

 International Conference on Product Lifecycle Management

 Copyright © 2009 Inderscience Enterprises Ltd.

OntoSTEP: OWL-DL ontology for STEP

Sylvere Krima12 Raphael Barbau12 Xenia Fiorentini1
sylvere.krima@nist.gov raphael.barbau@nist.gov xenia.fiorentini@nist.gov

Sudarsan Rachuri1 Sebti Foufou2 Ram D. Sriram1
rachuri.sudarsan@nist.gov sfoufou@u-bourgogne.fr sriram@nist.gov

1: National Institute of Standards and Technology
100 Bureau Drive, Gaithersburg, MD 20899
2: University of Burgundy, LE2I laboratory,

UFR sciences, BP 47870, 21078 Dijon Cedex

Abstract: The Standard for the Exchange of Product model data (STEP) [1]
contains product information mainly related to geometry. The modeling
language used to develop this standard, EXPRESS, does not have logical
formalism that will enable rigorous semantics. In this paper we present an
OWL-DL (Web Ontology Language - Description Logic) [2] version of STEP
(OntoSTEP) that will allow logic reasoning and inference mechanisms and thus
enhancing semantic interoperability. The development of OntoSTEP requires
the conversion of EXPRESS schema to OWL-DL, and the classification of
EXPRESS instances to OWL individuals. Currently we have considered AP203
[3] - the most widely used Application Protocol (AP) for the exchange of
Computer-Aided Design (CAD) files - and STEP Part 21 [4] CAD files - CAD
files conformant to the data exchange format defined in Part 21 - for schema
level conversion and instance level classification respectively. We have
implemented a web application to demonstrate OntoSTEP. We are currently
extending OntoSTEP to include information such as function, behavior, and
assembly requirements.

Keyword: STEP, OWL, ontology, reasoning, semantics

1 Introduction

Manufacturing organizations spend a considerable amount of resources to understand and
apply the Product Lifecycle Management (PLM) approach. The PLM approach enables
organizations to manage, in an integrated fashion, the product portfolio from conception
to disposal [5]. Representation and management of product information is the key for a
successful implementation of PLM.

To enable the exchange of product data through a product lifecycle, the International
Organization for Standardization (ISO) has developed the Standard for Exchange of
Product model data (STEP) [1] (ISO 10303). Unfortunately the representation of function
and behavior is outside the scope of current STEP. We call concepts such as function and
behavior as “beyond geometry information” since they are most often related to the
geometry of the product.

The STEP APs are defined using the EXPRESS language. EXPRESS (ISO 10303-11)
[6] is a data modeling language designed by ISO to model STEP entities. STEP Part 21
[4] defines the syntax for representing data according to a given EXPRESS schema.

 S. Krima, R. Barbau, X. Fiorentini, S. Rachuri, S. Foufou, R. D. Sriram

There is a limited tool support for EXPRESS. Moreover, since EXPRESS is not based on
formal semantics, it is difficult to check the quality of these tools.

Our goal is to overcome these issues by translating STEP in OWL-DL [2] (Web
Ontology Language - Description Logic), which allows the application of mechanisms to
check models and data validity, to check the consistency of the instances, and to infer
new knowledge. Measuring model quality is easier since they are based on a formal
semantics. We refer to the translated STEP as OntoSTEP in the remainder of the paper.
OntoSTEP could be used to express and semantically enrich product information
available in STEP files. In our use-case we translate in OWL the STEP AP 203 data
model and Part 21 CAD files. The methodology followed for the use-case is fully
applicable to any other STEP AP and any Part 21 file.

In our previous work [7], we created a semantic model including beyond geometry
concepts from the NIST (National Institute of Standards and Technology) Core Product
Model (CPM) [8] and Open Assembly Model (OAM) [9]. In the future, we plan to
combine OntoSTEP with the semantic model of CPM and OAM: the instantiation of such
a combined model could be, in part, automatically performed from a Part 21 file.

