

Application Information Mapping Test: An Efficient Content-Level Semantic Equivalence Test
Procedure for B2B Integration

Junho Shin*, Jaewook Kim, Nenad Ivezic

Manufacturing Engineering Laboratory, National Institute of Standards and Technology, 100 Bureau Drive,
Gaithersburg, MD 20899, USA;

Tel: +001 301 975 3654, Fax: +001 301 975 4482, Email:{ junho.shin, jaewook, nenad.ivezic } @nist.gov

Abstract. This paper describes the Application Information Mapping Test (AIMT) – a type of content-level test
procedure for Business-to-Business (B2B) integration across enterprises. The goal of AIMT is to assure that the
semantics of a B2B message element are interpreted by the system under test (SUT) according to the element’s intended
meaning. AIMT provides this assurance by verifying that the element values are processed, stored, and utilized correctly
by the SUT to reflect that intended meaning. This paper discusses the AIMT methodology for test development and test
execution, which is based on our experience to provide a self-testing capability in a B2B-interoperability project for
automotive industry. In particular, we propose an efficient and robust test procedure for AIMT that reduces the time-
consuming manual steps and prevents mapping errors. This procedure also proposes a minimum set of test trials by
considering practical message constraints of industrial environments. A simulation experiment is presented and results
are analysed with respect to the effectiveness of the approach.

Keywords: B2B interoperability; content-level test; application information mapping test; efficient and robust test
procedure

* Corresponding author. Email: junho.shin@nist.gov

1. Introduction

Business-to-Business (B2B) integration across a supply chain enables a company to focus on its core
competencies and offload other services to partners in order to gain efficiencies and reduce costs. An essential
ingredient for successful B2B integration is the ability to share information among suppliers, customers, and
trading partners. One way of sharing data is to utilize an adapter that creates data maps between two specific
application systems (Succi et al. 1998). This approach, though it could be useful for small groups of
applications, is not efficient for supply chain networks that involve large number of participants where n2
adapters (i.e., one for each directed connection) need to be developed. Another approach to information
sharing is to utilize standard messages that can be commonly understood by all the participants across the
supply chain (Succi et al. 1998). In this case, each participant who has information in its proprietary
representation format transforms its data into a standard document in order to communicate with others.

The approach of utilizing standard messages, however, may incur semantic mapping errors in the

message transfer process. The meaning of the elements in the standard document can be interpreted in
different ways. For example, an application may interpret ‘Customer’ as a manufacturing plant, while another
application may interpret the ‘Customer’ as an OEM that has multiple manufacturing plants. Such inconsistent
interpretations of the business data can cause execution of inappropriate business actions.

To reduce semantic ambiguities and prevent semantic mapping errors, message implementation

guidelines are specified that describe the meaning of elements in the standard documents. The developers can
create the concrete maps between local data and the elements in the standard document based on such
guidelines. Nevertheless, it is very hard to produce non-ambiguous specifications due to the lack of reliable
and cost-efficient methods to encode data elements and message semantics. Consequently, testing is a crucial
activity to interactively resolve any semantic ambiguities in mappings from proprietary to standard messages
(Ray 2002). For that reason, we develop methods to facilitate content-level testing for B2B integration.

We explored four types of content-level tests to date: document verification test, application information

mapping test, transaction behaviour test, and scenario-based test (Kulvatunyou et al. 2005). This paper
focuses on the application information mapping test (AIMT) with the objectives to propose a robust and
efficient test procedure for AIMT and to recommend a minimum set of test cases sufficient to guarantee that
there are no semantic mapping errors. The proposed procedure is a sequence of systematic testing activities
that reduces the time-consuming manual steps of previous test procedures and, consequently, increases the
practicality of the test. Moreover, the investigation of the minimum set of test cases reduces the number of
required trials during the procedure.

