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Abstract: The Standard for the Exchange of Product model data (STEP) [1] 
contains product information mainly related to geometry. The modeling 
language used to develop this standard, EXPRESS, does not have logical 
formalism that will enable rigorous semantics. In this paper we present an 
OWL-DL (Web Ontology Language - Description Logic) [2] version of STEP 
(OntoSTEP) that will allow logic reasoning and inference mechanisms and thus 
enhancing semantic interoperability. The development of OntoSTEP requires 
the conversion of EXPRESS schema to OWL-DL, and the classification of 
EXPRESS instances to OWL individuals. Currently we have considered AP203 
[3] - the most widely used Application Protocol (AP) for the exchange of 
Computer-Aided Design (CAD) files - and STEP Part 21 [4] CAD files - CAD 
files conformant to the data exchange format defined in Part 21 - for schema 
level conversion and instance level classification respectively. We have 
implemented a web application to demonstrate OntoSTEP. We are currently 
extending OntoSTEP to include information such as function, behavior, and 
assembly requirements. 
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1 Introduction 

Manufacturing organizations spend a considerable amount of resources to understand and 
apply the Product Lifecycle Management (PLM) approach. The PLM approach enables 
organizations to manage, in an integrated fashion, the product portfolio from conception 
to disposal [5]. Representation and management of product information is the key for a 
successful implementation of PLM. 

To enable the exchange of product data through a product lifecycle, the International 
Organization for Standardization (ISO) has developed the Standard for Exchange of 
Product model data (STEP) [1] (ISO 10303). Unfortunately the representation of function 
and behavior is outside the scope of current STEP. We call concepts such as function and 
behavior as “beyond geometry information” since they are most often related to the 
geometry of the product.  

The STEP APs are defined using the EXPRESS language. EXPRESS (ISO 10303-11) 
[6]  is a data modeling language designed by ISO to model STEP entities. STEP Part 21 
[4] defines the syntax for representing data according to a given EXPRESS schema. 
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There is a limited tool support for EXPRESS. Moreover, since EXPRESS is not based on 
formal semantics, it is difficult to check the quality of these tools.  

Our goal is to overcome these issues by translating STEP in OWL-DL [2] (Web 
Ontology Language - Description Logic), which allows the application of mechanisms to 
check models and data validity, to check the consistency of the instances, and to infer 
new knowledge. Measuring model quality is easier since they are based on a formal 
semantics. We refer to the translated STEP as OntoSTEP in the remainder of the paper. 
OntoSTEP could be used to express and semantically enrich product information 
available in STEP files. In our use-case we translate in OWL the STEP AP 203 data 
model and Part 21 CAD files. The methodology followed for the use-case is fully 
applicable to any other STEP AP and any Part 21 file.  

In our previous work [7], we created a semantic model including beyond geometry 
concepts from the NIST (National Institute of Standards and Technology) Core Product 
Model (CPM) [8]  and Open Assembly Model (OAM) [9]. In the future, we plan to 
combine OntoSTEP with the semantic model of CPM and OAM: the instantiation of such 
a combined model could be, in part, automatically performed from a Part 21 file.  

The paper is organized as follows.  We review some works related to OntoSTEP in 
Section 2. Then we introduce the OntoSTEP mapping rules in Section 3. We present our 
implementation and the tools used to realize it in Section 4 and, finally, we present our 
conclusions and future plans in Section 5.  

2 Related work 

This section discusses two related efforts that aim to develop a translation from 
EXPRESS to OWL. The approaches taken by these authors and their main contributions 
are explained below. 

Intelligent Self-describing Technical and Environmental Networks (S-TEN) [10] is a 
project funded by the European Community. This project describes a bi-directional 
translation between EXPRESS and OWL. S-TEN focuses on translating modules, so the 
translated parts are used within several APs. Hence in the S-TEN project no AP is 
covered in full. The STEP modules are also modified, either to take advantage of the use 
of OWL, or as an improvement. For instance, some entities used to express relationships 
are directly translated to relationships. Moreover new capabilities are added, such as a 
better management of the product identifiers. A manual check is performed after the 
translation of the EXPRESS schemas to ensure that the meaning of the data models is the 
same in EXPRESS and in OWL. The final ontology is stored in a database.  