The paper is organized as follows. We review some works related to OntoSTEP in
Section 2. Then we introduce the OntoSTEP mapping rules in Section 3. We present our
implementation and the tools used to realize it in Section 4 and, finally, we present our
conclusions and future plans in Section 5.

2 Related work

This section discusses two related efforts that aim to develop a translation from
EXPRESS to OWL. The approaches taken by these authors and their main contributions
are explained below.

Intelligent Self-describing Technical and Environmental Networks (S-TEN) [10] is a
project funded by the European Community. This project describes a bi-directional
translation between EXPRESS and OWL. S-TEN focuses on translating modules, so the
translated parts are used within several APs. Hence in the S-TEN project no AP is
covered in full. The STEP modules are also modified, either to take advantage of the use
of OWL, or as an improvement. For instance, some entities used to express relationships
are directly translated to relationships. Moreover new capabilities are added, such as a
better management of the product identifiers. A manual check is performed after the
translation of the EXPRESS schemas to ensure that the meaning of the data models is the
same in EXPRESS and in OWL. The final ontology is stored in a database.

Zhao and Liu proposed a methodology to represent EXPRESS models in OWL and
SWRL [11], a rule-based language for OWL. Zhao and Liu translated procedural code
contained in the EXPRESS schemas. The procedural code specifies algorithms which can
be used to compute derived attributes or to check the validity of data. Since OWL is not a
procedural language, the authors chose to use Jess rules to represent EXPRESS
procedures and functions. However it is not clear whether this mapping between
procedures and Jess rules could work for all the procedures, especially those from AP
203. Moreover, some aspects of the EXPRESS language are not properly dealt with. For
instance, the translation of ordered lists in EXPRESS was not proposed. Automated tools
doing the entire translation are planned, but we are not aware of any software released.

 OntoSTEP: OWL-DL ontology for STEP

3 OntoSTEP

The goal of our work is improving interoperability of product data by defining the
semantics of the STEP models in a formal logic. In this paper, we translate the EXPRESS
models in OWL 2 [12]. OWL-DL, a sublanguage of OWL based on Description Logic,
provides several features we need to add semantics:
− consistency checking: this mechanism ensures that no contradictions are present

within the model
− inference: this capability allows to extract new knowledge through logic reasoning
− decidability: this characteristic ensures that the reasoning is performed in finite time.

In this section, we present the rules for translating EXPRESS to OWL. The
translation of the instance data resulting from the EXPRESS schemas is also introduced.

3.1 Mapping the main concepts

In our translation, EXPRESS entities and instances map respectively to OWL classes and
individuals. Attributes correspond to OWL properties, ObjectProperties link classes
together, while DataProperties link classes to data types. The domain of a property
defines which classes can have this property. Without restrictions, properties in OWL are
aggregations, so an individual can be linked several times to other individuals by using
the same property. To define the usage of a property, it is possible to restrict its
cardinality through the “ObjectExactCardinality” construct and its values through the
“ObjectAllValuesFrom” construct. In the case of an optional attribute, the
“ObjectAllValuesFrom” construct is used to link the entity to the union of the attribute
type and the class owl:Nothing. This solution is adopted to explicitly express the
semantics of the OPTIONAL keyword: a value is not required for this attribute.

An ontology may contain statements related to both classes (TBox) and individuals
(ABox). In our translation, a schema is translated into an ontology that contains mainly
classes and property definitions [13]. The following table summarizes our proposed
translation of the basic concepts from EXPRESS to OWL.

Table 1: Translation of the basic concepts from EXPRESS to OWL

EXPRESS OWL

Schema Ontology

Entity Class

Subtype of Subclass of

Attribute with
an entity type

ObjectProperty. The domain of the property is the class that corresponds to
the entity that contains the attribute. This class is restricted to have
ObjectExactCardinality equal to 1 and ObjectAllValuesFrom equal to the
entity type for that property.

Attribute with a
simple data type

DataProperty. The domain of the property is the class that corresponds to the
entity that contains the attribute. This class restricted to have
ObjectExactCardinality equal to 1 and ObjectAllValuesFrom equal to the
data type for that property.