In Chapter 2, we first give an overview of content-level tests relevant for a B2B integration project and
the types of AIMT with their general procedures. Then, we provide the robust and efficient test execution
procedure for AIMT in Chapter 3, where more steps are introduced to prevent the information mapping errors
of the fully automated test. In Chapter 4, we address the various types of practical message restrictions of
industrial environments, from which a minimum set of test cases can be calculated. Chapter 5 illustrates with
an example how test cases are derived based on message restrictions. To analyze the effectiveness of the
proposed procedure, we run an AIMT simulation and discuss the results. Finally, we provide concluding
remarks and discuss future work in Chapter 6.

2. Overview of Content-level Testing

2.1 Context for Content-level Testing

A notable use of content-level testing occurred in support of conformance and interoperability testing
within the STEP (Standard for the Exchange of Product model data) effort. STEP content standards allow the
companies involved in the same supply chain to communicate product descriptions electronically and their
evolving changes over the product life cycle (Morris et al. 1993, ISO 1994, Kindrick et al. 1996). While
conformance testing determines whether an implementation behaves in a manner defined by a standard,
interoperability testing is concerned whether two systems can actually exchange data that supports intended
behavior (Kindrick et al. 1996).

The STEP testing framework was developed to examine if the system under test (SUT) both (1)

correctly processes an input file compliant with the STEP application information model into the SUT’s
proprietary format and (2) generates an output file compliant with the STEP application information model
based on a provided input test file. Essential to these transformations from or to the STEP application
information model is the preservation of the semantic content captured in the information model (Kemmerer
1999). The AIMT for general Business Object Documents (BOD) proposed in this paper is a testing approach
inspired by and generalized from the STEP testing approach. The AIMT approach was used in supply chain
integration projects such as B2B Interoperability Testbed at the National Institute of Standard and Technology
(NIST) and Inventory Visibility and Interoperability project initiated by Automotive Industry Action Group
(AIAG) (Kulvatunyou et al. 2003, Ivezic et al. 2004, AIAG 2008, OAG 2008, NIST 2008).

2.2 Application Information Mapping Test

The approach of utilizing standard messages for B2B integration is enabled by the implementation of
application interfaces that can process the contents of standard messages. In real situations, it is probable that
some message elements are not processed and utilized by the application in accordance with their intended
meanings. AIMT assures that the semantics of any message element are interpreted and implemented by a
SUT according to the intended meaning of that element. The practical method selected for this verification is
to check the mapping between the message element and its corresponding concept in the SUT, defined as data
element. AIMT consists of two tests: input test and output test. The input test verifies that the application
interface successfully reads and maps the content from the standard input representation into its local
representation. Conversely, the output test verifies that the application interface successfully reads and maps
the content from the local representation, which was created from an input test file, into the standard output
representation. Depending on the role an application plays in the integration scenario, it may require one or
both types of tests. For example, only the output test is necessary when a purchasing system generates
purchase orders but never consumes them.

(Figure 1) shows the general test procedures for input and output tests under the assumption that the
SUT has implemented successfully the interface for generating and consuming the data according to the target
exchange specification. For the input test, the input interface receives the standard message and transfers the
contents of the message into local data in the SUT. In order to compare the standard message to the local data,
the local data are transformed back to the standard message. During the transformation, the test framework
provides the Narrative and questionnaire interface, where business analysts, acting as testers, answer the
questions that assess values of business domain entities and their elements (rather than to request values of the

standardized document elements). On the other hand, the output interface takes the local data and transforms
them to a standard message. The local data delivered to the output interface are obtained by transforming the
standard input test message for two reasons: it is difficult to generate test instances using the application
format and original standard message is necessary for the comparison. During the transformation, the test
framework also provides the business analysts with the Narrative and value interface (1) to capture the
semantics of the business domain entities and their elements and (2) to correctly map the message elements
into the data elements in the SUT without the requirement to understand the standard message format. The
business analysts then capture the semantics of each element and update the value of the matching element
within the local system.

<Insert figure 1 about here>

3. Robust and Efficient AIMT Procedure

Fully automated test procedures that eliminate the manual steps have been developed as shown in
(Figure 2). The automated test procedures perform the input and output tests simultaneously under the
precondition that a SUT has both input and output interfaces. A standard message instance is transformed into
the local data by the input interface and then transformed back into a standard message by the output interface.
We can conclude that the SUT passes both the input and output tests if the result of the comparison of two
standard messages is “equivalent”. The proposed automated procedures, consequently, enhance the testing
efficiency and capability by trying out sufficient number of experiments within a reasonable time period.