Zhao and Liu proposed a methodology to represent EXPRESS models in OWL and 
SWRL [11], a rule-based language for OWL. Zhao and Liu translated procedural code 
contained in the EXPRESS schemas. The procedural code specifies algorithms which can 
be used to compute derived attributes or to check the validity of data. Since OWL is not a 
procedural language, the authors chose to use Jess rules to represent EXPRESS 
procedures and functions. However it is not clear whether this mapping between 
procedures and Jess rules could work for all the procedures, especially those from AP 
203. Moreover, some aspects of the EXPRESS language are not properly dealt with. For 
instance, the translation of ordered lists in EXPRESS was not proposed. Automated tools 
doing the entire translation are planned, but we are not aware of any software released. 
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3 OntoSTEP 

The goal of our work is improving interoperability of product data by defining the 
semantics of the STEP models in a formal logic. In this paper, we translate the EXPRESS 
models in OWL 2 [12]. OWL-DL, a sublanguage of OWL based on Description Logic, 
provides several features we need to add semantics: 
− consistency checking: this mechanism ensures that no contradictions are present 

within the model 
− inference: this capability allows to extract new knowledge through logic reasoning 
− decidability: this characteristic ensures that the reasoning is performed in finite time. 

In this section, we present the rules for translating EXPRESS to OWL. The 
translation of the instance data resulting from the EXPRESS schemas is also introduced. 

3.1 Mapping the main concepts 

In our translation, EXPRESS entities and instances map respectively to OWL classes and 
individuals. Attributes correspond to OWL properties, ObjectProperties link classes 
together, while DataProperties link classes to data types. The domain of a property 
defines which classes can have this property. Without restrictions, properties in OWL are 
aggregations, so an individual can be linked several times to other individuals by using 
the same property. To define the usage of a property, it is possible to restrict its 
cardinality through the “ObjectExactCardinality” construct and its values through the 
“ObjectAllValuesFrom” construct. In the case of an optional attribute, the 
“ObjectAllValuesFrom” construct is used to link the entity to the union of the attribute 
type and the class owl:Nothing. This solution is adopted to explicitly express the 
semantics of the OPTIONAL keyword: a value is not required for this attribute. 

An ontology may contain statements related to both classes (TBox) and individuals 
(ABox). In our translation, a schema is translated into an ontology that contains mainly 
classes and property definitions [13]. The following table summarizes our proposed 
translation of the basic concepts from EXPRESS to OWL. 

Table 1: Translation of the basic concepts from EXPRESS to OWL 

EXPRESS OWL 

Schema Ontology 

Entity Class 

Subtype of Subclass of 

Attribute with 
an entity type 

ObjectProperty. The domain of the property is the class that corresponds to 
the entity that contains the attribute. This class is restricted to have 
ObjectExactCardinality equal to 1 and ObjectAllValuesFrom equal to the 
entity type for that property. 

Attribute with a 
simple data type 

DataProperty. The domain of the property is the class that corresponds to the 
entity that contains the attribute. This class restricted to have 
ObjectExactCardinality equal to 1 and ObjectAllValuesFrom equal to the 
data type for that property. 

Optional 
attribute 

The range of the property is restricted to have ObjectAllValuesFrom equal 
to the union of the attribute type and the class Nothing. 
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Attribute with 
an aggregation 
type 

The range of the property is restricted to have, for that property, minimum 
and maximum cardinalities corresponding to the aggregation size. 

We also need to redefine the naming conventions for the properties. In EXPRESS 
attributes are defined to be within the scope of the entity, while in OWL properties have a 
global scope. We choose to prefix the attributes names with the entity names in order to 
differentiate attributes that have the same name but that belong to different entities. 

3.2 Mapping instances 

An EXPRESS schema is instantiated by creating a file as defined in “Clear Text 
Encoding of the Exchange Structure -10303-21,” or Part 21. CAD packages can export 
data in STEP format that conform to the AP203 schema and conform to STEP Part 21’s 
constraints. In this paper we refer to these export files as “Part 21 files.”  

The translation to OWL is similar to the process described in the previous section and 
summarized in Table 1. In STEP the schema and the instances are declared in different 
files: the related schema is specified in the Part 21 file in the FILE_SCHEMA section. 
OWL provides a similar mechanism of import. The instance file contains an import 
statement that relates instances to the schema ontology. This import mechanism allows us 
to maintain the schema ontology separate from the instance one. By having the final 
ontology containing both the TBox and the ABox, we are able to check the consistency of 
the instances against the schema. The namespace of the elements declared in the schema 
ontology indicates the shortened name of the schema: ap203 in our example. 

While STEP considers all instances to be different, OWL does not have the unique 
name assumption, i.e., in OWL a same object can be identified with two different names. 
The solution to capture the semantics of EXPRESS is to declare all the created 
individuals as different. 