Optional
attribute

The range of the property is restricted to have ObjectAllValuesFrom equal
to the union of the attribute type and the class Nothing.

 S. Krima, R. Barbau, X. Fiorentini, S. Rachuri, S. Foufou, R. D. Sriram

Attribute with
an aggregation
type

The range of the property is restricted to have, for that property, minimum
and maximum cardinalities corresponding to the aggregation size.

We also need to redefine the naming conventions for the properties. In EXPRESS
attributes are defined to be within the scope of the entity, while in OWL properties have a
global scope. We choose to prefix the attributes names with the entity names in order to
differentiate attributes that have the same name but that belong to different entities.

3.2 Mapping instances

An EXPRESS schema is instantiated by creating a file as defined in “Clear Text
Encoding of the Exchange Structure -10303-21,” or Part 21. CAD packages can export
data in STEP format that conform to the AP203 schema and conform to STEP Part 21’s
constraints. In this paper we refer to these export files as “Part 21 files.”

The translation to OWL is similar to the process described in the previous section and
summarized in Table 1. In STEP the schema and the instances are declared in different
files: the related schema is specified in the Part 21 file in the FILE_SCHEMA section.
OWL provides a similar mechanism of import. The instance file contains an import
statement that relates instances to the schema ontology. This import mechanism allows us
to maintain the schema ontology separate from the instance one. By having the final
ontology containing both the TBox and the ABox, we are able to check the consistency of
the instances against the schema. The namespace of the elements declared in the schema
ontology indicates the shortened name of the schema: ap203 in our example.

While STEP considers all instances to be different, OWL does not have the unique
name assumption, i.e., in OWL a same object can be identified with two different names.
The solution to capture the semantics of EXPRESS is to declare all the created
individuals as different.

The treatment of an unknown fact is another major difference between EXPRESS and
OWL. In EXPRESS, any unknown fact is supposed to be false. For example, if an
instance of product is not known to be instance of product_category, the system assumes
it is not. This behavior is called the Close World Assumption (CWA), because it
supposes that the world is limited to what is stated. OWL uses the Open World
Assumption (OWA): unless a reasoner proves a fact is false, that fact is unknown. Hence
the translation sometimes requires additional information to capture the semantics of
EXPRESS in OWL. The difference between CWA and OWA causes a translation
problem when an instance is constrained to have one attribute. The attribute id of the
entity product is not declared optional, so it should be instantiated for all the instances of
product. In the EXPRESS logic, the lack of data will raise an error. In OWL, even if we
do not define an id for an instance of product, the reasoner does not detect an
inconsistency: the instance is still considered to have an unknown id. To allow the
reasoner to detect an inconsistency in case of missing id, it would be required to declare
explicitly that that instance of product has no id.

To fully translate the STEP APs, the translation of some additional concepts, such as
derived data types, is required to be introduced. Our proposed translation from EXPRESS
to OWL for these additional concepts is presented in the next section.

 OntoSTEP: OWL-DL ontology for STEP

3.3 Mapping additional concepts
Let us now consider some additional concepts of EXPRESS and, when possible,

propose their translation in OWL. Unfortunately, some constructs of EXPRESS, such as
functions, cannot be automatically translated: these constructs usually define entity
constraints and attributes computation and may rely on complex algorithms. OWL, as it
is based on Description Logic, does not contain any procedural aspects. This section
focuses on the EXPRESS language aspects that can be automatically translated to OWL
concepts. Some EXPRESS concepts, such as SELECT, ENUMERATION and UNIQUE
are all translated in OWL and the details of the translation are provided in [14].

3.3.1 Data types

EXPRESS defines simple data types to cover a wide range of information. These simple
types are presented and the definition of constructed types is explained.

EXPRESS includes all the data types required to capture the common product
information. OWL inherits the data types defined in the XML Schema Definition (XSD)
language. In EXPRESS, some types, like boolean and string, have the exact equivalent in
OWL, while other types, like number and real, are represented in a slightly different way
in OWL. For example, we translate the real data type in EXPRESS as a double in OWL,
even if the precision of those two data types is different. This solution should not lead to
major problems since a 32-bit approximation of real numbers is usually sufficient in the
product domain. The translation of the logical and binary data types is outside the scope
of this paper since these data types are not contained in the AP203.