<Insert figure 2 about here>

Regardless of its efficiency, in a large number of executions, the automated test also has some

limitations of its own. First, the test cannot be employed when the SUT only requires one type of interface, i.e.
an input interface or an output interface. Second, the test cannot detect certain types of information mapping
errors.

(Figure 3) shows the input and output information mapping errors that may occur. They include (a) the

input interface consumes an input element incorrectly while the output interface generates the output element
correctly, (b) the input interface consumes an input element correctly while the output interface generates an
output element incorrectly, and (c) both the input interface consumes an input element incorrectly and the
output interface generates an output element incorrectly. The proposed automated test should be able to detect
these types of mapping errors (called “General Type error”). However, the automated test cannot detect
mapping errors when there is a coincidental correctness resulting from a symmetrically erroneous mapping as
shown in (d) in (Figure 3). Here, we define this type of error as “Type II error” as the test fails to detect an
erroneous information mapping (where our nomenclature is only inspired by the hypothesis testing
nomenclature).

<Insert figure 3 about here>

In order to prevent Type II errors, the automated test should be accompanied by the input test or the

output test. In other words, the automated test should be performed only after one of the input or the output
interface is verified. This combination of the automated test with either the input or the output test is still more
efficient than conducting the input test and the output test together. One of the practical issues here is how to

minimize the number of test cases whenever we cannot eliminate manual transformations. We will investigate
the problem in further detail in Chapter 5. Another practical issue is that a human’s misunderstanding of a
message element meaning in the input test or the output test can also lead to an incorrect mapping. The errors
cannot be eliminated but only be reduced by employing tools such as the narratives and questionnaires that
help a tester grasp the meaning of the element. It is assumed in this paper that the incorrect mappings due to
human misunderstanding do not occur.

As opposed to recognizing an erroneous mapping as normal one, there can be some cases where the test

infrastructure recognizes a normal mapping as erroneous one. Such cases arise when the syntactic
representations of the data elements are changed for several reasons as shown in (Figure 4), although the
intended semantics is same. The first reason for the change is the data type conversion during the message
transfer. An example is when a value of “Date” type is converted into “String” type. The second reason is the
different coding schemes, which force the value of an element following one coding scheme to be changed
during mapping into, say, a pair of elements following another coding scheme. The third reason is the use of
different vocabularies for the same value. For example, a word “Maryland” (a state of U.S.A.) in one system
can be represented as “MD” in the other system. The test infrastructure may not have a facility to detect the
equality of these alternatively represented values. We call this type of error “Type I error” as the test fails to
detect a correct information mapping (i.e., the test fails to accept the true hypothesis that the mapping is
correct.)

<Insert figure 4 about here>

A Type I error screening test, thus, is necessary when either the input/output test or the automated test

generates the result of “Fail”. The screening will determine whether the failure is caused by imperfect test
infrastructure (i.e. Type I mapping error) or it is a general mapping error. The screening test checks the
meaning of the actual values of two target elements, one from the input standard message and the other from
the output standard message. “Pass” in the result of the screening test means “no Type I error”, whereas “Fail”
means that Type I error occurred and consequently the result of the target test (input/output or automated)
should be changed into “Pass”. It is assumed in the paper that the analysis of semantic equivalence of target
elements is performed manually by a human.

The number of automated tests only needs to be same as or larger than the number of the first conducted
input tests (or output tests) in order to detect all the semantic mapping errors present in the mapping interfaces.
However, if the purpose is to prevent as many Type I errors as possible and consequently improve the
mapping interface, a sufficient number of automated tests for such purpose should be conducted. The increase
in the number of test cases basically enhances the Type I error detectability by generating a variety of
message instances within the allowable value range. With the detected cases that fall into three cases (See
Figure 4), the system interface improvement that reduces the probability of Type I mapping errors can be
done by developing an exception-handling module.