The treatment of an unknown fact is another major difference between EXPRESS and 
OWL. In EXPRESS, any unknown fact is supposed to be false. For example, if an 
instance of product is not known to be instance of product_category, the system assumes 
it is not. This behavior is called the Close World Assumption (CWA), because it 
supposes that the world is limited to what is stated. OWL uses the Open World 
Assumption (OWA): unless a reasoner proves a fact is false, that fact is unknown. Hence 
the translation sometimes requires additional information to capture the semantics of 
EXPRESS in OWL. The difference between CWA and OWA causes a translation 
problem when an instance is constrained to have one attribute. The attribute id of the 
entity product is not declared optional, so it should be instantiated for all the instances of 
product. In the EXPRESS logic, the lack of data will raise an error. In OWL, even if we 
do not define an id for an instance of product, the reasoner does not detect an 
inconsistency: the instance is still considered to have an unknown id. To allow the 
reasoner to detect an inconsistency in case of missing id, it would be required to declare 
explicitly that that instance of product has no id. 

To fully translate the STEP APs, the translation of some additional concepts, such as 
derived data types, is required to be introduced. Our proposed translation from EXPRESS 
to OWL for these additional concepts is presented in the next section.  
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3.3 Mapping additional concepts 
Let us now consider some additional concepts of EXPRESS and, when possible, 

propose their translation in OWL. Unfortunately, some constructs of EXPRESS, such as 
functions, cannot be automatically translated: these constructs usually define entity 
constraints and attributes computation and may rely on complex algorithms. OWL, as it 
is based on Description Logic, does not contain any procedural aspects. This section 
focuses on the EXPRESS language aspects that can be automatically translated to OWL 
concepts. Some EXPRESS concepts, such as SELECT, ENUMERATION and UNIQUE 
are all translated in OWL and the details of the translation are provided in [14]. 

3.3.1 Data types 

EXPRESS defines simple data types to cover a wide range of information. These simple 
types are presented and the definition of constructed types is explained. 

EXPRESS includes all the data types required to capture the common product 
information. OWL inherits the data types defined in the XML Schema Definition (XSD) 
language. In EXPRESS, some types, like boolean and string, have the exact equivalent in 
OWL, while other types, like number and real, are represented in a slightly different way 
in OWL. For example, we translate the real data type in EXPRESS as a double in OWL, 
even if the precision of those two data types is different. This solution should not lead to 
major problems since a 32-bit approximation of real numbers is usually sufficient in the 
product domain. The translation of the logical and binary data types is outside the scope 
of this paper since these data types are not contained in the AP203. 

EXPRESS allows the creation of data types derived from the simple types previously 
presented. In order to deal with these derived types in OWL, we build a type hierarchy 
and we apply the concept of data wrapping. 

For example, we define a class String that has a DataProperty to the string data type. 
It is then sufficient to subclass the class String to translate all the user-defined data types 
related to string (Label in this case). This concept organization allows us to translate all 
the user-defined data types related to string only by subclassing the class String. Because 
of the possible use of functions, we cannot guarantee the correctness of an automatic 
translation of data type restrictions. Using a manual case-by-case translation, most of the 
types defined in AP203 can be translated. 

3.3.2 Aggregations 

EXPRESS provides four different types of aggregations: set, bag, list, and array. Each 
type of aggregation has order policies and duplication policies. For the attribute 
declarations, the type of content and the number of elements of the aggregation are 
defined. The detailed mapping of these types are explained in [14]. Here, as an example, 
we provide the detailed mapping of bag. 

Bags are unsorted collection of elements. The only difference between sets and bags 
is the duplication policy: the same element can be repeated several times in a bag. 
Because object properties in OWL do not allow duplications, we create the concepts 
structure shown in Figure 1. A new class, called Bag, is inserted between the Container 
class and the Content class. The property hasContent is declared functional in order to 
associate only one element for each instance of Bag. 
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3.3.3 Abstraction 

A supertype in EXPRESS may be declared as abstract. The meaning is the same as in 
object-oriented programming: an abstract entity cannot be directly instantiated.  

OWL does not provide any feature to translate the ABSTRACT keyword and, even if 
it had, it would not work as expected. Because of the OWA, an ontology is assumed to be 
incomplete so that the non-instantiation of a concrete entity does not lead to 
inconsistency. To overcome this problem, we could have declared the subtypes classes as 
the partition of the supertype. A partition forces the instances of the supertype to belong 
to at least one subtype. This is achieved by declaring that the set of instances of the 
supertype is covered by the sets of instances of the subtypes. In that case, if an individual 
was declared as an instance of the supertype class and not an instance of the subtype 
class, the reasoner would detect an inconsistency. However this solution only works 
when both the supertype and all the subtypes are declared within the same schema. 
Because of these reasons, we choose to ignore the ABSTRACT keyword. It is then 
impossible for the reasoner to check that abstract entities are not directly instantiated. 