EXPRESS allows the creation of data types derived from the simple types previously
presented. In order to deal with these derived types in OWL, we build a type hierarchy
and we apply the concept of data wrapping.

For example, we define a class String that has a DataProperty to the string data type.
It is then sufficient to subclass the class String to translate all the user-defined data types
related to string (Label in this case). This concept organization allows us to translate all
the user-defined data types related to string only by subclassing the class String. Because
of the possible use of functions, we cannot guarantee the correctness of an automatic
translation of data type restrictions. Using a manual case-by-case translation, most of the
types defined in AP203 can be translated.

3.3.2 Aggregations

EXPRESS provides four different types of aggregations: set, bag, list, and array. Each
type of aggregation has order policies and duplication policies. For the attribute
declarations, the type of content and the number of elements of the aggregation are
defined. The detailed mapping of these types are explained in [14]. Here, as an example,
we provide the detailed mapping of bag.

Bags are unsorted collection of elements. The only difference between sets and bags
is the duplication policy: the same element can be repeated several times in a bag.
Because object properties in OWL do not allow duplications, we create the concepts
structure shown in Figure 1. A new class, called Bag, is inserted between the Container
class and the Content class. The property hasContent is declared functional in order to
associate only one element for each instance of Bag.

 S. Krima, R. Barbau, X. Fiorentini, S. Rachuri, S. Foufou, R. D. Sriram

3.3.3 Abstraction

A supertype in EXPRESS may be declared as abstract. The meaning is the same as in
object-oriented programming: an abstract entity cannot be directly instantiated.

OWL does not provide any feature to translate the ABSTRACT keyword and, even if
it had, it would not work as expected. Because of the OWA, an ontology is assumed to be
incomplete so that the non-instantiation of a concrete entity does not lead to
inconsistency. To overcome this problem, we could have declared the subtypes classes as
the partition of the supertype. A partition forces the instances of the supertype to belong
to at least one subtype. This is achieved by declaring that the set of instances of the
supertype is covered by the sets of instances of the subtypes. In that case, if an individual
was declared as an instance of the supertype class and not an instance of the subtype
class, the reasoner would detect an inconsistency. However this solution only works
when both the supertype and all the subtypes are declared within the same schema.
Because of these reasons, we choose to ignore the ABSTRACT keyword. It is then
impossible for the reasoner to check that abstract entities are not directly instantiated.

3.3.4 Inheritance

In order to specify the allowed combination of subtypes for an entity, EXPRESS provides
three keywords: ONEOF, ANDOR, and AND. Along with the ABSTRACT keyword,
they restrict the usage of the instantiation mechanism.

ONE OF : the ONEOF keyword takes as parameter a list of entities and it specifies
that only one of these entities can be instantiated. An equivalent behavior in OWL is
obtained by defining the subclasses as disjoint: an inconsistency is detected when an
individual is an instance of two of these subclasses. We mark the set of classes contained
in a ONEOF as all disjoint. Another solution could be to use the logical definition of
XOR: we could use in OWL the intersection, the union and the complement to translate
and, or and not. However this increases the complexity of the ontology, as the length of
the formula increases dramatically with the number of elements involved. For this reason
we choose the first solution.

ANDOR: when no specific constraints are defined, the default keyword for the
instantiation is ANDOR: the instance can belong to more than one subclass. In OWL a
set of entities joined by an ANDOR is translated by a union of the corresponding classes
in OWL: we first represent the union of the subclasses by using the ObjectUnionOf
construct and we then declare this union to be equivalent to the parent class.

Figure 1: Bag (Class level)

 OntoSTEP: OWL-DL ontology for STEP

AND: the AND operator imposes that the object be an instance of all the subclasses.
In order to respect this constraint in OWL, we use the ObjectIntersectionOf to link the
subclasses.