An AIMT test procedure designed to prevent Type I and Type II mapping errors and to improve
mapping interfaces is shown in (Figure 5) and (Figure 6). The batch test procedure in (Figure 5) assumes that
errors are fixed after all the analysis jobs are completed. The incremental test procedure in (Figure 6) assumes
that errors found during the test execution are fixed immediately before further analysis. In the batch test
procedure, the input/output test and the automated test are conducted in parallel, which results in one of the
following conclusions: “No Mapping Errors (characterized by the “Pass” result from the input/output test and

the “Pass” result from the automated test)”, “Type II Detected (characterized by the “Pass” result from the
input/output test and the “Fail” result from the automated test)” and, otherwise, “General Type Detected”.
Before reaching the conclusion for each test, complimentary Type I screening test is done to check if there is
any Type I error in case the test result is “Fail”. If Type I errors are detected (i.e. the result of Type I screening
test is “Fail”), the test result should be changed into “Pass” for the case. The errors found in the tests (i.e.
Type II errors and General Type errors) are fixed after all the analysis jobs are completed. To illustrate the test
procedure, let’s suppose the results of both the input test and the automated test are “fail”. Then, Type I
screening test should be conducted for both tests to check if the failures were caused by some changes in
representation although their results should have been “pass”. If only the automated test does not pass the
screening test (which means “Type I detected” for the automated test), then the result of the automated test
should be regarded as “pass” and consequently the final result will be “Type II detected”. The table in (Figure
5) embodies all the possible cases that can occur in the batch test procedure.

<Insert figure 5 about here> <Insert figure 6 about here>

 On the other hand, the incremental test procedure first conducts the input or output test and removes all

the errors found (i.e. Type II errors and General Type errors) iteratively until no more errors exist. Once all
the iterations for the input or output test are completed, the procedure then applies the same iterations to the
automated test.

The incremental test procedure is more efficient in general without the chance of committing type II

errors. In real practice, however, the batch test procedure would be practical since it requires only one-time
correction whereas the incremental test procedure requires high frequency of corrections to fix every problem
found at the moment. The communication cost between testing unit and development unit (responsible for
fixing problems) is another disadvantage of the incremental test procedure.

4. Optimization of Test Cases for Manual Tests

As mentioned in Chapter 3, minimizing the number of test cases for the input/output test is important in
real practice since the human involvement step may force the tester to spend much time on conducting the
tests. The essential constraint for the problem, however, is that the test should detect Type II mapping errors.
Hence, we can define the problem as follows: “What is the minimum number of input/output tests that
guarantee that there is no Type II error?”

In order to detect all potential Type II errors, following test requirements are introduced.

“All message elements should be instantiated at least once in standard messages.”

The test requirement implies that each element of the standard message needs to be checked whether its

semantic meaning is preserved in the applications or not. Repetitive verifications with different values may
not be necessary since the test is only concerned with the semantic equivalence between message elements
and data elements in the SUT.

Basically, one instance can contain all the message elements if there is no particular restriction in

message specification. In such an ideal case, the input/output test with one test case is sufficient to ensure no
Type II mapping errors. In real cases, however, multiple instances should be populated so as not to violate

message restrictions that exist in message specification. The various types of message restrictions (that
prohibit all the message contents from being instantiated only in one instance) will be investigated first in the
following paragraphs before summarizing how to obtain the minimum number of test cases.

The first type of message restriction can be defined as “mutual exclusiveness” where one message

element should not be included when a particular associated element is instantiated in the message. For
instance, message elements Ca and Cb in (Figure 7) cannot be populated simultaneously according to the
“mutual exclusiveness”. As a result, one message instance needs to be populated to ensure the mapping
between Ca and C, while the other message instance needs to be populated to ensure the mapping between Cb
and C. An example of this restriction is the time period, which can be expressed by either the start time and
the duration or the start time and the end time.