3.3.4 Inheritance 

In order to specify the allowed combination of subtypes for an entity, EXPRESS provides 
three keywords: ONEOF, ANDOR, and AND. Along with the ABSTRACT keyword, 
they restrict the usage of the instantiation mechanism.  

ONE OF :  the ONEOF keyword takes as parameter a list of entities and it specifies 
that only one of these entities can be instantiated. An equivalent behavior in OWL is 
obtained by defining the subclasses as disjoint: an inconsistency is detected when an 
individual is an instance of two of these subclasses. We mark the set of classes contained 
in a ONEOF as all disjoint. Another solution could be to use the logical definition of 
XOR: we could use in OWL the intersection, the union and the complement to translate 
and, or and not. However this increases the complexity of the ontology, as the length of 
the formula increases dramatically with the number of elements involved. For this reason 
we choose the first solution. 

ANDOR: when no specific constraints are defined, the default keyword for the 
instantiation is ANDOR: the instance can belong to more than one subclass. In OWL a 
set of entities joined by an ANDOR is translated by a union of the corresponding classes 
in OWL: we first represent the union of the subclasses by using the ObjectUnionOf 
construct and we then declare this union to be equivalent to the parent class. 

Figure 1: Bag (Class level) 
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AND: the AND operator imposes that the object be an instance of all the subclasses. 
In order to respect this constraint in OWL, we use the ObjectIntersectionOf to link the 
subclasses. 

3.4 Benefits 

OWL-DL semantics is based on Description Logic (DL), a family of knowledge 
representation languages. These languages are used to define domain concepts according 
to a predefined and well understood formalism. Concepts are used to represent the 
domains objects, while roles are used to represent relationships between these concepts. 
Concepts and roles are the main components of the knowledge base1.  

OWL-DL provides the “maximum expressiveness while retaining computational 
completeness (all conclusions are guaranteed to be computable) and decidability (all 
computations will finish in finite time)” [2]. Expressiveness, computational 
completeness, and decidability enable reasoning mechanisms, e.g., consistency checking. 
These mechanisms are applied by reasoners to find implicit consequences based on the 
explicit information provided in a knowledge base. Many reasoners have already been 
developed. For the purpose of our project we choose Pellet [15]. 

3.4.1 Consistency checking 

The consistency checking procedure can be applied at two different levels: schema level 
and instances level. At the schema level, the consistency checking procedure checks 
whether a concept can be instantiated at least once. At the instances level, the consistency 
checking procedure checks whether an individual declared as an instance of a concept is 
really instance of that concept. 

Currently, libraries are available to check the consistency of EXPRESS schemas and 
Part21 files but with OntoSTEP, both kinds of consistency checking are performed by a 
DL reasoner.  Checking the logical consistency of the OWL classes and individuals 
resulting from the translation is the necessary condition to use an inference procedure. 

3.4.2 Inference procedure 

An inference procedure uses the data evidence in a context and draws conclusions using 
certain problem solving strategies [16]. The inference procedure is the process to reach 
these conclusions and it is performed by a reasoner.  Reasoners use a knowledge base as 
a source of data: concepts, roles, and axioms are elaborated by the reasoner to reach the 
conclusion. The expressivity of the axioms and concepts definitions is dependant on the 
logic language used. 

OWL2 is based on a SROIQ(D) [12] expressivity. All the operators included in the 
SROIQ(D) expressivity e.g., transitivity, can be used and combined to express axioms. 
These axioms can be computed only with a reasoner that supports SROIQ(D) 
expressivity, e.g., Pellet. 

In our work, for example, we use inference procedures to represent ordered lists of 
instances, i.e., to elaborate functional properties, transitive properties, properties 
hierarchies, and properties chains. All the axioms used in this representation are provided 
by the SROIQ(D) expressivity. 
                                                 
1 The terms “knowledge base” and “ontology” are used interchangeably for the purpose 
of this paper. 



   

 

   

   
 

   

   

 

   

   S. Krima, R. Barbau, X. Fiorentini, S. Rachuri, S. Foufou, R. D. Sriram    
 

    
 
 

   

   
 

   

   

 

   

       
 

Once the reasoner has applied all the inferences procedures on our ontology, new 
knowledge and data become available. Then one can use a querying mechanism to query 
these new data, which represents an enriched version of the original ontology. 