3.4 Benefits

OWL-DL semantics is based on Description Logic (DL), a family of knowledge
representation languages. These languages are used to define domain concepts according
to a predefined and well understood formalism. Concepts are used to represent the
domains objects, while roles are used to represent relationships between these concepts.
Concepts and roles are the main components of the knowledge base1.

OWL-DL provides the “maximum expressiveness while retaining computational
completeness (all conclusions are guaranteed to be computable) and decidability (all
computations will finish in finite time)” [2]. Expressiveness, computational
completeness, and decidability enable reasoning mechanisms, e.g., consistency checking.
These mechanisms are applied by reasoners to find implicit consequences based on the
explicit information provided in a knowledge base. Many reasoners have already been
developed. For the purpose of our project we choose Pellet [15].

3.4.1 Consistency checking

The consistency checking procedure can be applied at two different levels: schema level
and instances level. At the schema level, the consistency checking procedure checks
whether a concept can be instantiated at least once. At the instances level, the consistency
checking procedure checks whether an individual declared as an instance of a concept is
really instance of that concept.

Currently, libraries are available to check the consistency of EXPRESS schemas and
Part21 files but with OntoSTEP, both kinds of consistency checking are performed by a
DL reasoner. Checking the logical consistency of the OWL classes and individuals
resulting from the translation is the necessary condition to use an inference procedure.

3.4.2 Inference procedure

An inference procedure uses the data evidence in a context and draws conclusions using
certain problem solving strategies [16]. The inference procedure is the process to reach
these conclusions and it is performed by a reasoner. Reasoners use a knowledge base as
a source of data: concepts, roles, and axioms are elaborated by the reasoner to reach the
conclusion. The expressivity of the axioms and concepts definitions is dependant on the
logic language used.

OWL2 is based on a SROIQ(D) [12] expressivity. All the operators included in the
SROIQ(D) expressivity e.g., transitivity, can be used and combined to express axioms.
These axioms can be computed only with a reasoner that supports SROIQ(D)
expressivity, e.g., Pellet.

In our work, for example, we use inference procedures to represent ordered lists of
instances, i.e., to elaborate functional properties, transitive properties, properties
hierarchies, and properties chains. All the axioms used in this representation are provided
by the SROIQ(D) expressivity.

1 The terms “knowledge base” and “ontology” are used interchangeably for the purpose
of this paper.

 S. Krima, R. Barbau, X. Fiorentini, S. Rachuri, S. Foufou, R. D. Sriram

Once the reasoner has applied all the inferences procedures on our ontology, new
knowledge and data become available. Then one can use a querying mechanism to query
these new data, which represents an enriched version of the original ontology.

3.4.3 Queries

Queries are performed to retrieve specific data from a large amount of information: in our
case we perform queries to retrieve some specific product information from a CAD file.
The information contained in a CAD file is first translated into OWL representation, then
checked for consistency and inference, and finally queried.

There are two approaches in vogue today to perform queries on OWL ontologies: the
first approach uses a language called SPARQL Protocol and RDF Query Language
(SPARQL) [17]. while the second approach uses the Semantic Query-Enhanced Web
Rule Language (SQWRL) [18]. None of them is used in OntoSTEP for the reasons
explained below.

SPARQL was specifically developed for Resource Description Framework (RDF)
models, so we would need to translate our OWL ontology to RDF before performing
SPARQL queries. We do not adopt this solution because of two reasons. First, the
translation from OWL to RDF increases the computational time. Second, the Pellet
reasoner does not support some SPARQL built-ins functions, such as DESCRIBE,
OPTIONAL, or FILTER [19], or some classical aggregation functions, such as
maximum, minimum, sum, or average.

While SPARQL was developed for RDF, SQWRL was specifically being developed
for OWL. Unlike SPARQL, SQWRL is based on SWRL [20] and does not need any RDF
bridge: the computation of SQWRL queries is then faster. SQWRL provides not only
many built-in functions, but also some classical aggregation functions like maximum,
minimum, sum, or average [21], which are missing in SPARQL. We do not adopt this
solution for two reasons. First, only a proprietary engine, i.e., Jess, is currently available
to process SQWRL queries. Second, SQWRL does not allow combining functions
together.