<Insert figure 7 about here>

The second type of message restriction can be defined as “disaggregation” where one message element

can correspond to each of several data elements in a SUT under particular conditions. For instance, as shown
in (a) of (Figure 8), the message element B is typically mapped to B1 in the left case, whereas it is mapped to
two elements B1 and B2 in the right case. As a result, another message instance needs to be populated to
ensure the mapping between B and B2 in addition to B and B1. The contents of the message element B should
be selected carefully to correctly affect which of the two mappings is used. One possible complex form of
“disaggregation” is shown in (b) of (Figure 8), where Elements B and D in a standard message are typically
mapped into the elements B and D in a SUT in case element D exists in a message. On the other hand, the
element B is mapped into both element B and D in a SUT instead of only B in case an element D does not
exist in the message. A real example of this complex “disaggregation” is the situation where “Customer
Party” message element that normally describes customer party information is mapped into the “ShipTo
Party” element in a SUT to describe ship-to party information omitted in the message. (It is assumed that
customer party is same as ship-to party in this business case)

<Insert figure 8 about here>

The third type of message restriction can be defined as “aggregation” where, contrary to the case of

“disaggregation”, several message elements can be interpreted as one element in a SUT under particular
conditions. For instance, as shown in (a) of (Figure 9), the message element B1 is typically mapped to B in the
left case, whereas the message element B1 and B2 are mapped to B in the right case. As a result, another
message instance needs to be populated to ensure the mapping between B2 and B in addition to the mapping
between B1 and B. One possible complex form of “aggregation” is shown in (b) of (Figure 9), where Elements
B1 and B2 in a standard message are typically mapped into B1 and B2 in SUT in case the element C does not
exist in the message. On the other hand, all the elements B1, B2, and C are mapped into B in case the element
C exists in the message. A real example of this complex “aggregation” is the case where an element itself
serves as a specific location, but in a combination with another element, it could point to a more specific
location.

<Insert figure 9 about here>

Every message restriction that falls into above categories requires multiple instances of messages for the
input or output test. Let’s define the number of test cases that should be executed by ith restriction as ni. Then,
the minimum number of tests can be defined as,

 ntoinsrestrictioallforni 1max

based on the assumption that the interaction between restrictions does not exist. However, in the case

interactions exist between certain restrictions, the number of tests should be the largest product of the number
of occurrences ni where i belongs to Rt, a set of restrictions that have interactions with each other:

t
Ri

Rsetsnrestrictioallfor
t

inmax

The number can be reduced according to the characteristics of interactions on a case-by-case basis,

which will be delineated in further detail in Chapter 5.

5. Simulation Study

In this section, we illustrate the overall AIMT test procedure with the test environment. We use a scaled
down message specification, SyncShipmentSchedule, which is shown in (Table 1), is used to test the input and
output interface of a GM (General Motors) application. The message specification is a part of the standard
B2B exchange specification developed for the purpose of inventory management among automotive
manufacturers and their suppliers. The general meaning of the message is the authorization of the shipment of
supplies. The first column in (Table 1) uses an XPATH expression to show field names (see the abbreviation
legend at the bottom of the table to expand the field name) (W3C 2008). The second column (UO = Usage
Occurrence) indicates the cardinality of each field. The cardinality 1 means the field must occur once and only
once; 1+ means the field must occur and may occur more than one time; 0+ means the field may occur zero
or more times; 1..n means the field must occur and may occur up to n times; C means that the occurrence of
the field is dependent upon other fields (other than its parent) and is governed by one or more restrictions
indicated in the third column (Field Description). It should be noted that the cardinality of a child field is
conditioned upon the cardinality of its parent. For example, although the cardinality of the field
SmSd/SmScHd/ShipTo/PId is 1 (required), the cardinality of its parent SmSd/SmScHd/ShipTo is optional. This
means that the field PId is required when the ShipTo is instantiated.

<Insert table 1 about here>

The first step for AIMT test is to conduct the input or output test together with the automated test since

we apply the batch test procedure in Chapter 3 to this simulation experiment. The important factors that
should be considered in the step are message restrictions in order to define the test cases and minimize the
number of tests. The following four restrictions are employed for the test message.

