + 2 H2O 2.0× 10−5 −4.48

4 C−S−H(I) −−⇀↽−− Ca2+ + H2SiO2−
4 + 3 H2O 4.2× 10−7 −7.52

5 C−S−H(II) −−⇀↽−− 2 Ca2+ + H2SiO2−
4 + 2 OH− + 3 H2O 5.0× 10−7 −12.96

6 Ca(OH)2
−−⇀↽−− Ca2+ + 2 OH− 7.2× 10−6 −5.2

7 C3A·3 CaSO4·32 H2O −−⇀↽−− 6 Ca2+ + 3 SO2−
4 + 2 Al(OH)−4

+4 OH− + 26 H2O 1.0× 10−19 −45.1

8 C3A·CaSO4·12 H2O −−⇀↽−− 4 Ca2+ + SO2−
4 + 2 Al(OH)−4

+4 OH− + 6 H2O 1.0× 10−14 −29.3

9 C4AH19
−−⇀↽−− 4 Ca2+ + 2 Al(OH)−4 + 6 OH− + 12 H2O 1.0× 10−9 −25.6

10 Al(OH)3 + OH− −−⇀↽−− Al(OH)−4 2.22 −0.24

11 CaOH+ −−⇀↽−− Ca2+ + OH− 0.063 −1.2

12 CaSO0
4
−−⇀↽−− Ca2+ + SO2−

4 0.063 −2.1

13 C3A + CaSO0
4
−−⇀↽−− C3A + CaSO4(ads) 0.063 −2.1

function using C3A surfaces as the reference point, averaged over all of the C3A surface

sites in the microstructure. Fig. 7 gives the RDFs calculated for ettringite using the

same three surfaces as reference points.

Figs. 6 and 7 show that both portlandite and ettringite are strongly correlated

with C3A surfaces. The concentrations of these phases near C3A are about 2.5 times

their average concentrations throughout the microstructure. Furthermore, the RDF of

both phases decays rapidly with distance, reaching a minimum value at about 8 µm,

where both phases are relatively depleted compared to their average concentrations.

The location of the minimum at 8µm corresponds closely to the average spacing of C3A

domains in the microstructure, as shown by plotting the autocorrelation function for

C3A (Fig. 8). The first minimum of the autocorrelation function is the average spacing

of C3A domains [29]. Therefore, the increase in the RDF at distances greater than 8 µm

is likely due to the approach of another C3A surface.

In contrast to their strong correlation with C3A surfaces, neither portlandite nor

ettringite are strongly correlated with C3S or gypsum surfaces; the RDF departs only

slightly from unity at any distance from these surfaces. The fact that ettringite is not

strongly correlated to gypsum indicates that SO2−
4 ions are sufficiently mobile that they

do not limit the formation of ettringite. Portlandite, which is a product of the hydration
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Figure 6. Calculated radial distribution functions for portlandite using C3A, C3S,
or gyspum surfaces as the reference point, for the microstructure shown in Fig. 5(b).
The standard deviation of the sample mean at each distance is less than 0.07, about
the size of each point.
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Figure 7. Calculated radial distribution functions for ettringite using C3A, C3S, or
gyspum surfaces as the reference point, for the microstructure shown in Fig. 5(b). The
standard deviation of the sample mean at each distance is less than 0.07, about the
size of each point.
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Figure 8. Calculated autocorrelation function for C3A for the microstructure in
Fig. 5(b). The inset shows a magnified view of the first minimum in the autocorrelation
curve, which is interpreted as the average spacing of C3A domains.

both of C3S and of C3A, is not strongly correlated to C3S because silicate ions are not

required to form it. In addition, volume exclusion due to the presence of C–S–H near

the C3S surfaces seems to prevent portlandite from forming as abundantly near C3S as

it does near C3A.