To overcome these drawbacks we choose to perform our queries by using the OWL
Application Programming Interface (API) for OWL 2 [22] , which is a Java API. This
API enables us to manipulate our ontology and to query it. The next section provides
more details about this API and its usage.

4 Implementation

The previous section discussed how to generate an ontology from EXPRESS schemas
and instance files. This part presents an implementation of the translation rules previously
described. The goal is to create tools that perform this generation automatically, and then
use these tools to translate both the AP203 and Part 21 CAD files. Three kinds of
technologies are used to achieve the above goal:
1) those related to the EXPRESS schemas translation: EXPRESS Parser [23], Another
Tool for Language Recognition (ANTLR) [24] parser generator and OWL API;
2) those related to the instances translation: Standard Data Access Interface (SDAI) [25],
STEPTools [26] and OWL API;
3) the one related to a web application that facilitates the use of our tools: Google Web
Toolkit framework [27].

 OntoSTEP: OWL-DL ontology for STEP

The web application contains basic login capabilities and uploads a CAD file. Once
the file is retrieved, the translation process is launched, and the resulting file containing
the A-Box is created. A query engine selects the products and parts corresponding to the
criteria input by the user. A detailed use case is provided in [14].

5 Conclusion and future work

Semantic interoperability between the applications that exchange product information is
required to achieve systems integration. STEP is the most known and accepted standard
for the exchange of product geometry information: its aim is enabling interoperability
between engineering applications.

The main benefits of the semantically enriched STEP information presented in this
paper are the ability to check the consistency of EXPRESS schemas, the ability to check
the validity of the Part 21 files against their schemas and the opportunity of performing
queries on those files. In this paper we presented a mapping to OWL-DL from the STEP
AP203 and Part 21 CAD files and we showed the principles we followed to create it.
These same principles could be used to create OWL mappings of other STEP APs.

We also developed a web application to allow users to upload their CAD files, to
translate them, and to manage and query their product ontologies.

In the future, we plan to combine OntoSTEP with the OWL-DL versions of the
CPM/OAM, which are information models to support beyond geometry information. We
also plan to develop a plug-in to CAD applications to allow the insertion of this
information, which would then be checked for consistency along with the geometry
information. We also plan to strengthen OntoSTEP by formalizing at the MetaObject
Facility (MOF) [28] level the translation between EXPRESS and OWL. For both these
languages, a MOF-compliant metamodel has been developed [29] [30]. A translation
between these metamodels would allow a bi-directional robust transformation between
EXPRESS and OWL.

Disclamer
No approval or endorsement of any commercial product by NIST is intended or implied. Certain commercial software are
identified in this report to facilitate better understanding. Such identification does not imply recommendations or endorsement
by NIST nor does it imply the software identified are necessarily the best available for the purpose.

References

 1. International Organization for Standardization. ISO 10303-1: Industrial automation
systems and integration -- Product data representation and exchange -- Part 1: Overview and
fundamental principles. 1994.

 2. OWL Web Ontology Language Overview. http://www.w3.org/TR/owl-features/ . 2004.
 3. International Organization for Standardization. ISO 10303-203: Industrial automation

systems and integration -- Product data representation and exchange -- Part 203: Application
Protocol: Configuration controlled 3D design of mechanical parts and assemblies. 1994.

 4. International Organization for Standardization. ISO 10303-21: Industrial automation
systems and integration -- Product data representation and exchange -- Part 21:
Implementation methods: Clear text encoding of the exchange structure. 2002.

 5. Subrahmanian, E., Rachuri, S., Fenves, S., Foufou, S., and Sriram, R. D.,"Product
lifecycle management support: A Challenge in supporting product design and manufacturing
in a networked economy" Int.J.Product Lifecycle Management, Vol.1, No.1, 2005, pp. 4-25.