- Restriction 1: Schedule period can be expressed by either the start time and the duration or the start time
and the end time. [Mutual exclusiveness]

- Restriction 2: The CustomerPId can serve as the ShipTo party information if the ShipTo is omitted in
the header section. [Disaggregation]

- Restriction 3: Two occurrences of the kanban number (SmSd/SmScLn/Kanban/Num) together with the
RangeCode instantiated indicate that the kanban number is specified in a range. The kanban number,
however, can occur two times individually without the RangeCode instantiated [Aggregation]

- Restriction 4: Multiple occurrences of the kanban location (SmSd/SmScHd/ShipTo/Loc) shall be
interpreted as a key combination to identify a specific location, e.g., one location points to “Dock A”
and another points to a location within the “Dock A” such as manufacturing “Line 12”. [Aggregation]

The resultant minimum number of test cases (computed based on the restrictions) is three, as shown in

(Table 2). The computation considering four restrictions and the interaction between restrictions 2 and 4 (the
kanban location SmSd/SmScHd/ShipTo/Loc is the child element of the ship to party SmSd/SmScHd/ShipTo)
results in four test cases. The test cases are further reduced to three cases by the characteristics of the child-
parent relationship, based on which the child element Loc should exist only if the parent element ShipTo
exists.

<Insert table 2 about here>

The input test was conducted for the three message instances based on the minimum test cases. The

automated test was also conducted simultaneously with the input test. As a result of the two mapping tests,
two cases (where at least one of the test results are “Fail”) were found as shown in (Table 3).

<Insert table 3 about here>

The Type I screening tests were conducted for the cases of “Fail” and the failure of the automated test in

the second case turned out to be “Type I error”. The Type I error was caused by the representation change of
the postprocessor, from “20080701T114718” to “2008-07-01T11:47:18”, instead of transformation from
“20080701T114718” to “20080701T114718”, which results in the mismatch with the input value of “2008-
07-01T11:47:18”. Consequently, the test results of the second case, after the Type I screening test was
complemented, were changed from “Fail/Fail” to “Fail/Pass”. On the other hand, the results of the first case
still remained the same. The final results for the two cases were all “Fail/Pass”, which means Type II errors
were detected in both cases. The reason for the Type II error in the first case was the incorrect mapping from
ShipTo/PId/DunsID in the standard message to sender/DUNS in the GM application. The correct mapping
was from the SmSd/SmScHd/CustomerParty/PId/DunsID to sender/DUNS and from ShipTo/Pid/DunsID to plt
in GM application. The reason for the second case was the incorrect mapping from
SmSd/AppArea/CreationDateTime to CreationDateTime element in the GM application. The semantic for
CreationDateTime in the GM application is the creation time of the kanban, which is contained in the
Kanban/Status/EffectiveDateTime field of the standard test message.

The interface errors found in the tests were fixed and tested again until no more errors (i.e., Type I errors,
Type II errors, and General Type errors) occurred. The result showed no occurrence of General Type errors in
this case, which coincides with our expectation that mapping errors usually occur in both input and output
interface simultaneously due to the symmetric erroneous mapping. Thus, the proposed procedure for
preventing Type I and Type II errors proved practical for the efficient and automated AIMT.

6. Conclusion and Future Work

This paper describes a content-level test method to resolve semantic errors committed during
information mapping among applications in the B2B integration situations across supply chains. As one of the
content-level tests, the AIMT is used to check that the semantics of message elements are interpreted
according to the intended meaning.

The automated AIMT test procedure cannot detect Type I and Type II mapping errors. Thus, the paper
suggests an augmented and more robust procedure for the purpose of detecting Type I and Type II errors in
which the input test (or output test) and the Type I screening test are conducted in combination with the
automated test. In a simulation experiment that applied the test SyncShipmentSchedule message to GM
application, we showed that the proposed procedure not only elevated the efficiency of the test but also
diminished the probability of incorrect decision-making. Moreover, an optimisation effort to minimize the
number of manual tests was developed. We proposed an optimisation methodology based on message
restrictions, which enabled us to minimize the number of test cases in the input or output test.

Type I errors currently can be detected only by a manual screening test. The module that checks the
semantic equivalence between the values of two elements, however, will make the procedure much simpler by
blocking the Type I errors beforehand. Further research should also be conducted to prevent incorrect
mappings caused by human error in the input and output tests. Additional tools that help a tester grasp the
meaning of the elements, such as narratives, should be developed to further reduce the possibility of errors.