These kinds of spatial correlations among phases are now being investigated

experimentally using scanning electron microscopy coupled with energy dispersive

spectroscopy (EDS) to test the predictions made by HydratiCA [30]. A strong coupling

of experiment and simulation will help determine what, if any, general statements can be

made about the reaction network topology and spatial correlations in microstructures

as complex as those found in hydrating cement pastes.

4. Summary

A lattice-based cellular automaton model has been described for simulating 3-D

microstructure development under multiple coupled nonlinear reactions and diffusive

mass transport. The algorithms applied at each lattice site require information only from

the site itself and its neighboring lattice sites. The localized nature of the calculations

enable the model to be parallelized to run on multiple processors. For the model system

size investigated here, the simulation speed scales well up to 100 processes, but the

scaling behavior diverges significantly from linear for higher process numbers. Likewise,

the computational efficiency decreases nearly linearly up to 448 processes, where inter-

process communications reach 65 % of the total process time.
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HydratiCA is a general model that should be applicable to a diverse range of reactive

systems, including porous geochemical environments and biochemical phenomena inside

living cells. Here we have focused on systems relevant to hydrating cementitious

materials, providing several points of verification and validation of the implementation

on aqueous suspensions of portlandite and ettringite. The model accurately captures

the effects of temperature and pH on the kinetics and equilibria of the dissociation

of minerals like portlandite in water. In at least one instance, the simulations give

significantly better agreement to experimental measurements than the PHREEQC

software package using the LLNL and WATEQ4 databases. More chemically complex

minerals like ettringite, with exceedingly small solubility products, are simulated with

an accuracy that is comparable to the range of measured or calculated solubilities that

have been reported previously.

The coupling of realistic chemical kinetics and thermodynamics to 3-D

microstructure enables HydratiCA to directly incorporate the effects of particle size

distribution, particle shape, and surface area into its calculations. In addition, the

model can be used to investigate the emergence of spatial correlations between growing

and dissolving phases in complex 3-D microstructures like those found in hydrating

cement pastes. Preliminary results for an idealized portland cement paste were shown

in this paper, but more systematic experimental and computational investigations are

currently underway.

Minerals like portlandite, gypsum, and ettringite tend to have extremely anisotropic

growth rates in cement paste, leading to crystal morphologies that are tabular or acicular

with aspect ratios approaching 100. The current implementatin of HydratiCA does not

account for growth anisotropy in any way, but it could do so by making the growth

probability a function of the unit normal vector to the interface at each lattice site

where growth occurs. The form of this function could be taken from polar plots of

the so-called growth mobility function which is used in the geometric theory of crystal

growth [31].
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[23] Alon U 2003 Biological networks: The tinkerer as an engineer Science 301 1866–1867
[24] Alon U 2007 Simplicity in biology Nature 446 497
[25] Garrault-Gauffinet S and Nonat A 1999 Experimental investigation of calcium silicate hydrate

(C-S-H) nucleation J. Cryst. Growth 200 565–574
[26] Garrault S and Nonat A 2001 Hydrated layer formation on tricalcium and dicalcium silicate

surfaces: Experimental study and numerical simulations Langmuir 17 8131–8138



Microstructure Model of Cement Hydration 19

[27] Garrault S, Finot E, Lesniewska E and Nonat A 2005 Study of C–S–H growth on C3S surface
during its early hydration Mater. Structures 38 435–442

[28] Thomas J J 2008 A new approach to modeling the nucleation and growth kinetics of tricalcium
silicate hydration J. Am. Ceram. Soc. 90 (10) 3282–3288

[29] Berryman J G and Blair S C 1986 Use of digital image analysis to estimate fluid permeability of
porous materials: Application of two-point correlation functions J. Appl. Phys. 60 (6) 1930–1938

[30] Snyder K A 2009 Personal communication
[31] Taylor J E, Cahn J W and Handwerker C A 1992 Overview 1. Geometric models of crystal growth

Acta Metall. Mater. 40 (7) 1443–1474