 S. Krima, R. Barbau, X. Fiorentini, S. Rachuri, S. Foufou, R. D. Sriram

 6. International Organization for Standardization. ISO 10303-11: 1994, Industrial
automation systems and integration - Product data representation and exchange - Part 11:
Description methods: The EXPRESS language reference manual.

 7. Fiorentini, X., Gambino, I., Liang, V., Rachuri, S., Mahesh, M., and Bock, C., "An
ontology for assembly representation," National Institute of Standards and Technology,
NISTIR 7436, Gaithersburg, MD 20899, USA, 2007.

 8. Fenves, S., Foufou, S., Bock, C., Bouillon, N., and Sriram, R. D., "CPM2: A Revised
Core Product Model for Representing Design Information ," National Institute of Standards
and Technology, NISTIR 7185, Gaithersburg, MD 20899, USA, 2004.

 9. Baysal, M. M., Roy, U., Sudarsan, R., Sriram, R. D., and Lyons, K. W., "The Open
Assembly Model for the Exchange of assembly and tolerance information: overview and
example," Proceedings of the ASME DETC/CIE'04 Conference,2004.

 10. Klein, L., Liutkus, G., Nargelas, V., Sileikis, P., Baltramaitis, T., Schowe-von der Brelie,
B., Alfter, A., and Wesbuer, C., "Ontologies derived from STEP data models," S-TEN,
Deliverable D3.3, 2008.

 11.Zhao, W. and Liu, J. K., "OWL/SWRL representation methodology for EXPRESS-
driven product information model," Computers in Industry, Vol. 59, 2008, pp. 580-600.

 12.W3C. OWL 2 Web Ontology Language: Model-Theoretic Semantics.
http://www.w3.org/TR/2008/WD-owl2-semantics-20080411/ . 2008.

 13. Fiorentini, X., Rachuri, S., Mahesh, M., Fenves, S., and Sriram, R. D., "Description logic
for product information models," Proceedings of the ASME International Design
Engineering Technical Conferences & Computers and Information in Engineering
Conference,2008.

 14. Krima, S., Barbau, R., Fiorentini, X., Rachuri, S., and Sriram, R., "OntoSTEP: OWL-DL
Ontology for STEP," National Institue of Standards and Technology, NISTIR 7561,
Gaithersburg, MD 20899, USA, 2009.

 15. LLC. Pellet. http://clarkparsia.com/pellet/ . 2008.
 16. Sriram, R. D., Intelligent Systems for Engineering: A Knowledge-Based Approach,

Springer, 1997.
 17. SPARQL Query Language for RDF. http://www.w3.org/TR/rdf-sparql-query/ . 2008.
 18. SQWRL. http://protege.cim3.net/cgi-bin/wiki.pl?SQWRL . 2009.
 19. LLC. Pellet Features. http://clarkparsia.com/pellet/features/ . 2008.
 20. SWRL, W3C Member Submission. http://www.w3.org/Submission/SWRL/ . 2004.
 21.SQWRL - Aggregation functions. http://protege.cim3.net/cgi-

bin/wiki.pl?SQWRL#nidA20 . 2009.
 22. University of Manchester. OWL API. http://owlapi.sourceforge.net/index.html . 2008.
 23.Joshua Lubell, and Stephane Lardet. Open Source EXPRESS Parser.

http://sourceforge.net/projects/osexpress/ . 2001.
 24. ANTLR Parser generator. http://www.antlr.org/ . 2008.
 25. International Organization for Standardization. ISO 10303-22: Industrial automation

systems and integration -- Product data representation and exchange -- Part 22:
Implementation methods: Standard data access interface. 1998.

 26. STEP and STEP-NC Software for e-manufacturing. http://www.steptools.com/ . 2009.
 27. Google Web Toolkit. http://code.google.com/webtoolkit/ . 2008.
 28. Object Management Group. Meta Object Facility (MOF) Specification. 2002.
 29. Object Management Group. Reference Metamodel for the EXPRESS Information

Modeling Language RFC. 2008.
 30. Object Management Group. Ontology definition metamodel. 2008.