Acknowledgments

The authors acknowledge contributions to the earlier versions of the paper by Dr. Serm Kulvatunyou.

Certain commercial software products are identified in this paper. These products were used only for
demonstration purposes. This use does not imply approval or endorsement by NIST, nor does it imply these
products are necessarily the best available for the purpose.

This work was supported by the Korea Research Foundation Grant funded by the Korean Government

(MOEHRD). (KRF-2007-357-D00280)

References

AIAG, Automotive Industry Action Group, Available from: http://www.aiag.org [Accessed April 2008]

ISO 10303-1, 1994. Industrial Automation Systems and Integration – Product Data Representation and

Exchange – Part 1: Overview and Fundamental Principles, Available from:
http://www.iso.org/iso/catalogue_detail?csnumber=20579

Ivezic, N., Kulvatunyou, B.S., Frechette, S., Jones, A.T., Cho, H. and Jeong, B., 2004. An Interoperability

Testing Study: Automotive Inventory Visibility and Interoperability, In E-Challenges, Vienna, Austria.

Kemmerer, S.J., 1999. STEP the Grand Experience, National Institute of Standards and Technology Special
Publication 939.

Kindrick, J.D., Sauter, J.A., Matthews, R.S., 1996. Improving Conformance and Interoperability Testing,

StandardView, 4 (1), 61-68.

Kulvatunyou, B.S., Ivezic, N., Martin, M.J. and Jones, A.T., 2003. A Business-to-Business Interoperability

Testbed: An Overview, In The 5th International Conference on Electronic Commerce (ICEC),
Pittsburgh, PA.

Kulvatunyou, B.S., Ivezic, N. and Jones, A.T., 2005. Content-Level Conformance Testing: An Information

Mapping Case Study, Testing of Communication Systems. Lecture Notes in Computer Science, 3502,
349-364.

Morris, K.C., Mitchell, M.J. and Barnard, A., 1991. Validating STEP Application Models at the National

PDES Testbed, NISTIR 4735, National Institute of Standards and Technology.

NIST, B2B Interoperability Testbed, Available from: http://www.mel.nist.gov/msid/b2btestbed/ [Accessed

April 2008],

OAG, Open Application Group Integration Specification (OAGIS) version 9.0, Available from:

http://www.openapplications.org/downloads/oagis/oagis9.htm [Accessed August 2008]

Ray, S.R., 2002. Interoperability Standards in the Semantic Web, Journal of Computing and Information

Science in Engineering, 2 (1), 65-69.

Succi, G., Valerio, A., Vernazza, T. and Succi, G., 1998. Compatibility, Standards, and Software Production,

Standard View, 6 (4), 140-146.

World Wide Web Consortium: XML Path Language (XPath) 2.0, Available

from:http://www.w3.org/TR/xpath20/ [Accessed January 2008]

Table 1. Message specification of SyncShipmentSchedule

Field (XPATH Expression) UO Field Description

SmSd/AppArea/CreationDateTime 1 Creation date and time for the message instance.

SmSd/SmScHd/DocumentDateTime 1
Actual date and time of the payload (document) instance or the physical
document.

SmSd/SmScHd/CustomerParty/PId 1
Identifier of the customer organization. A customer refers to the party
who uses the item. A customer can also serve as the ShipTo if the ShipTo
is not specified.

SmSd/SmScHd/CustomerParty/PId/D
unsID

C Identifier of PId for business (provided by Dun and Bradstreet).

SmSd/SmScHd/ShipTo C
The ShipTo, one of the primary keys of the kanban loop and kanban,
includes the information about where the kanban item is used (typically
kanbans are managed by location).

SmSd/SmScHd/ShipTo/PId 1 Identifier of the plant.