3.4.3 Queries 

Queries are performed to retrieve specific data from a large amount of information: in our 
case we perform queries to retrieve some specific product information from a CAD file. 
The information contained in a CAD file is first translated into OWL representation, then 
checked for consistency and inference, and finally queried. 

There are two approaches in vogue today to perform queries on OWL ontologies: the 
first approach uses a language called SPARQL Protocol and RDF Query Language 
(SPARQL) [17].  while the second approach uses the Semantic Query-Enhanced Web 
Rule Language (SQWRL) [18]. None of them is used in OntoSTEP for the reasons 
explained below.  

SPARQL was specifically developed for Resource Description Framework (RDF) 
models, so we would need to translate our OWL ontology to RDF before performing 
SPARQL queries. We do not adopt this solution because of two reasons. First, the 
translation from OWL to RDF increases the computational time. Second, the Pellet 
reasoner does not support some SPARQL built-ins functions, such as DESCRIBE, 
OPTIONAL, or FILTER [19], or some classical aggregation functions, such as 
maximum, minimum, sum, or average. 

While SPARQL was developed for RDF, SQWRL was specifically being developed 
for OWL. Unlike SPARQL, SQWRL is based on SWRL [20] and does not need any RDF 
bridge: the computation of SQWRL queries is then faster. SQWRL provides not only 
many built-in functions, but also some classical aggregation functions like maximum, 
minimum, sum, or average [21], which are  missing in SPARQL. We do not adopt this 
solution for two reasons. First, only a proprietary engine, i.e., Jess, is currently available 
to process SQWRL queries. Second, SQWRL does not allow combining functions 
together. 

To overcome these drawbacks we choose to perform our queries by using the OWL 
Application Programming Interface (API) for OWL 2 [22] , which is a Java API. This 
API enables us to manipulate our ontology and to query it. The next section provides 
more details about this API and its usage. 

4 Implementation 

The previous section discussed how to generate an ontology from EXPRESS schemas 
and instance files. This part presents an implementation of the translation rules previously 
described. The goal is to create tools that perform this generation automatically, and then 
use these tools to translate both the AP203 and Part 21 CAD files. Three kinds of 
technologies are used to achieve the above goal:  
1) those related to the EXPRESS schemas translation: EXPRESS Parser [23], Another 
Tool for Language Recognition (ANTLR) [24] parser generator and OWL API; 
2) those related to the instances translation: Standard Data Access Interface (SDAI) [25], 
STEPTools [26] and OWL API; 
3) the one related to a web application that facilitates the use of our tools: Google Web 
Toolkit framework [27]. 
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The web application contains basic login capabilities and uploads a CAD file. Once 
the file is retrieved, the translation process is launched, and the resulting file containing 
the A-Box is created. A query engine selects the products and parts corresponding to the 
criteria input by the user. A detailed use case is provided in [14]. 

5 Conclusion and future work 

Semantic interoperability between the applications that exchange product information is 
required to achieve systems integration. STEP is the most known and accepted standard 
for the exchange of product geometry information: its aim is enabling interoperability 
between engineering applications.  

The main benefits of the semantically enriched STEP information presented in this 
paper are the ability to check the consistency of EXPRESS schemas, the ability to check 
the validity of the Part 21 files against their schemas and the opportunity of performing 
queries on those files. In this paper we presented a mapping to OWL-DL from the STEP 
AP203 and Part 21 CAD files and we showed the principles we followed to create it. 
These same principles could be used to create OWL mappings of other STEP APs.   

We also developed a web application to allow users to upload their CAD files, to 
translate them, and to manage and query their product ontologies. 

In the future, we plan to combine OntoSTEP with the OWL-DL versions of the 
CPM/OAM, which are information models to support beyond geometry information. We 
also plan to develop a plug-in to CAD applications to allow the insertion of this 
information, which would then be checked for consistency along with the geometry 
information. We also plan to strengthen OntoSTEP by formalizing at the MetaObject 
Facility (MOF) [28] level the translation between EXPRESS and OWL. For both these 
languages, a MOF-compliant metamodel has been developed [29] [30]. A translation 
between these metamodels would allow a bi-directional robust transformation between 
EXPRESS and OWL.  

Disclamer 
No approval or endorsement of any commercial product by NIST is intended or implied. Certain commercial software are 
identified in this report to facilitate better understanding. Such identification does not imply recommendations or endorsement 
by NIST nor does it imply the software identified are necessarily the best available for the purpose. 
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