SmSd/SmScHd/ShipTo/PId/DunsID C Identifier of PId for business (provided by Dun and Bradstreet)

SmSd/SmScHd/ShipTo/Loc 0+

Element capturing locations within the parent object such as the Dock, the
location (on the manufacturing line) where items are used, a storage
location before the items are used, etc. Multiple occurrences of this
element do not mean multiple locations but their Id fields indicate a key
combination that points to a more specific location (i.e., location within
another location based on its Type).

SmSd/SmScHd/ShipTo/Loc/Type 1 Location function.

SmSd/SmScHd/ShipTo/Loc/Id 1 Identifier of the location.

SmSd/SmScLn/CustomerItemId 1 Identifier provided by the customer for the item in the kanban container.

SmSd/SmScLn/ScPeriod 1
Time window that the truck will arrive for picking up the items to be
shipped.

SmSd/SmScLn/ScPeriod/Start 1 Start time of the time window.

SmSd/SmScLn/ScPeriod/End C End time of the time window.

SmSd/SmScLn/ScPeriod/Duration C Duration of the time window.

SmSd/SmScLn/Kanban 1+ Element capturing information about each kanban.

SmSd/SmScLn/Kanban/Num 1..2
Number of the kanban. The kanban number can occur at most two times,
when the user wants to specify a range of kanban numbers using the range
code attribute. If it occurs one time, the kanban is specified individually.

SmSd/SmScLn/Kanban/Num/Range
Code

C
Indicator whether the kanban number is the first or last, in case the
kanban number is specified in a range.

SmSd/SmScLn/Kanban/Status 1 Status of the kanban, e.g., Empty, Full, Authorized, Shipped.

SmSd/SmScLn/Kanban/Status/Effect
iveDateTime

1
The date/time at which the Kanban status was effective.

Field Abbreviations: Sm = Shipment, Sd = Schedule, Hd = Header, Ln = Line, App = Application, Id = Identifier,
PId = Party Identifier, Loc = Location, Num = Number

Table 2. Minimum test cases for input or output test

 Restriction 1
(Mutual exclusiveness)

Restriction 2
(Disaggregation)

Restriction 3
(Aggregation)

Restriction 4
(Aggregation)

Test
case

I

Have
SmSd/SmScLn/ScPeriod/Start &

SmSd/SmScLn/ScPeriod/End
(No .../Duration)

No ShipTo field

One occurrence of the
Kanban (Num field occurs
twice with its RangeCode

field instantiated)

No occurrence of
the Loc field

Test case
II

Have
SmSd/SmScLn/ScPeriod/Start &

SmSd/SmScLn/ScPeriod/Duration
(No .../End),

Have ShipTo
field

Two occurrences of the
Kanban (no RangeCode)

One occurrence of
the Loc field

Test case
III

Any of the above Have ShipTo field Any of the above
Two occurrences of

the Loc field

Table 3. Two error cases in the simulation experiment

Error cases
Input test /

Automated test

Type I screening
Test

(Input / Auto)

Updated results
after Type I scr.
(Input / Auto)

Conclusion

Case
I

Mapping from
ShipTo/PId/DunsID

to sender/DUNS

 FAIL /
PASS

Pass /
-

 FAIL /
PASS

Type II detected

Case
II

Mapping from
SmSd/AppArea/Creatio

nDateTime to
CreationDateTime

 FAIL /
FAIL

Pass /
Fail (Type I detected)

 FAIL /
PASS

Type II detected

Figure 1. AIMT procedures for (a) input test and (b) output test

Figure 2. Automated test procedure

Figure 3. General types of mapping errors (a, b, c) and Type II mapping errors (d)

Figure 4. Type I mapping errors

Figure 5. AIM batch test procedure and possible cases

Figure 6. AIM incremental test procedure

Figure 7. Message restriction of “mutual exclusiveness”

Figure 8. Message restriction of “disaggregation”

Figure 9. Message restriction of “aggregation”

	1. Introduction
	2. Overview of Content-level Testing
	2.1 Context for Content-level Testing
	2.2 Application Information Mapping Test

	3. Robust and Efficient AIMT Procedure
	4. Optimization of Test Cases for Manual Tests
	5. Simulation Study
	6. Conclusion and Future Work
	Acknowledgments
	References
	UO
	Field Description

